dc.creator |
Andruchow, Esteban |
|
dc.creator |
Di Iorio y Lucero, María Eugenia |
|
dc.date.accessioned |
2024-12-23T14:30:42Z |
|
dc.date.available |
2024-12-23T14:30:42Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Andruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20. |
|
dc.identifier.issn |
2008-8752 |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description |
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description.abstract |
Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Birkhauser |
|
dc.relation |
http://dx.doi.org/10.1007/s43034-021-00116-x |
|
dc.rights |
info:eu-repo/semantics/restrictedAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Annals of Functional Analysis. 2021; 12(2): 1-20 |
|
dc.source.uri |
https://link.springer.com/journal/43034/volumes-and-issues/12-2 |
|
dc.subject |
Projections |
|
dc.subject |
Schatten P-Ideals |
|
dc.title |
p-Schatten commutators of projections |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|