dc.creator |
Andruchow, Esteban |
|
dc.creator |
Recht, Lázaro |
|
dc.date.accessioned |
2024-12-23T14:17:58Z |
|
dc.date.available |
2024-12-23T14:17:58Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17. |
|
dc.identifier.issn |
0129-167X |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description |
Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia. |
|
dc.description |
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
|
dc.description.abstract |
We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary
groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation
$$
\Phi:A\to B.
$$
In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$
differentiable structure, with the topology induced by the norm of $A$. The conditional
expectation also allows one to define a reductive structure (in particular, a linear
connection) and a $U_A$-invariant Finsler metric in $P$.
given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the
problem of wether the geodesic $\delta$ of the linear connection satisfying these inital
data is (locally) minimal for the metric. We find a sufficient condition. Several examples
are given, of locally minimal geodesics. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
World Scientific |
|
dc.relation |
https://doi.org/10.1142/S0129167X16500026 |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Journal Of Mathematics. Feb. 2016; 27(2): 1-17 |
|
dc.source.uri |
https://www.worldscientific.com/toc/ijm/27/02 |
|
dc.subject |
Finsler Metric |
|
dc.subject |
Geodesic |
|
dc.subject |
Homogeneous Space |
|
dc.subject |
Unitary Group of A C-Algebra |
|
dc.title |
Larotonda spaces : homogeneous spaces and conditional expectations |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|