Essentially orthogonal subspaces

Show simple item record

dc.creator Andruchow, Esteban
dc.creator Corach, Gustavo
dc.date.accessioned 2024-12-23T13:21:48Z
dc.date.available 2024-12-23T13:21:48Z
dc.date.issued 2018
dc.identifier.citation Andruchow, E. y Corach, G. (2018). Essentially orthogonal subspaces. Journal Of Operator Theory, 79(1), 79-100.
dc.identifier.issn 0379-4024
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1808
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract We study the set C consisting of pairs of orthogonal projectionsP,Q acting in a Hilbert space H such that PQ is a compact operator. Thesepairs have a rich geometric structure which we describe here. They are partitionedin three subclasses: C0 consists of pairs where P or Q have finite rank,C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato-Grassmannian) of the polarization H = N(P)? R(P), and C?. We characterize the connected components of these classes: the components of C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm index of the pairs, and C? is connected. We show that these subsets are(non-complemented) differentiable submanifolds of B(H) x B(H).
dc.format application/pdf
dc.language eng
dc.publisher Theta Foundation
dc.relation 10.7900/jot.2016dec13.2138
dc.rights info:eu-repo/semantics/openAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Journal Of Operator Theory. Ene. 2018; 79(1): 79-100
dc.source.uri https://www.theta.ro/jot/archive/2018-079-001/index_2018-079-001.html
dc.subject Projections
dc.subject Pairs of projections
dc.subject Compact operators
dc.subject Grasmann manifold
dc.title Essentially orthogonal subspaces
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics