Mostrar el registro sencillo del ítem
dc.creator | Andruchow, Esteban | |
dc.creator | Recht, Lázaro | |
dc.date.accessioned | 2024-12-23T14:17:58Z | |
dc.date.available | 2024-12-23T14:17:58Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17. | |
dc.identifier.issn | 0129-167X | |
dc.identifier.uri | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813 | |
dc.description | Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. | |
dc.description | Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description | Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia. | |
dc.description | Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | |
dc.description.abstract | We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | World Scientific | |
dc.relation | https://doi.org/10.1142/S0129167X16500026 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Journal Of Mathematics. Feb. 2016; 27(2): 1-17 | |
dc.source.uri | https://www.worldscientific.com/toc/ijm/27/02 | |
dc.subject | Finsler Metric | |
dc.subject | Geodesic | |
dc.subject | Homogeneous Space | |
dc.subject | Unitary Group of A C-Algebra | |
dc.title | Larotonda spaces : homogeneous spaces and conditional expectations | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion |