dc.creator |
Conde, Cristian Marcelo |
|
dc.creator |
Feki, Kais |
|
dc.date.accessioned |
2025-07-24T18:00:32Z |
|
dc.date.available |
2025-07-24T18:00:32Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
Conde, C. M. y Feki, K. (2022). Some numerical radius inequality for several semi-Hilbert space operators. Linear and Multilinear Algebra, 71(6), 1054-1071. |
|
dc.identifier.issn |
0308-1087 |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2329 |
|
dc.description |
Revista con referato |
|
dc.description |
Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina. |
|
dc.description |
Fil: Feki, Kais. University of Sfax; Túnez. |
|
dc.description.abstract |
El artículo trata del radio numérico generalizado de operadores lineales que actúan en un espacio de Hilbert complejo (Fórmula presentada.), que están acotados con respecto a la seminorma inducida por un operador positivo A en (Fórmula presentada.). Aquí no se supone que A sea invertible. Principalmente, si denotamos por (Fórmula presentada.) y (Fórmula presentada.) los radios numéricos generalizado y clásico respectivamente, demostramos que para cada operador T acotado por A tenemos (Fórmula presentada.) donde (Fórmula presentada.) es la inversa de Moore-Penrose de (Fórmula presentada.). Además, se establecen varias desigualdades nuevas que involucran (Fórmula presentada.) para uno y varios operadores. En particular, mediante el uso de nuevas técnicas, cubrimos y mejoramos algunos resultados recientes debido a Najafi [Linear Algebra Appl. 2020;588:489–496]. |
|
dc.description.abstract |
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space (Formula presented.), which are bounded with respect to the seminorm induced by a positive operator A on (Formula presented.). Here A is not assumed to be invertible. Mainly, if we denote by (Formula presented.) and (Formula presented.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have (Formula presented.) where (Formula presented.) is the Moore-Penrose inverse of (Formula presented.). In addition, several new inequalities involving (Formula presented.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489–496]. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Taylor and Francis |
|
dc.relation |
https://doi.org/10.1080/03081087.2022.2050883 |
|
dc.rights |
info:eu-repo/semantics/restrictedAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Linear and Multilinear Algebra. 2022; 71(6): 1054-1071 |
|
dc.subject |
Positive Operator |
|
dc.subject |
A-Adjoint Operator |
|
dc.subject |
A-Numerical Radius |
|
dc.subject |
Inequality |
|
dc.subject.classification |
Matemáticas |
|
dc.subject.classification |
Matemática Pura |
|
dc.title |
Some numerical radius inequality for several semi-Hilbert space operators |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|