A note on geodesics of projections in the Calkin algebra

Show simple item record

dc.creator Andruchow, Esteban
dc.date.accessioned 2024-12-23T13:21:45Z
dc.date.available 2024-12-23T13:21:45Z
dc.date.issued 2020
dc.identifier.citation Andruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553.
dc.identifier.issn 0003-889X
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt.
dc.format application/pdf
dc.language eng
dc.publisher Birkhauser Verlag Ag
dc.relation http://dx.doi.org/10.1007/s00013-020-01509-5
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Archiv Der Mathematik. Nov. 2020; 115(5): 545-553
dc.source.uri https://link.springer.com/journal/13/volumes-and-issues/115-5
dc.subject Calkin algebra
dc.subject Geodesics of projections
dc.subject Projections
dc.title A note on geodesics of projections in the Calkin algebra
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics