dc.creator |
Andruchow, Esteban |
|
dc.date.accessioned |
2024-12-23T13:21:44Z |
|
dc.date.available |
2024-12-23T13:21:44Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513. |
|
dc.identifier.issn |
0002-9939 |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801 |
|
dc.description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. |
|
dc.description.abstract |
Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2). |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
American Mathematical Society |
|
dc.relation |
http://dx.doi.org/10.1090/proc/15568 |
|
dc.rights |
info:eu-repo/semantics/restrictedAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513 |
|
dc.source.uri |
https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/ |
|
dc.subject |
Projections |
|
dc.subject |
Geodesics of projections |
|
dc.subject |
Von Neumann algebras |
|
dc.subject |
Index for subfactors |
|
dc.title |
Geodesics of projections in von Neumann algebras |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|