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SOME CHARACTERIZATIONS OF THE
PREIMAGE OF A∞ FOR THE

HARDY-LITTLEWOOD MAXIMAL
OPERATOR AND CONSEQUENCES

Abstract

The purpose of this paper is to give some characterizations of the
weight functions w such that Mw ∈ A∞ (Rn). We show that, for these
Mw weights, being in A∞ ensures being in A1. We give a criterion
in terms of the local maximal functions mλ and we present a pair of
applications, one of them similar to the Coifman-Rochberg characteri-

zation of A1 but using functions of the form
(
f#

)δ
and (mλu)

δ instead

of (Mf)δ.

1 Introduction

In this work we look at some characterizations of the weights u in Rn such that
Mu ∈ A∞. This question is mentioned as open in [5] and that paper refers the
reader to [4] for partial results for monotonic functions in R, and to our knowl-
edge no previous work brings explicitly a complete result. We will show that if
for a weight u we have that Mu ∈ A∞, actually we have that Mu ∈ A1. From
a result due to Neugebauer it is known that these weights can be characterized

for a pointwise condition for the maximal operator: (M (ur) (x))
1
r ≤ CMu (x)

for some C > 0, r > 1 and ∀x ∈ Rn a.e., so it is immediately satisfied for a

weight belonging to any reverse Hölder class -this means that
(
urQ
) 1
r ≤ C (uQ)
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for some C > 0, r > 1 and for every cube Q with sides parallel to the coordi-
nate axes, where uQ means the mean of u in Q. Let’s remark that in Rn the

pointwise condition, (M (ur) (x))
1
r ≤ CMu (x) for a.e. x with a fixed C > 0,

is strictly weaker than asking for a Gehring condition: ∃C > 0 such that(
1
|Q|
∫
Q
ur
) 1
r ≤ C 1

|Q|
∫
Q
u for every cube Q. For instance any weight u be-

longing to weak − A∞ but not in A∞ satisfies Neugebauer’s condition but

for such u there is no C > 0 such that
(

1
|Q|
∫
Q
ur
) 1
r ≤ C 1

|Q|
∫
Q
u for every

cube Q. This situation contrasts with the case of local maximal functions -
that means: restricted to a finite open cube Q0- where Neugebauer condition
for a.e. x ∈ Q0 is actually equivalent to a Gehring condition with some fixed
constant C > 0 for all Q ⊂ Q0. We refer the reader to reference [2] for that
case with local M.

We will also present another condition in terms of the size of sub-level sets,
by means of the use of some useful pointwise inequalities found by A. Lerner,
involving the sharp maximal operator u#, the local maximal function mλ (u)
and the Hardy-Littlewood maximal operator Mu. The resulting condition is
weaker than some similar conditions that characterize A∞ weights. An inter-
esting consequence that we can obtain from this result is a characterization of
the A1 weights similar to the construction of Coifman and Rochberg (which

is given in terms of k (x) (Mf (x))
δ

-with k and k−1 belonging to L∞), but
involving u# and mλ (u) instead of Mf (x). As another consequence we can
improve, for those weights u such that Mu ∈ A∞ -and hence Mu ∈ A1-, some
known inequalities for singular integral operators.

The weights belonging to A∞ can be described by several conditions. In
the reference [7] many of these conditions are enumerated; all of them are mu-
tually equivalent for the usual Muckenhoupt weights for the maximal operator
associated with the bases of cubes whose sides are parallel to the coordinate
axes (or associated with balls) in Rn, but those that can provide different
classes of weights for other bases. Here we deal with the usual bases of cubes
(with sides parallel to the coordinate axes) and the corresponding Mucken-
houpt weights, but one might translate some of the results for several other
bases for which the definitions for A∞ remain equivalent and for which the
properties relating the weights and their Ap constants still hold.

Summarizing the main results are:

Proposition 1. If u is any weight, Mu ∈ A∞ ⇐⇒ Mu ∈ A1.

Theorem 2. Let u be a weight function in Rn, then Mu ∈ A∞ if and only if

there exists s > 1 and C0 > 0 such that (Mus)
1
s (x) ≤ C0Mu (x).
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Criterion 3. Let u be a weight function, then Mu ∈ A∞ if and only if for
any λ ∈ (0, 1) it holds that mλ (Mu) ≈M (Mu).

Theorem 4. Let u be a weight function. Then:

Mu ∈ A∞ ⇐⇒ ∃α > 0, β ∈ (0, 1) :
∣∣∣{y ∈ Qx : Mu (y) ≤ α (Mu)Q}

∣∣∣ ≤ β |Qx|
for almost every x ∈ Rn for some cube Qx 3 x, and for every cube Q to which
x belongs.

Theorem 5.

(1) If 0 < δ < 1, f ∈ L1
loc (Rn) and u ∈ A1 and C1, C2 non-negative con-

stants then C1

(
f# (x)

)δ
+ C2 (mλu (x))

δ ∈ A1.

(2) Conversely, if w ∈ A1 then there are f ∈ L1
loc (Rn), u ∈ A1, non-

negative constants C1 and C2, and k (x)with k, k−1 ∈ L∞ such that

w (x) = k (x)
(
C1f

# (x)
δ

+ C2mλu (x)
δ
)

.

2 Preliminaries

Here M is the (non-centered) Hardy-Littlewood maximal operator for the
bases of cubes with sides parallel to the co-ordinate axes; so if f ∈ L1

loc (Rn)
we have:

Mf (x) = sup
Q3x

1

|Q|

∫
Q

f (z) dz.

A weight w is a non-negative locally integrable function in Rn. A weight
w ∈ Ap class for 1 < p <∞ if and only if

[Ap] := sup
Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w−
1
p−1

)p−1

< +∞.

A weight w ∈ A1 if and only if

Mw (x) ≤ Cw (x) a.e.x ∈ Rn

and [A1] is the minimal constant C such that this inequality occurs.

We will note f (Q) =
∫
Q
f (x) dx and fQ = f(Q)

|Q| .

We also recall the statement of an useful result due to Coifman, R. and
Rochberg, R. in characterizing A1 weights:
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Theorem.

(1) Let f ∈ L1
loc (Rn) be such that Mf (x) < ∞ a.e. and 0 ≤ δ < 1, then

w (x) = Mf (x)
δ

is in A1. Also the A1 constant depends only on δ.

(2) Conversely, if w ∈ A1 then there are f ∈ L1
loc (Rn) and k (x) with k and

k−1 both belonging to L∞ such that w (x) = k (x)Mf (x)
δ
.

The proof can be found in [6] (or see [3] for the original work), using a
suitable decomposition of f and Kolmogorov’s inequality for proving (1). The
point (2) is quite elementary.

We collect some known properties that we will use. The first three of them
can be easily obtained using the definition of Ap classes and the definition of
[Ap] constants, and Hölder’s inequality (see [6], for instance):

A) Ap ⊂ Aq if p < q and [w]Aq ≤ [w]Ap .

B) w ∈ Ap if and only if w
1

1−p ∈ A 1
1−p

.

C) If w0, w1 ∈ A1 then w0w
1−p
1 ∈ Ap.

Another property that we will need is the reciprocal of property C). That
property (P. Jones’ Factorization Theorem) it’s very much deeper than the
previous (see for instance [17]).

D) If w ∈ Ap there exists w0, w1 ∈ A1 such that w = w0w
1−p
1 .

Finally, one last property that we will need is:

E) If w ∈ Ap there is α > 1 such that wα ∈ Ap.

This latter property is usually proved by means of the use of reverse Hölder
inequalities that Ap weights satisfy (see [6], [8] or [10]), but it can be obtained
easily from the Coifman-Rochberg construction, something perhaps under-
looked: if w ∈ A1 by (2) is w (x)

α
= k (x)

α
Mf (x)

δα
and taking 1 < α < 1

δ

we have from (1) that Mf (x)
δα ∈ A1 and then

Mw (x)
α ≤M

(
‖k‖α∞Mf (x)

δα
)

≤ [(Mf)
δ
]A1
‖k‖α∞

(
Mf (x)

δα
)

≤ [(Mf)
δ
]A1 ‖k‖

α
∞
∥∥k−1

∥∥α
∞ k (x)

α
Mf (x)

δα

= [(Mf)
δ
]A1
‖k‖α∞

∥∥k−1
∥∥α
∞ w (x)

α
.
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So w (x)
α ∈ Ap with [w]Ap ≤ [(Mf)

δ
]A1 ‖k‖

α
∞
∥∥k−1

∥∥α
∞. On the other hand,

for p > 1 and w ∈ Ap by property D) we have w = w0w
1−p
1 with w0, w1 ∈ A1

and for j = 0, 1 we write wj (x) = kj (x)Mfj (x)
δj and for 1 < α < min

{
1
δj

}
we have that wα0 , w

α
1 ∈ A1 and using C) we have that wα = wα0 (wα1 )

1−p ∈ Ap.
By property A, the Ap classes are nested, so it is well defined the class

A∞ =
⋃
p<∞

Ap.

A characterization of a weight w for belonging to A∞ is the following:

w ∈ A∞ ⇐⇒ ∃α, β ∈ (0, 1) : |{y ∈ Q : w (y) ≤ αwQ}| ≤ β |Q| (1)

for every cube Q (see for instance [7] for this and other characterizations for
general bases).

We will prove that for a weight u there is a necessary and sufficient con-
dition for Mu to belong to A∞ with a statement weaker but quite similar to
(1):

Mu ∈ A∞ ⇐⇒ ∃α > 0, β ∈ (0, 1) :
∣∣∣{y ∈ Qx : Mu (y) ≤ α (Mu)Q}

∣∣∣ ≤ β |Qx|
(2)

for x ∈ Rn a.e. and for some cube Qx 3 x, and for every cube Q to which x
belongs.

From the the definition of Ap weights it easily follows that if u ∈ Ap then
either u is locally integrable or u =∞ a.e.

As we call weights to locally integrable non-negative functions, and we
want to describe those weights w such that Mw is an A∞ weight we assume
that we are always dealing with weights w such that Mw is locally integrable
and then Mw < ∞ a.e. although on some occasion we neglect to mention it
explicitly.

3 Some Results

The first step is the following proposition which shows that if Mu ∈ A∞
indeed Mu ∈ A1, and then because A1 ⊂ A∞ we have that Mu ∈ A∞ ⇐⇒
Mu ∈ A1. So, what we have to do is to characterize the weights u such that
Mu ∈ A1.

Of course A1 $ A∞, so there are weights w such that w ∈ A∞ and w /∈ A1.
The lemma tells us that being in A∞ is the same as being in A1 for those
weights w such that w = Mu for some weight u.

Proof of Proposition 1. The implication Mu ∈ A1 =⇒ Mu ∈ A∞ is
trivial because A1 ⊂ A∞. It remains to show that ifMu ∈ A∞ =⇒ Mu ∈ A1.
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If Mu ∈ A∞ =
⋃
p<∞

Ap, we have that Mu ∈ Ap for some p ≥ 1. If p = 1

there is nothing to prove. Let p > 1. Because the result of Coifman and
Rochberg we have that (Mu)

δ ∈ A1 for any δ with 0 ≤ δ < 1 and any u
locally integrable but generally does not occur that Mu ∈ A1. Actually we
are in the process of proving that if we additionally have that Mu ∈ Ap, in
fact Mu ∈ A1.

We need the following result (see, for instance, [16], ej 5 d) Chap 3): For a

measure space (Ω, µ) with measure µ (Ω) = 1 and
(∫

Ω
|f |r dµ

) 1
r <∞ for some

r > 0, we have that

lim
r→0+

(∫
Ω

|f |r dµ
) 1
r

= exp

(∫
Ω

log (|f |) dµ
)
.

Let’s observe that using that µ (Ω) = 1 and the Hölder Inequality we obtain(∫
Ω
|f |r1 dµ

) 1
r1 ≥

(∫
Ω
|f |r2 dµ

) 1
r2 if r1 ≥ r2. So for r > 0 we have that(∫

Ω

|f |r dµ
) 1
r

≥ exp

(∫
Ω

log (|f |) dµ
)

= lim
r→0+

(∫
Ω

|f |r dµ
) 1
r

.

Now for every q > p, using that

sup
Q

Mu(Q)

|Q|

(
1

|Q|

∫
Q

Mu (x)
− 1
q−1 dx

)q−1

= [Mu]Aq ≤ [Mu]Ap

(property A), we obtain that for any cube Q :

Mu(Q)

|Q|

(
1

|Q|

∫
Q

Mu (x)
− 1
q−1 dx

)q−1

≤ [Mu]Ap <∞.

If q tends to infinity then 1
q−1 tends to 0+, so taking r = 1

q−1 and applying

the result from above for f = w−1, Ω = Q, and dµ = dx
|Q| , we have

lim
q→+∞

(
1

|Q|

∫
Q

Mu (x)
− 1
q−1 dx

)q−1

= exp

(∫
Q

log
(
Mu (x)

−1
)
dx

)
= exp

(∫
Q

− log (Mu (x)) dx

)
=

1

exp
(∫

Q
log (Mu (x)) dx

) .
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Taking limit in Mu(Q)
|Q|

(
1
|Q|
∫
Q
Mu (x)

− 1
q−1 dx

)q−1

≤ [Mu]Ap we have that

Mu(Q)

|Q|
1

exp
(∫

Q
log (Mu (x)) dx

) ≤ [Mu]Ap

so
Mu(Q)

|Q|
≤ [Mu]Ap exp

(∫
Q

log (Mu (x)) dx

)
.

Additionally, the observation from above applied for f = Mu gives us that
for any r > 0 it holds that(

1

|Q|

∫
Q

(Mu)
r
dx

) 1
r

≥ exp

(∫
Q

log (Mu (x)) dx

)
.

Thus

Mu(Q)

|Q|
≤ [Mu]Ap exp

(∫
Q

log (Mu (x)) dx

)
≤ [Mu]Ap

(
1

|Q|

∫
Q

|Mu|r dx
) 1
r

and then
Mu(Q)

|Q|
≤ [Mu]Ap

(
1

|Q|

∫
Q

|Mu|r dx
) 1
r

.

Taking r = δ with 0 ≤ δ < 1 and using that for such δ it holds that
(Mu)

r
= (Mu)

δ ∈ A1 and then

1

|Q|

∫
Q

|Mu|r dx ≤ [(Mu)
r
]A1

(Mu (x))
r

a.e for every x ∈ Q.
So we have a.e for x ∈ Q

Mu(Q)

|Q|
≤ [Mu]Ap

(
1

|Q|

∫
Q

|Mu|r dx
) 1
r

≤ [(Mu)
r
]A1 ([(Mu)

r
]A1 (Mu (x))

r
)

1
r

= [(Mu)
r
]A1

([(Mu)
r
]A1

)
1
r (Mu (x)) .

Taking C = [(Mu)
r
]A1 ([(Mu)

r
]A1)

1
r independent of Q, for every Q we

obtain that
Mu(Q)

|Q|
≤ C Mu (x)
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a.e for x ∈ Q.
Then almost everywhere for x ∈ Rn we have that

M (Mu) (x) = sup
Q3x

Mu(Q)

|Q|
≤ C Mu (x)

that is

M (Mu) (x) ≤ C Mu (x)

and then we obtain that Mu ∈ A1.

The previous proposition, together with a lemma due to Neugebauer (pub-
lished in [4]), enables us to give a characterization of all the weights u such
that Mu ∈ A∞. Until a few years ago this was an open problem with in-
teresting consequences for improving some two-weight inequalities for several
operators, including maximal, vector-valued an Calderon-Zygmund ones (see
[5]).

For completeness we transcribe below the lemma of Neugebauer and its
easy proof. In [4] the lemma is considered in R but it works, mutatis mutandis,
for Rn.

Lemma. (Neugebauer) For a weight u it holds that Mu ∈ A1 if and only if

there exists s > 1 and C0 > 0 such that (Mus)
1
s (x) ≤ C0Mu (x).

Proof. If such s > 1 exists then 1
s < 1 and the Coifman-Rochberg char-

acterization of A1 weights tells us that (Mus)
1
s is in A1, so M

(
(Mus)

1
s

)
≤

C1 (Mus)
1
s . Using the hypothesis and the fact that by Hölder: Mu ≤ (Mus)

1
s ,

we obtain M (Mu) ≤ M
(

(Mus)
1
s

)
≤ C1 (Mus)

1
s ≤ C1CMu, and then

M(Mu) ≤ CMu, that is Mu ∈ A1.
Reciprocally, if Mu ∈ A1 then Mu satisfies a reverse Hölder inequality

(RHI), that means that for some s > 1 and C > 0 it holds for any cube Q(
1

|Q|

∫
Q

Mus
) 1
s

≤ C 1

|Q|

∫
Q

Mu

and taking suprema over the cubes we have:

(Mus)
1
s ≤ CMu.
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As we have already mentioned from Neugebauer’s lemma together with
the Proposition 1, which we recall establishes that Mu ∈ A∞ if and only if
Mu ∈ A1, we obtain Theorem 2, whose statement we remember: Let u a
weight function in Rn, Mu ∈ A∞ if and only if there exists s > 1 and C0 > 0

such that (Mus)
1
s (x) ≤ C0Mu (x).

Proof. It is immediate from Neugebauer’s lemma and Proposition 1.

Remark 6. Let’s observe that we have got a bound for the constant [Mu]A1
,

that is

[Mu]A1
≤ [(Mu)

r
]A1

([(Mu)
r
]A1

)
1
r .

Remark 7. Because of the previous results, the weights u with Mu in A∞
are those for which there are some C > 0 such that

M(Mu) (x) ≤ CMu (x) a.e.

4 Some Further Definitions and Properties

Now we will use some pointwise inequalities for certain maximal operators to
weaken the above condition. We need a couple of definitions:

Definition 8. If f ∈ L1
loc (Rn) the sharp maximal function of Fefferman-Stein

f# is defined by

f# (x) = sup
Q3x

1

|Q|

∫
Q

|f (x)− fQ| dx.

Definition 9. BMO (Rn) = {f ∈ L1
loc (Rn) : f# ∈ L∞ (Rn)} is the space of

functions with bounded mean oscillation, and ‖f‖BMO =
∥∥f#

∥∥
∞.

Let’s notice that ‖‖BMO is a seminorm for BMO (Rn) since
∥∥f#

∥∥
∞ = 0

if and only if f is constant (a.e.). It is usual to identify BMO with its quo-
tient with the class of almost everywhere constant functions and then ‖‖BMO

becomes a norm.

Notation 10. For a measurable function f : Rn −→ R, the non-increasing
rearrangement of f is f∗. That is, for t ≥ 0

f∗ (t) = inf{α > 0 : |{x ∈ Rn : |f (x)| > α}| ≤ t}.

We use the convention that inf ∅ =∞.
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An equivalent way to define f∗ (t) is

f∗ (t) = sup
|E|=t

inf
x∈E
|f (x)|

where E are measurable sets.

Remark 11. Non-increasing rearrangements of functions from measure spaces
(X,µ) can be defined in the same way replacing Rn by X and the Lebesgue
measure | | by µ. Much more details and results can be found in [1].

Definition 12. If f is a measurable function and λ ∈ (0, 1) the local maximal
functions mλ (f) are defined by

mλf (x) = sup
Q3x

(fχQ)
∗

(λ |Q|) .

Let’s point out some basic properties of f∗, mλf (x), and f#, immediate
from their definitions:

(i) f# (x) ≤ 2Mf (x).

(ii) If c > 0 then (cf)
∗

(t) = c (f)
∗

(t).

(iii) If f (x) ≥ g (x) a.e. then f∗ (t) ≥ g∗ (t) for every t.

(iv) Using (iii) if f (x) ≥ g (x) a.e. then mλ (f) (x) ≥ mλ (g) (x) everywhere.

(v) If c > 0 using ii) we have mλ (cf) (x) = cmλ (f) (x).

We will also need the somewhat less trivial inequalities:

Lemma 13 (vi). mλ (f) (x) ≥ |f (x)| that holds at every Lebesgue point of f ,
so a.e. if f ∈ L1

loc (Rn).

Proof. We will need to remember a definition and a known result of Real
Analysis. The definition is the following: a sequence {Ei}i∈N of Borel sets of
Rn is said to shrink to x nicely if there is a number α > 0 such that there
is a sequence of cubes of Rn centered at x of radii ri → 0, {Q(x,ri)}i∈N, such

that Ei ⊂ Q(x,ri) and |Ei| ≥ α
∣∣Q(x,ri)

∣∣. The result is this: if x ∈ Rn is a
Lebesgue point of f ∈ L1

loc (Rn) and {Ei}i∈N is a sequence of sets that shrinks
to x nicely, then

f (x) = lim
i→∞

1

|Ei|

∫
Ei

f (z) dz

(see [Rudin], Theorem 7.10 – changing cubes for balls and f ∈ L1
loc (Rn)

instead of f ∈ L1 (Rn) the proof still works).
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Now for any positive τ with τ < 1, using the definitions of non-increasing
rearrangements and mλ we have that

∀Q 3 x : |{y ∈ Q : |f (y)| > τmλf (x)}| ≥ λ |Q| .

So if we take ri = 1
i → 0 and we name

{Ei}i∈N = {y ∈ Q(x,ri) : |f (y)| ≤ τmλf (x)}

then
Ei = Q(x,ri) \ {y ∈ Q(x,ri) : |f (y)| > τmλf (x)}

and we obtain that

|Ei| =
∣∣Q(x,ri) \ {y ∈ Q(x,ri) : |f (y)| > τmλf (x)}

∣∣ ≥ Q(x,ri) − λ
∣∣Q(x,ri)

∣∣ .
That is,

|Ei| ≥ (1− λ)
∣∣Q(x,ri)

∣∣
and then {Ei}i∈N is a sequence of sets that shrinks to x nicely. But now, with
these sets Ei we can apply the mentioned result for any Lebesgue point to
obtain:

f (x) = lim
i→∞

1

|Ei|

∫
Ei

f (z) dz ≤ lim
i→∞

1

|Ei|

∫
Ei

τmλf (x) dz

and using |f (x)| instead of f (x) :

|f (x)| ≤ lim
i→∞

τmλf (x)

|Ei|

∫
Ei

dz = lim
i→∞

τmλf (x)

|Ei|
|Ei| = τmλf (x) .

Then
|f (x)| ≤ τmλf (x)

∀τ < 1, and taking limit for τ → 1− we obtain:

|f (x)| ≤ mλf (x)

for every Lebesgue point of f and then almost everywhere.

We now list a few more properties:

(vii) For any λ ∈ (0, 1) there is a constant cλ,n (depending only of λ and n)
such that for all u ∈ L1

loc and x ∈ Rn we have (see [12] or [13]):

mλ (Mu) (x) ≤ cλ,nu# (x) +Mu (x) .
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(viii) Observe that using (vii) and applying (vi) to f = Mu we obtain

mλ (Mu) (x) ≤ cMu (x)

a.e. for some c > 0.

(ix) mλ (Mu) and Mu are pointwise equivalent a.e.(we will write mλ (Mu) ≈
Mu for that situation) that is there are positive constants A and B
such that mλ(Mu) (x) ≤ AMu (x) and Mu (x) ≤ Bmλ(Mu (x)) a.e., we
obtain this taking A = c in (viii), and B = 1 in (vi).

(x) It’s immediate from the definition of M that Mf (x) ≥ f (x) a.e.

5 Some More Results

From Theorem 2 we have that Mu ∈ A∞ if and only if Mu ≈ M (Mu). A
weaker statement is actually enough to guarantee that Mu ∈ A∞. This is
Criterion 3 and it follows from our Proposition 1 and inequality (vii):

Proof. By Proposition 1 we have Mu ∈ A∞ ⇐⇒ Mu ∈ A1, so Mu ∈ A∞
if and only if there is some C > 0 : M (Mu) (x) ≤ CMu (x) a.e. and using
that M (f) (x) ≥ f (x) a.e. for f ∈ L1

loc we have that M (Mu) (x) ≥ Mu (x)
a.e., and then (ix) gives us that Mu ∈ A∞ ⇐⇒ Mu ∈ A1 ⇐⇒ Mu ≈
M (Mu) ⇐⇒ mλ (Mu) ≈M (Mu).

Remark 14. We can observe that it is enough that mλ (Mu) ≈ M (Mu) for
some λ ∈ (0, 1) to obtain that Mu ∈ A∞ and then mλ (Mu) ≈ M (Mu) for
every λ ∈ (0, 1).

Because of (viii) for any u we always can ensure for a suitable c > 0 that
mλ (Mu) (x) ≤ cMu (x) ≤ cM (Mu) (x), that is mλ (Mu) (x) ≤ cM (Mu) (x)
a.e. Thus, by the criterion above, a condition necessary and sufficient, on
u, for Mu to belong to A∞ is the existence of a constant C > 0 such that
M (Mu) (x) ≤ Cmλ (Mu) (x) a.e.

As we mentioned in the introduction, now we want to prove that (2) is a
necessary and sufficient condition on a weight u for Mu to be in A∞.

A condition like (2) but applied for an arbitrary weight w instead of Mu
is weaker than (1), that is, if w ∈ A∞ then w satisfies the following:

Condition 15 (LocalAINF). ∃α1 > 0, β1 ∈ (0, 1) such that for almost every
x ∈ Rn exists a cube Qx 3 x that ∀Q 3 x verifies that

|{y ∈ Qx : w (y) ≤ α1wQ}| ≤ β1 |Qx| .
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To see this implication let’s remember that w ∈ A∞ if and only if w
satisfies:

Condition 16 (CAINF). ∃α, β ∈ (0, 1) : ∀Q cube we have

|{y ∈ Q : w (y) ≤ αwQ}| ≤ β |Q| .

Now, if w ∈ A∞ we fix some k ∈ (0, 1), for instance k = 1
2 , and for any x

we take a cube Qx 3 x such that wQx = w(Qx)
|Qx| ≥ kMw (x). So let α1 = αk

and for any Q 3 x we have that

{y ∈ Qx : w (y) ≤ α1wQ} ⊂ {y ∈ Qx : w (y) ≤ α1Mw (x)}

⊂ {y ∈ Qx : w (y) ≤ α1

k

w (Qx)

|Qx|
},

then applying the previous condition to Qx we have

|{y ∈ Qx : w (y) ≤ α1wQ}| ≤
∣∣∣{y ∈ Qx : w (y) ≤ α1

k
wQx}

∣∣∣
= |{y ∈ Qx : w (y) ≤ αwQx}| ≤ β |Qx|

so the condition (LocalAINF) is fulfilled with α1 = αk, β1 = β and the Qx
selected for which w(Qx)

|x| ≥ kMw (x).

Then we have that it also holds for the following case:
Although the condition (LocalAINF) is weaker than A∞ for a general

weight when it is applied to a weight that is the maximal function of an-
other weight, that is if w = Mu then the condition (LocalAINF) implies A∞,
so they are equivalent conditions for Mu weights. That is the statement of
Theorem 4 which ensures that

Mu ∈ A∞ ⇐⇒ ∃α > 0, β ∈ (0, 1) :
∣∣∣{y ∈ Qx : Mu (y) ≤ α (Mu)Q}

∣∣∣ ≤ β |Qx|
for almost every x ∈ Rn for some cube Qx 3 x, and for every cube Q to which
x belongs.

Proof. Because of the previous remark, Mu ∈ A∞ if and only if there exists
a positive constant B and λ ∈ (0, 1) :

M(Mu) (x) ≤ Bmλ(Mu (x))a.e. (3)

So to guarantee Mu ∈ A∞ is equivalent to have:

αM(Mu) (x) ≤ mλ(Mu (x)) (4)
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for some α > 0 and almost every x ∈ Rn. Now using the definition of mλ we
have that (4) is equivalent to say that for almost every x ∈ Rn

∃Qx 3 x : (MuχQx)
∗

(λ |Qx|) ≥ α (Mu)Q

for every cube Q 3 x. Now by the definition of non-increasing rearrangements
this means that for a.e. x ∈ Rn

∃Qx 3 x :
∣∣∣{y ∈ Qx : Mu (y) > α (Mu)Q}

∣∣∣ > λ |Qx|

for every cube Q 3 x, or, taking complements respect Qx and naming β =
(1− λ) ∈ (0, 1), we have (3). Therefore Mu ∈ A∞ is equivalent to the ex-
istence of α > 0, β ∈ (0, 1) such that for almost every x ∈ Rn there is some
Qx 3 x :

∃Qx 3 x :
∣∣∣{y ∈ Qx : Mu (y) ≤ α (Mu)Q}

∣∣∣ ≤ β |Qx|
for every cube Q 3 x.

Example 17. It’s easy to see that a class of weights functions u such that
Mu ∈ A∞ is the class A∞ itself, that is M (A∞) ⊂ A∞, and by our first
proposition in fact M (A∞) ⊂ A1. Indeed we can provide an elementary proof
of this using the previous theorem and the characterization (1) of A∞ weights:

We fix some k ∈ (0, 1), and for any x we take a cube Qx such that Mu(Qx)
|Qx| ≥

kM (Mu) (x); because (1) and the fact that u ∈ A∞ we have α1, β1 such

that for any cube Q̃ it holds:
∣∣∣{y ∈ Q̃ : u (y) ≤ α1uQ̃}

∣∣∣ ≤ β1

∣∣∣Q̃∣∣∣. Then for

Q̃ = Qx, α = α1

k , β = β1 and for any Q 3 x, and using the trivial inclusions

due to the inequalities Mu(Qx)
|Qx| ≥ kM (Mu) (x); MMu (z) ≥ Mu (z) a.e. and

Mu (z) ≥ u (z) a.e. we get:

∣∣∣∣{y ∈ Qx : Mu (y) ≤ αMu (Q)

|Q|
}
∣∣∣∣ ≤ ∣∣∣∣{y ∈ Qx : Mu (y)α

MMu (Q)

|Q|
}
∣∣∣∣

≤ |{y ∈ Qx : Mu (y) ≤ αM (Mu) (x)}|
≤ |{y ∈ Qx : u (y) ≤ αM (Mu) (x)}|

≤
∣∣∣∣{y ∈ Qx : u (y) ≤ α

k

Mu (Qx)

|Qx|
}
∣∣∣∣

≤ β |Qx|

that is we have ∣∣∣∣{y ∈ Qx : Mu (y) ≤ α

k

Mu (Q)

|Q|
}
∣∣∣∣ ≤ β |Qx| .
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Example 18. Actually for those functions there is a shorter way to prove that
Mu ∈ A1 : Because of Hölder’s inequality we have that for all r > 1 :

1

|Q|

∫
Q

u (x) ≤
(

1

|Q|

∫
Q

ur (x)

) 1
r

and taking suprema

Mu (x) ≤ (M (ur) (x))
1
r .

Now for the Coifman-Rochberg characterization of A1 weights for any locally
integrable function g and δ ∈ [0, 1) we have that Mg (x)

δ ∈ A1 and then

(M (ur) (x))
1
r ∈ A1. Therefore, for some constant C > 1 :

MMu (x) ≤M
(

(M (ur) (x))
1
r

)
≤ C (M (ur) (x))

1
r

a.e. But if u ∈ A∞ then u ∈ Ap for some p ≥ 1, and then it satisfies a reverse
Hölder inequality (see [6]) for some r > 1, that is(

1

|Q|

∫
Q

ur (x)

) 1
r

≤ C 1

|Q|

∫
Q

u (x)

for certain C > 0, thus

(M (ur) (x))
1
r ≤ CMu (x)

and then

MMu (x) ≤ CMu (x)

a.e. That is Mu ∈ A1.

Remark 19. We remark that this latter way to prove that M (A∞) ⊂ A1

requires two strong results: the characterization of A1 and the reverse Hölder
inequality for Ap weights, while proposition 1 is elementary.

Example 20. A larger class of weights that M sends to A1 are the weak−A∞
weights.

We recall that u ∈ A∞ if and only if there exists positive constants C and
δ such that for any cube Q and any measurable E ⊂ Q :

u (E) ≤ C
(
|E|
|Q|

)δ
u (Q) .
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Let’s give the definition of weak−A∞ weights: u ∈ weak−A∞ if and only
if there exists positive constants C and δ such that for any cube Q and any
measurable E ⊂ Q :

u (E) ≤ C
(
|E|
|Q|

)δ
u (2Q) . (5)

Remark 21. Let’s note that it’s easy to prove that we can replace the factor
2 with any constant k > 1, obtaining an equivalent definition of weak −A∞.

It’s clear that if u ∈ A∞ then u ∈ weak − A∞ because any u ∈ A∞ is
a doubling weight (see [6]), that is u (2Q) ≤ Cu (Q) for some C > 0 and for
every cube Q.

It’s a known result that an equivalent condition for u to be in A∞ is to
belong to a RHI class, that means that for some r > 1 and C > 0 it holds for
any cube Q (

1

|Q|

∫
Q

ur
) 1
r

≤ C 1

|Q|

∫
Q

u.

Remark 22. Let’s remark that those weights that belongs to weak −A∞ but
that don’t belong to A∞ are always non-doubling weights.

A corollary that we can obtain immediately taking suprema on the RHI
condition for A∞ weights is that for any x ∈ Rn

(M (ur) (x))
1
r ≤ CMu (x) .

It can be easily obtained for weak −A∞ weights a condition analogous to
RHI, we include the statement and the proof for completeness:

Lemma 23. If u ∈ weak − A∞, then there are some r > 1 and C > 0 such
that for any cube Q (

1

|Q|

∫
Q

ur
) 1
r

≤ C 1

|2Q|

∫
2Q

u.

Proof. Let Q be any cube and Et = {x ∈ Q : u (x) > t}. Now, applying the

definition of Et and (5) we have t |Et| ≤ u (Et) ≤ C |Et|
δ

|Q|δ u (2Q). Hence, using

|2Q| = 2n |Q| and incorporating the factor 2n to the constant C:

t |Et|1−δ ≤ C |Q|1−δ
u (2Q)

|2Q|
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so

|Et| ≤ Ct
−1
1−δ |Q|

(
u (2Q)

|2Q|

) 1
1−δ

.

Now we use this inequality in the layer-cake formula. Let’s be k ∈ (0,∞)
that we will choose later:∫

Q

ur =

∫ ∞
0

rtr−1 |Et| dt

=

∫ ∞
0

rtr−1 |Et| dt

=

∫ k

0

rtr−1 |Et| dt+

∫ ∞
k

rtr−1 |Et| dt,

then ∫
Q

ur ≤
∫ k

0

rtr−1 |Q| dt+ C

∫ ∞
k

rtr−1t
−1
1−δ |Q|

(
u (2Q)

|2Q|

) 1
1−δ

dt,

that is: ∫
Q

ur ≤ |Q| tr|k0 + C |Q|
(
u (2Q)

|2Q|

) 1
1−δ

r

r − 1
1−δ

tr−
1

1−δ

∣∣∣∞
k
.

Then, for r : 1 < r < 1
1−δ we get:

1

|Q|

∫
Q

ur ≤ kr + C
r

1
1−δ − r

(
u (2Q)

|2Q|

) 1
1−δ

kr−
1

1−δ .

Now choosing k = u(2Q)
|2Q| it results:

1

|Q|

∫
Q

ur ≤
(
u (2Q)

|2Q|

)r
+ C

r
1

1−δ − r

(
u (2Q)

|2Q|

) 1
1−δ (

u (2Q)

|2Q|

)r− 1
1−δ

hence
1

|Q|

∫
Q

ur ≤

(
C

r
1

1−δ − r

)(
u (2Q)

|2Q|

)r
,

and renaming the constant we have:(
1

|Q|

∫
Q

ur
) 1
r

≤ Cu (2Q)

|2Q|
.
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Corollary 24. From the previous lemma it’s obvious that the pointwise in-
equality

(M (ur) (x))
1
r ≤ CMu (x) (6)

still remains true for weak−A∞ weights and using Neugebauer’s Lemma the
weights u ∈ weak −A∞ satisfy that Mu ∈ A1.

Actually the condition
(

1
|Q|
∫
Q
ur
) 1
r ≤C 1

|2Q|
∫

2Q
u characterizes the weak−

A∞ weights; it can be proved that the converse of the previous lemma is also
true. Nevertheless, we will not need that result here. As we mentioned in a
previous remark we can replace the constant 2 for any k > 1, so u ∈ weak−A∞
if and only if there exists some positive constant C such that for any k > 1
and every cube Q (

1

|Q|

∫
Q

ur
) 1
r

≤ C 1

|kQ|

∫
kQ

u. (7)

We have already seen that A∞ ⊂ weak − A∞ ⊂ M−1 (A∞) where we
denote M−1 (A∞) the class of weights u such that Mu ∈ A∞.

It’s interesting to observe that this question has a close relationship with
another one involving the weighted Fefferman-Stein inequality in Lp (w) :

‖f‖Lp(w) ≤ c
∥∥f#

∥∥
Lp(w)

(1 < p <∞) (8)

for some c > 0, and for every f ∈ Lp such that f ∈ S0 (Rn), where S0 (Rn) is
the space of measurable functions f on Rn such that for any t > 0

µf (t) = |{x ∈ Rn : |f (x)| > t}| <∞.

The inequality 8 is equivalent to many interesting others, for instance, with
the same hypothesis of 8:

‖Mf‖Lp(w) ≤ c
∥∥f#

∥∥
Lp(w)

(1 < p <∞)

or for some c > 0, r > 1 and for any f ∈ L1
loc (Rn)∫

Rn
Mp,r (f, w) |f | dx ≤ c

∫
Rn

(Mf)
p
wdx (1 < p <∞) (9)

where Mp,r (f, w) = sup
Q3x

(
1
|Q|
∫
Q
|f |
)p−1 (

1
|Q|
∫
Q
wr
) 1
r

. The equivalence of

those inequalities is proven in [14].
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Remark 25. Related to the (to our knowledge) open question about for which
weights the former inequalities hold are the following inclusions of nested
classes: A∞ ⊂ weak − A∞ ⊂ Cp+ε ⊂ Cp where ε > 0 and Cp condition
means that there exists c, δ > 0 such that for any cube Q and any measurable
E ⊂ Q

u (E) ≤ c
(
|E|
|Q|

)δ ∫
Rn

(MχQ)
p
u.

Remember that for u ∈ A1, for any cube Q and any measurable E ⊂ Q

u (E) ≤ c
(
|E|
|Q|

)δ
u (Q) = c

(
|E|
|Q|

)δ ∫
Rn

(χQ)
p
u

and for weak−A∞ weights: u ∈ weak−A∞ if and only if there exist positive
constants C and δ such that for any cube Q and any measurable E ⊂ Q :

u (E) ≤ C
(
|E|
|Q|

)δ ∫
Rn

(χ2Q)
p
u

and the mentioned inclusion are obvious. It can be found in [14] (see also [18])
that Cp is necessary and Cp+ε is sufficient for 9 or 8. Also, [14] introduces a

new sufficient condition C̃p instead of Cp+ε but it is not known if C̃p or Cp+ε
are necessary conditions.

The inclusion relations from A∞ ⊂ weak − A∞ ⊂ M−1 (A∞) and A∞ ⊂
weak − A∞ ⊂ Cp+ε ⊂ Cp and the former inequalities seems to be closely
linked. For instance, u ∈ Cp is necessary for 9, and 9 implies that for any Q

we have that
(

1
|Q|
∫
Q
ur
) 1
r ≤ c 1

|Q|
∫
Rn (MχQ)

p
u, which is a bit weaker than(

1
|Q|
∫
Q
ur
) 1
r ≤ C 1

|Q|
∫
Rn (χ2Q)

p
u which is equivalent to weak −A∞.

Additionally, in [14] it is proven that Cp is necessary for∫
Rn
Mp,r (f, w) |f | dx ≤ c

∫
Rn

(Mf)
p
wdx,

that is 9 implies Cp.

On the other hand, using the lemma of Neugebauer, which tells that

(Mur)
1
r (x) ≤ CMu (x) for u ∈M−1 (A∞) for some C > 0, r > 1,
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and the definition of Mp,r (f, u) we obtain that if u ∈M−1 (A∞) then

Mp,r (f, w) (u) = sup
Q3x

(
1

|Q|

∫
Q

|f |
)p−1(

1

|Q|

∫
Q

ur
) 1
r

≤ sup
Q3x

(
1

|Q|

∫
Q

|f |
)p−1

Mru (x)

≤ sup
Q3x

(
1

|Q|

∫
Q

|f |
)p−1

CMu (x)

≤ (Mf)
p−1

(x)CMu (x) ,

and then integrating we have:∫
Rn
Mp,r (f, w) |f | dx ≤ c

∫
Rn

(Mf)
p
Mwdx (10)

(compare with 9). So we have that M−1 (A∞) implies 10 and 9 implies Cp.

6 A Couple of Applications

Using the criterion that Mu ∈ A∞ if and only if for any λ ∈ (0, 1) it holds
that mλ (Mu) ≈M (Mu), we can derive a characterization of the A1 weights
similar to the construction of Coifman and Rochberg.

First of all we introduce the definition of the local sharp maximal operator,
which for 0 < λ < 1 we define:

M#
λ f (x) = sup

Q3x
inf
c

((f − c)χQ)
∗

(λ |Q|) .

The sharp maximal function has a similar role to the Hardy-Littlewood
maximal operator for the local sharp maximal functions because there are
positive constants c1 and c2 such that for f ∈ L1

loc:

c1MM#
λ f (x) ≤ f# (x) ≤ c2MM#

λ f (x) ,

(see [11]). Using the former inequalities we easily get that for the sharp func-
tion an statement similar to the first one of the Coifman-Rochberg theorem:

Lemma 26. Let f ∈ L1
loc (Rn) and 0 ≤ δ < 1, then w (x) = f# (x)

δ
is in A1.

Proof. For

cδ1

(
MM#

λ f (x)
)δ
≤ f# (x)

δ ≤ cδ2
(
MM#

λ f (x)
)δ
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and
(
MM#

λ f (x)
)δ
∈ A1 because of the mentioned result of Coifman and

Rochberg. Now

Mf# (x)
δ ≤M

(
cδ2

(
MM#

λ f (x)
)δ)

≤ cδ2[MM#
λ f (x)]A1

(
MM#

λ f (x)
)δ

≤ Cf# (x)
δ

with constant C =
cδ2
cδ1

[MM#
λ f (x)]A1 , so f# (x)

δ ∈ A1.

We don’t know if any w ∈ A1 always could be written as k (x) f# (x)
δ

for suitable f ∈ L1
loc; 0 < δ < 1 and k, k−1 ∈ L∞, but we can obtain a

result similar to the second part of Coifman-Rochberg Theorem if we added a
multiple of the local maximal function mλ:

Proposition 27. If w ∈ A1 then there are k (x) such that k, k−1 ∈ L∞ and
a constants C1, C2 > 0 such that

w (x) = k (x)

(
C1

(
(wα (x))

#
)δ

+ C2 (mλw
α (x))

δ

)
.

Proof. If w ∈ A1 we can use the property E) to take α > 1 such that
wα ∈ A1. Thus M (wα) ∈ A1. Now for wα, using the above criterion that
establishes that Mu ∈ A1 if and only if mλ (Mu) ≈M (Mu) and then in such
situation: mλ (M (wα)) ≈ M (M (wα)) ≈ M (wα) ≈ wα. Also, we have that
Mw ≈ w because w ∈ A1 and also using the pointwise inequalities mentioned
in (xi) and (vii): mλ (Mu) (x) ≤ cλ,nu

# (x) + Mu (x) and mλ (Mu) (x) ≤
cλ,nu

# (x) +Mu (x), for u = wα we have:

w (x)
α ≤M (wα) (x) ≤ cλ,n (wα)

#
(x) +mλ (wα) (x) .

Then with δ = 1
α it is 0 < δ < 1 and αδ = 1. Also we will use property

(i): u# ≤ 2Mu pointwise, properties (vi) (|f (x)| ≤ mλf (x)) and (x) (f (x) ≤
Mf (x)) and that if f (x) ≤ g (x) a.e. for positive functions then Mf (x) ≤
Mg (x) and mλ (f) (x) ≤ mλ (g) (x) a.e.

Furthermore, we use the sublinearity of M and the facts that wα and w are
in A1, and because of the criterion we can use that for w ∈ A1 then Mw ∈ A1

too. It occurs that mλ (Mw) ≈ M (Mw) ≈ Mw ≈ w. We will number or

rename the constants that appear. Also we will use that M
(

(Mwα)
δ
)
≤
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C (Mwα)
δ

(because (Mf)
δ ∈ A1 by Coifman-Rochberg). So we get:

w (x) ≤
(
c1 (wα)

#
(x) +mλ (wα) (x)

)δ
≤ c2

(
(wα)

#
(x)
)δ

+ (mλ (wα) (x))
δ

≤M
(
c2

(
(wα)

#
(x)
)δ

+ (mλ (wα) (x))
δ

)
≤ c2M

((
(wα)

#
(x)
)δ)

+M
(

(mλ (wα) (x))
δ
)

≤ c2M
(

2δM (wα) (x)
δ
)

+M
(

(mλ (Mwα) (x))
δ
)

≤ c3M
(
M (wα) (x)

δ
)

+M
(

(mλ (Mwα) (x))
δ
)

≤ c3M
(
c4 (wα) (x)

δ
)

+M
(

(c5w (x)
α

)
δ
)

≤ c6Mw (x) + c7Mw (x) = c8Mw (x) ≤ Cw (x) .

Thus we obtain:

w (x) ≤ cδ1
(

(wα)
#

(x)
)δ

+ (mλ (wα) (x))
δ ≤ Cw (x)

and then k (x) = w(x)

c2((wα(x))#)
δ
+(mλwα(x))δ

satisfies that k ∈ L∞ and k−1 ∈
L∞.

So w (x) = k (x)

(
C1

(
(wα (x))

#
)δ

+ C2 (mλw
α (x))

δ

)
with k, k−1 ∈ L∞

and δ ∈ (0, 1) for C1 = c2 and C2 = 1.

On the other hand we have:

Lemma 28. If 0 < δ < 1 and u ∈ A1, then (mλu (x))
δ ∈ A1.

Proof. Using that u ∈ A1, then Mu ∈ A1 and mλ (Mu) ≈ M (Mu) ≈
Mu ≈ u and that (MMu)

δ ∈ A1 (by Coifman-Rochberg theorem) we have
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the following inequalities with multiplicative constants that we will renumber:

M
(

(mλu)
δ
)
≤M

(
(mλMu)

δ
)

≤M
(

(C1MMu)
δ
)

= C2M
(

(MMu)
δ
)

≤ C3 (MMu)
δ

≤ C4 (mλ (Mu))
δ

≤ C5 (mλ (C4u))
δ

= C6 (mλu)
δ

and then we get that (mλu)
δ ∈ A1.

Remark 29. It’s elementary that if v1, v2 are non-negative functions with
v1, v2 ∈ A1 and if c and d are non-negative constants then cv1 + dv2 ∈ A1 and
[cv1 + dv2]A1 ≤ max {[v1]A1 , [v2]A2}.

Compiling the last two lemmas, the proposition, and the previous remark,
we have obtained a result analogous to the Coifman-Rochberg result: Theorem
5, whose utterance we repeat:

Theorem (Theorem 5).

(1) If 0 < δ < 1, f ∈ L1
loc (Rn) and u ∈ A1 and C1, C2 non-negative con-

stants then C1

(
f# (x)

)δ
+ C2 (mλu (x))

δ ∈ A1.

(2) Conversely, if w ∈ A1 then there are f ∈ L1
loc (Rn), u ∈ A1, non-

negative constants C1 and C2, and k (x)with k, k−1 ∈ L∞ such that

w (x) = k (x)
(
C1f

# (x)
δ

+ C2mλu (x)
δ
)

.

Proof. The first statement is a consequence of the latter remark and the
lemmas telling us that f# (x)

δ
and (mλu (x))

δ
are in A1 for f ∈ L1

loc and
u ∈ A1.

The second was obtained in the latter proposition for f = u = wα taking
a suitable α > 1 such that wα ∈ A1. The existence of that α is guaranteed by
property E.

Application 30. As another application of the results we have that for those
weights u such that Mu ∈ A∞ and hence Mu ∈ A1 we can improve some
known inequalities for singular integral operators. For instance, if T is a
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Calderón-Zygmund singular integral operator (see [8] for a definition) the fol-
lowing weighted inequalities were proved for 1 < p < ∞ by C. Pérez ([15]).
Previously, J.M. Wilson obtained the first inequality for 1 < p < 2:∫

Rn
|Tf |p u ≤ Cp

∫
Rn
|f |pMP+1u,

and then

u ({x ∈ Rn : |Tf (x)| > λ}) ≤ Cp
λp

∫
Rn
|f |pMP+1u,

and the last one for the case p = 1

u ({x ∈ Rn : |Tf (x)| > λ}) ≤ C2

λ

∫
Rn
|f |M2u,

where P is the integer part of p and Mk is the k-th iterate composition of M .
The strong inequality is sharp in the sense that P + 1 cannot be replaced by
P , and the weak case is sharp when p is not an integer. It is an open question
(to our knowledge) if it is possible to replace MP+1 with MP if p ∈ N and M2

with M in the last inequality.
Now for a weight u such that Mu ∈ A∞ we have that actually Mu ∈ A1

and then there are a constant C > 0 such that for almost every x ∈ Rn :
M2u (x) ≤ CMu (x). Using that if in almost everywhere f (x) ≤ g (x) then
Mf (x) ≤Mg (x) , we can iterate in M2u (x) ≤ CMu (x) to obtain Mku (x) ≤
CkMu (x), then with C = Ckp we have for the Calderón-Zygmund singular
integral operators and the weights u with Mu ∈ A∞:∫

Rn
|Tf |p u ≤ C

∫
Rn
|f |pMu

u ({x ∈ Rn : |Tf (x)| > λ}) ≤ C

λp

∫
Rn
|f |pMu

for any 1 < p <∞.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl.
Math., 129, Academic Press, 1988.

[2] A. Corvalán, The preimage of A∞ for the local Hardy-Littlewood maximal
operator, submitted.



Some Characterizations of the Preimage of A∞ 165

[3] R. Coifman and R. Rochberg, Another characterization of B.M.O, Proc.
Amer. Math. Soc., 79 (1980), 249–254.

[4] D. Cruz-Uribe SFO, Piecewise monotonic doubling measures, Rocky
Mountain J. Math., 26 (1996), 1–39.
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