Mostrar el registro sencillo del ítem
dc.creator | Andruchow, Esteban | |
dc.creator | Chiumiento, Eduardo Hernán | |
dc.creator | Larotonda, Gabriel Andrés | |
dc.date.accessioned | 2024-12-23T13:21:47Z | |
dc.date.available | 2024-12-23T13:21:47Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203. | |
dc.identifier.issn | 0046-5755 | |
dc.identifier.uri | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806 | |
dc.description | Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. | |
dc.description | Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description | Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description | Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description.abstract | For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | http://dx.doi.org/10.1007/s10711-019-00431-7 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Geometriae Dedicata. Feb. 2019; 203(1): 179-203 | |
dc.source.uri | https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst | |
dc.subject | Finsler metric | |
dc.subject | Flag manifold | |
dc.subject | Geodesic | |
dc.subject | Projection | |
dc.subject | Riemannian metric | |
dc.subject | Sphere bundle | |
dc.title | Canonical sphere bundles of the Grassmann manifold | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |