Mostrar el registro sencillo del ítem
dc.creator | Andruchow, Esteban | |
dc.creator | Corach, Gustavo | |
dc.date.accessioned | 2024-12-23T13:21:46Z | |
dc.date.available | 2024-12-23T13:21:46Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Andruchow, E. y Corach, G. (3-2019). Uncertainty principle and geometry of the infinite Grassmann manifold. Studia Mathematica, 248(1), 31-44. | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.uri | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1803 | |
dc.description | Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. | |
dc.description | Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description | Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description.abstract | We study the pairs of projections PIf=?If,QJf=(?Jf) ?, f?L^2(R^n), where I,J?R^n are sets of finite positive Lebesgue measure, ?I,?J denote the corresponding characteristic functions and ?, ? denote the Fourier-Plancherel transformation L^2(R^n)?L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the ?(t)=e^{itXI,J}P^{Ie?itXI,J} which joins PI and QJ and has length ?/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ?[H,PI]???/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue ?(X_I,J) which satisfies cos(?(X_I,J))=?PIQJ?. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Polish Academy of Sciences. Institute of Mathematics | |
dc.relation | 10.4064/sm170915-27-12 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Studia Mathematica. Mar. 2019; 248(1): 31-44 | |
dc.source.uri | https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/248 | |
dc.subject | Projections | |
dc.subject | Pair of projections | |
dc.subject | Grassmann maniffold | |
dc.subject | Uncertainty principle | |
dc.title | Uncertainty principle and geometry of the infinite Grassmann manifold | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion |