The maximum-impact coloring polytope

Mostrar el registro sencillo del ítem

dc.creator Braga, Mónica Andrea
dc.creator Marenco, Javier
dc.creator Delle Donne, Diego
dc.creator Linfati, Rodrigo
dc.date.accessioned 2025-02-05T15:23:27Z
dc.date.available 2025-02-05T15:23:27Z
dc.date.issued 2016
dc.identifier.citation Braga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324.
dc.identifier.issn 0969-6016
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037
dc.description Revista con referato
dc.description Fil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Linfati, Rodrigo. Universidad del Bío-Bío; Chile.
dc.description.abstract Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment.
dc.format application/pdf
dc.language eng
dc.publisher Wiley
dc.relation http://dx.doi.org/10.1111/itor.12265
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324
dc.source.uri https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2
dc.subject Coloring
dc.subject Integer Programming
dc.subject Facets
dc.subject.classification Matemáticas
dc.title The maximum-impact coloring polytope
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en Repositorio


Búsqueda avanzada

Listar

Mi cuenta

Estadísticas