dc.creator |
Andruchow, Esteban |
|
dc.creator |
Chiumiento, Eduardo Hernán |
|
dc.creator |
Larotonda, Gabriel Andrés |
|
dc.date.accessioned |
2024-12-23T13:21:47Z |
|
dc.date.available |
2024-12-23T13:21:47Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203. |
|
dc.identifier.issn |
0046-5755 |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description |
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description |
Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description.abstract |
For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Springer |
|
dc.relation |
http://dx.doi.org/10.1007/s10711-019-00431-7 |
|
dc.rights |
info:eu-repo/semantics/restrictedAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Geometriae Dedicata. Feb. 2019; 203(1): 179-203 |
|
dc.source.uri |
https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst |
|
dc.subject |
Finsler metric |
|
dc.subject |
Flag manifold |
|
dc.subject |
Geodesic |
|
dc.subject |
Projection |
|
dc.subject |
Riemannian metric |
|
dc.subject |
Sphere bundle |
|
dc.title |
Canonical sphere bundles of the Grassmann manifold |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|