En esta tesis estudiamos distintos tipos de convexidades en grafos y parámetros asociados a ellas. Una convexidad en un grafo G es un par (V(G); C) donde C es una familia de subconjuntos de V(G) que satisface las siguientes condiciones: ∅ ∈ C, V(G) ∈ C y C es cerrado bajo intersecciones. A cada conjunto de la familia C se lo llama C-convexo. Presentamos resultados sobre complejidad relacionados con cubrimientos de los vértices de un grafo con p conjuntos convexos y relacionados con particionar los vértices de un grafo con p conjuntos convexos. Presentamos una fórmula para calcular el número de intervalo, otra para el número de cápsula y otra para el tiempo de percolación bajo la P3-convexidad de un grafo caterpillar. Encontramos una relación entre el tiempo de P3-percolación de un grafo de intervalo unitario y un parámetro relacionado con el diámetro de un grafo de intervalo unitario. Presentamos una clase de grafos hereditarios tal que su tiempo de P3-percolación es igual a uno. Presentamos, para una subfamilia dentro de los grafos de Hamming, una fórmula para el número de Carathéodory bajo la P3-convexidad..
In this thesis, we study different types of convexities in graphs and associated parameters. A convexity of a graph G is a pair (V(G), C) where C is a family of subsets of V(G) satisfying all the following conditions: ∅ ∈ C, V(G) ∈ C and C is closed under intersections. Each set of the family C is called C-convex. We present some complexity results concerning the problems of covering a graph with p convex sets and of partitioning a graph into p convex sets. We also present formulas to compute the P3-interval number, the P3-hull number and the P3-percolation time for a caterpillar, in terms of certain sequences associated with it. In addition, we find a connection between the percolation time of a unit interval graph and a parameter involving the diameter of a unit interval graph related to it. Furthermore, we present a hereditary graph class, defined by forbidden induced subgraphs, such that its percolation time is equal to one. Finally, we present a formula for the Carathéodory number under the P3-convexity in a subfamily of Hamming graphs.
Nesta tese, estudamos diferentes tipos de convexidades em grafos e parâmetros associados a elas. Uma convexidade em um grafo G é um par (V(G); C) onde C é uma família de subconjuntos de V(G) que satisfaz as seguintes condições, ∅ ∈ C, V(G) ∈ C, C está fechado sob interseções. Cada subconjunto na família C é chamado de C-convexo. Presentamos resultados relacionados á complexidade, incluindo coberturas de vértices com p conjuntos convexos e partição de vértices em p conjuntos convexos. Também apresentamos fórmulas para calcular o número de intervalo, cápsula e tempo de percolação sob a P3-convexidade de um grafo caterpillar. Além disso, encontramos uma relação entre o tempo de percolação de um grafo de intervalo unitário e um parâmetro relacionado ao diâmetro de um grafo de intervalo unitário. Presentamos uma classe de grafos hereditários tal que seu tempo de P3-percolação é igual a 1. Presentamos, para uma família dentro dos grafos de Hamming, uma fórmula para o número de Carathéodory sob a P3-convexidade.
Fil: González, Lucía María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.