dc.creator |
Andruchow, Esteban |
|
dc.creator |
Corach, Gustavo |
|
dc.date.accessioned |
2024-12-23T13:21:46Z |
|
dc.date.available |
2024-12-23T13:21:46Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Andruchow, E. y Corach, G. (3-2019). Uncertainty principle and geometry of the infinite Grassmann manifold. Studia Mathematica, 248(1), 31-44. |
|
dc.identifier.issn |
0039-3223 |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1803 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description |
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description.abstract |
We study the pairs of projections PIf=?If,QJf=(?Jf) ?, f?L^2(R^n), where I,J?R^n are sets of finite positive Lebesgue measure, ?I,?J denote the corresponding characteristic functions and ?, ? denote the Fourier-Plancherel transformation L^2(R^n)?L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the ?(t)=e^{itXI,J}P^{Ie?itXI,J} which joins PI and QJ and has length ?/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ?[H,PI]???/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue ?(X_I,J) which satisfies cos(?(X_I,J))=?PIQJ?. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Polish Academy of Sciences. Institute of Mathematics |
|
dc.relation |
10.4064/sm170915-27-12 |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Studia Mathematica. Mar. 2019; 248(1): 31-44 |
|
dc.source.uri |
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/248 |
|
dc.subject |
Projections |
|
dc.subject |
Pair of projections |
|
dc.subject |
Grassmann maniffold |
|
dc.subject |
Uncertainty principle |
|
dc.title |
Uncertainty principle and geometry of the infinite Grassmann manifold |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|