p-Schatten commutators of projections

Show simple item record

dc.creator Andruchow, Esteban
dc.creator Di Iorio y Lucero, María Eugenia
dc.date.accessioned 2024-12-23T14:30:42Z
dc.date.available 2024-12-23T14:30:42Z
dc.date.issued 2021
dc.identifier.citation Andruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20.
dc.identifier.issn 2008-8752
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected.
dc.format application/pdf
dc.language eng
dc.publisher Birkhauser
dc.relation http://dx.doi.org/10.1007/s43034-021-00116-x
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Annals of Functional Analysis. 2021; 12(2): 1-20
dc.source.uri https://link.springer.com/journal/43034/volumes-and-issues/12-2
dc.subject Projections
dc.subject Schatten P-Ideals
dc.title p-Schatten commutators of projections
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics