Projective geometry of the Poincaré disk of a C*-algebra

Show simple item record

dc.creator Andruchow, Esteban
dc.creator Corach, Gustavo
dc.creator Recht, Lázaro
dc.date.accessioned 2024-12-23T13:21:48Z
dc.date.available 2024-12-23T13:21:48Z
dc.date.issued 2023
dc.identifier.citation Andruchow, E., Corach, G. y Recht, L. (2023). Projective geometry of the Poincaré disk of a C*-algebra. Journal of Operator Theory, 89(1), 155-182.
dc.identifier.issn 0379-4024
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1811
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract We study the Poincar´e disk $d={aina: |a|<1}$ of a C$^*$-algebra $a$ from a projective point of view: $d$ is regarded as an open subset of the projective line $pa$, the space of complemented rank one submodules of $a^2$. We introduce the concept of cross ratio of four points in $pa$. Our main result establishes the relation between the exponential map $Exp_{z_0}(z_1)$ of $d$ ($z_0,z_1ind$) and the cross ratio of the four-tuple $$delta(-infty), delta(0)=z_0, delta(1)=z_1 , delta(+infty),$$ where $delta$ is the unique geodesic of $d$ joining $z_0$ and $z_1$ at times $t=0$ and $t=1$, respectively. Here $delta(-infty)=lim_{to-infty}delta(t)$ and $delta(+infty)=lim_{to+infty}delta(t)$, the limits are considered in the strong operator topology, and may take values in the universal algebra $a^{**}$.
dc.format application/pdf
dc.language eng
dc.publisher Theta Foundation
dc.relation http://dx.doi.org/10.7900/jot.2021dec27.2356
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Journal of Operator Theory. 2023; 89(1): 155-182
dc.source.uri http://www.mathjournals.org/jot/2023-089-001/
dc.subject Projective line
dc.subject Poincaré disk
dc.subject C*-algebra
dc.title Projective geometry of the Poincaré disk of a C*-algebra
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics