Geodesics of projections in von Neumann algebras

Show simple item record

dc.creator Andruchow, Esteban
dc.date.accessioned 2024-12-23T13:21:44Z
dc.date.available 2024-12-23T13:21:44Z
dc.date.issued 2021
dc.identifier.citation Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513.
dc.identifier.issn 0002-9939
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).
dc.format application/pdf
dc.language eng
dc.publisher American Mathematical Society
dc.relation http://dx.doi.org/10.1090/proc/15568
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513
dc.source.uri https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/
dc.subject Projections
dc.subject Geodesics of projections
dc.subject Von Neumann algebras
dc.subject Index for subfactors
dc.title Geodesics of projections in von Neumann algebras
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics