Grassmann geometry of zero sets in reproducing kernel Hilbert spaces

Show simple item record

dc.creator Andruchow, Esteban
dc.creator Chiumiento, Eduardo Hernan
dc.creator Varela, Alejandro
dc.date.accessioned 2024-12-23T14:30:42Z
dc.date.available 2024-12-23T14:30:42Z
dc.date.issued 2021
dc.identifier.citation Andruchow, E., Chiumiento, E. y Varela, A. (2021). Grassmann geometry of zero sets in reproducing kernel Hilbert spaces. Journal of Mathematical Analysis and Applications, 500(1), 1-31.
dc.identifier.issn 0022-247X
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1820
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact.
dc.format application/pdf
dc.language eng
dc.publisher Academic Press Inc Elsevier Science
dc.relation http://dx.doi.org/10.1016/j.jmaa.2021.125107
dc.rights info:eu-repo/semantics/openAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Journal of Mathematical Analysis and Applications. Ago. 2021; 500(1): 1-31
dc.source.uri https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/500/issue/1
dc.subject Analytic functions spaces
dc.subject Geodesics
dc.subject Grassmann manifold
dc.subject Hardy space
dc.subject Reproducing kernels
dc.subject Zero sets
dc.title Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics