dc.creator |
Andruchow, Esteban |
|
dc.creator |
Antúnez, Andrea C. |
|
dc.date.accessioned |
2024-12-23T13:21:48Z |
|
dc.date.available |
2024-12-23T13:21:48Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Andruchow, E. y Antunez, A. (2017). Quotient p-Schatten metrics on sphere. Revista de la Unión Matemática Argentina, 58(1), 21-36. |
|
dc.identifier.issn |
0041-6932 |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1809 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description |
Fil: Antunez, Andrea. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description.abstract |
Let S(H) be the unit sphere of a Hilbert space H and Up(H) thegroup of unitary operators in H such that u?1 belongs to the p-Schatten idealBp(H). This group acts smoothly and transitively in S(H) and endows it witha natural Finsler metric induced by the p-norm kzkp = tr(zz*)p/21/p. Thismetric is given bykvkx,p = min{kz ? ykp : y ? gx},where z ? Bp(H)ah satisfies that (d?x)1(z) = z · x = v and gx denotes theLie algebra of the subgroup of unitaries which fix x. We call z a lifting of v.A lifting z0 is called a minimal lifting if additionally kvkx,p = kz0kp. Inthis paper we show properties of minimal liftings and we treat the problemof finding short curves ? such that ?(0) = x and ??(0) = v with x ? S(H)and v ? TxS(H) given. Also we consider the problem of finding short curveswhich join two given endpoints x, y ? S(H). |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Unión Matemática Argentina |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Revista de la Unión Matemática Argentina. Abr. 2017; 58(1): 21-36 |
|
dc.source.uri |
https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol58 |
|
dc.subject |
Sphere |
|
dc.subject |
Schatten ideals |
|
dc.title |
Quotient p-Schatten metrics on spheres |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|