Larotonda spaces : homogeneous spaces and conditional expectations

Show simple item record

dc.creator Andruchow, Esteban
dc.creator Recht, Lázaro
dc.date.accessioned 2024-12-23T14:17:58Z
dc.date.available 2024-12-23T14:17:58Z
dc.date.issued 2016
dc.identifier.citation Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17.
dc.identifier.issn 0129-167X
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia.
dc.description Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.description.abstract We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
dc.format application/pdf
dc.language eng
dc.publisher World Scientific
dc.relation https://doi.org/10.1142/S0129167X16500026
dc.rights info:eu-repo/semantics/openAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Journal Of Mathematics. Feb. 2016; 27(2): 1-17
dc.source.uri https://www.worldscientific.com/toc/ijm/27/02
dc.subject Finsler Metric
dc.subject Geodesic
dc.subject Homogeneous Space
dc.subject Unitary Group of A C-Algebra
dc.title Larotonda spaces : homogeneous spaces and conditional expectations
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics