Some numerical radius inequality for several semi-Hilbert space operators

Show simple item record

dc.creator Conde, Cristian Marcelo
dc.creator Feki, Kais
dc.date.accessioned 2025-07-24T18:00:32Z
dc.date.available 2025-07-24T18:00:32Z
dc.date.issued 2022
dc.identifier.citation Conde, C. M. y Feki, K. (2022). Some numerical radius inequality for several semi-Hilbert space operators. Linear and Multilinear Algebra, 71(6), 1054-1071.
dc.identifier.issn 0308-1087
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2329
dc.description Revista con referato
dc.description Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.
dc.description Fil: Feki, Kais. University of Sfax; Túnez.
dc.description.abstract El artículo trata del radio numérico generalizado de operadores lineales que actúan en un espacio de Hilbert complejo (Fórmula presentada.), que están acotados con respecto a la seminorma inducida por un operador positivo A en (Fórmula presentada.). Aquí no se supone que A sea invertible. Principalmente, si denotamos por (Fórmula presentada.) y (Fórmula presentada.) los radios numéricos generalizado y clásico respectivamente, demostramos que para cada operador T acotado por A tenemos (Fórmula presentada.) donde (Fórmula presentada.) es la inversa de Moore-Penrose de (Fórmula presentada.). Además, se establecen varias desigualdades nuevas que involucran (Fórmula presentada.) para uno y varios operadores. En particular, mediante el uso de nuevas técnicas, cubrimos y mejoramos algunos resultados recientes debido a Najafi [Linear Algebra Appl. 2020;588:489–496].
dc.description.abstract The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space (Formula presented.), which are bounded with respect to the seminorm induced by a positive operator A on (Formula presented.). Here A is not assumed to be invertible. Mainly, if we denote by (Formula presented.) and (Formula presented.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have (Formula presented.) where (Formula presented.) is the Moore-Penrose inverse of (Formula presented.). In addition, several new inequalities involving (Formula presented.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489–496].
dc.format application/pdf
dc.language eng
dc.publisher Taylor and Francis
dc.relation https://doi.org/10.1080/03081087.2022.2050883
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Linear and Multilinear Algebra. 2022; 71(6): 1054-1071
dc.subject Positive Operator
dc.subject A-Adjoint Operator
dc.subject A-Numerical Radius
dc.subject Inequality
dc.subject.classification Matemáticas
dc.subject.classification Matemática Pura
dc.title Some numerical radius inequality for several semi-Hilbert space operators
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics