dc.creator |
Andruchow, Esteban |
|
dc.date.accessioned |
2024-12-23T13:21:45Z |
|
dc.date.available |
2024-12-23T13:21:45Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
Andruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553. |
|
dc.identifier.issn |
0003-889X |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description.abstract |
Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Birkhauser Verlag Ag |
|
dc.relation |
http://dx.doi.org/10.1007/s00013-020-01509-5 |
|
dc.rights |
info:eu-repo/semantics/restrictedAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Archiv Der Mathematik. Nov. 2020; 115(5): 545-553 |
|
dc.source.uri |
https://link.springer.com/journal/13/volumes-and-issues/115-5 |
|
dc.subject |
Calkin algebra |
|
dc.subject |
Geodesics of projections |
|
dc.subject |
Projections |
|
dc.title |
A note on geodesics of projections in the Calkin algebra |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|