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NORM INEQUALITIES RELATED TO THE HERON AND HEINZ

MEANS

YOGESH KAPIL1, CRISTIAN CONDE2, MOHAMMAD SAL MOSLEHIAN3, MANDEEP
SINGH1 AND MOHAMMAD SABABHEH4

Abstract. In this article, we present several inequalities treating operator means
and the Cauchy-Schwarz inequality. In particular, we present some new compar-
isons between operator Heron and Heinz means, several generalizations of the dif-
ference version of the Heinz means and further refinements of the Cauchy-Schwarz
inequality. The techniques used to accomplish these results include convexity and
Löwner matrices.

1. Introduction

There are different families of means that interpolate between the arithmetic and
geometric means. For example, the Heron and Heinz means, defined respectively by

Fν(a, b) = (1− ν)
√
ab+ ν

a + b

2
and Hν(a, b) =

a1−νbν + aνb1−ν

2
,

for a, b ≥ 0 and ν ∈ [0, 1]. It is easy to see that F is an increasing function and H
is a symmetric and convex function in ν on [0, 1]. Hence,

√
ab ≤ Fν(a, b) ≤

a+ b

2
and

√
ab ≤ Hν(a, b) ≤

a+ b

2
. (1.1)

Recall that the arithmetic–geometric mean inequality
√
ab ≤ a+b

2
can be expressed

by using the Heron and Heinz means as follows:

F0(a, b) = H1/2(a, b) ≤ F1(a, b).

In [3], Bhatia compared these families of means by showing that

Hν(a, b) ≤ F(2ν−1)2(a, b), (1.2)

for all ν ∈ [0, 1]. One goal of this article is to present a new comparison between Hν

and Fν , by means of the Kantorovich constant. More precisely, we will show that

Hν(a, b) ≤
(

a + b

2
√
ab

)1−ν

Fν(a, b), 0 ≤ ν ≤ 1.

In the sequel, we set some basic preliminary backgrounds that will be needed
throughout the paper.

Let B(H ) denote the C∗-algebra of all bounded linear operators acting on a
separable complex Hilbert space (H , 〈·, ·〉).The cone of positive operators is denoted
by B(H )+. Let K(H ) denote the ideal of compact operators in B(H ). For any
compact operator A ∈ K(H ), let s1(A), s2(A), · · · be the eigenvalues of |A| =
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(A∗A)
1

2 arranged in decreasing order and repeated according to multiplicity. If
A ∈ Mn (the algebra of all n×n matrices over C), we take sk(A) = 0 for k > n. We
denote by B(H )+ (resp., M+

n ) the cone of positive operators (resp., positive definite
matrices), while B(H )++ (resp., M++

n ) stands for the set of invertible operators in
B(H )+. A unitarily invariant norm in K(H ) is a map ||| · ||| : K(H ) → [0,∞]
given by |||A||| = g(s(A)), A ∈ K(H ), where g is a symmetric gauge function; cf.
[13]. The set I = {A ∈ K(H ) : |||A||| < ∞} is a (two-sided) ideal of B(H ). The

operator norm ‖ · ‖ and the Schatten p-norms ‖A‖p =
(

∑

j s
p
j (A)

)1/p

for p ≥ 1 are

significant examples of the unitarily invariant norms. For notational convenience,
we shall denote (I, |||.|||) by I.

The inequalities in (1.1) have some possible operator versions as follows.
If A,B ∈ B(H )+, X ∈ I and ν ∈ [0, 1], then

2|||A1/2XB1/2||| ≤ |||AνXB1−ν + A1−vXBν ||| ≤ |||AX +XB|||.

Recently, Kapil and Singh [10, Theorems 3.7 and 3.8] proved that if A,B ∈
B(H )+, X ∈ I then

1

2
|||AνXB1−ν + A1−vXBν ||| ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− α)A
1

2XB
1

2 + α

(

AX +XB

2

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (1.3)

for 1/4 ≤ ν ≤ 3/4 and 1/2 ≤ α < ∞. A comparison between the geometric and
Heron means is a particular case of (1.3), when ν = 1/2, i.e.,

|||A1/2XB1/2||| ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− α)A
1

2XB
1

2 + α

(

AX +XB

2

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1.4)

Further in [10], authors proved some generalizations of the difference version of Heinz
inequality, given by

|||AνXB1−ν −A1−νXBν ||| ≤ |2ν − 1| |||AX −XB|||, (0 ≤ ν ≤ 1). (1.5)

Moreover, it is proved that |||AνXB1−ν −A1−νXBν ||| is a convex function of ν; see
[10, Remark 3.12]. These results have also been proved in matrix version by several
authors; see [12, 18] for example.

The aim of this paper is to obtain refinements of inequalities (1.3) and (1.4).
Some refinements in difference version of Heinz inequality are also obtained with
some generalizations. Then we utilize the upper and lower bounds for the normalized
Jensen functional (see Theorem 2.1) on the convexity of several functions observed in
this study. This leads to more refinements of norm inequalities. At the end, we utilize
the Jensen functional once more to discuss some refinements of the Cauchy–Schwarz
inequality. We refer the reader to [1] for recent developments of the Cauchy–Schwarz
inequality.

2. Background

Throughout this note, we denote by J a closed interval of the real line and f is
assumed to be a continuous real-valued function defined on J . In 1906, J. Jensen
introduced the concept of Jensen convex (ormidpoint convex) function, characterized
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by

f

(

x+ y

2

)

≤ f(x) + f(y)

2
, (2.1)

for all x, y ∈ J. That is, these are functions that behave in a particular way under the
action of the arithmetic mean. Note that the arithmetic–geometric mean inequality
is a particular case of (2.1) by considering f(x) = ex. In the context of continuity,
midpoint convexity gives rise to convexity. That is,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for all x, y ∈ J and 0 ≤ λ ≤ 1.
It is well known that every convex function on a closed interval can be modified

at the endpoints to become convex and continuous. An immediate consequence of
this remark is the integrability of f . The integral of f can then be estimated by

f

(

x+ y

2

)

≤ 1

y − x

∫ y

x

f(t) dt ≤ f(x) + f(y)

2
. (2.2)

This fundamental inequality, which was first published by Hermite in 1883 and in-
dependently proved in 1893 by Hadamard, is well known as the Hermite–Hadamard
inequality. It is obvious that (2.2) is an interpolating inequality for (2.1).

There is a growing literature considering several interesting generalizations, re-
finements and interpolations in various frameworks. We would like to refer the
reader to [6, 7] and references therein for more information. Some mathematicians
have obtained several refinements of the operator inequalities as consequences of the
Hermite–Hadamard inequality, for example [11, 15, 16].

If f is a convex function on J , then the well-known Jensen’s inequality asserts
that

0 ≤
n
∑

1

pif(xi)− f

(

n
∑

1

pixi

)

:= J (f,x,p),

where x = (x1, · · · , xn) ∈ Jn and p = (p1, · · · , pn), pi ≥ 0 with
∑

pi = 1. J is called
the normalized Jensen functional and in recent years, many authors have studied
it and have established upper and lower bounds for this functional; see [7] as an
example.

Theorem 2.1. [7, Corollary 1] Let f be a convex function on J . Then

2λmin

(

f(x1) + f(x2)

2
− f

(

x1 + x2

2

))

≤ λf(x1) + (1− λ)f(x2)− f(λx1 + (1− λ)x2)

≤ 2λmax

(

f(x1) + f(x2)

2
− f

(

x1 + x2

2

))

, (2.3)

where 0 ≤ λ ≤ 1, λmin = min{λ, 1− λ}, λmax = max{λ, 1− λ} and x1, x2 ∈ J.

First note that by integrating (2.3) over [0, 1] we obtain

1

2

(

f(x1) + f(x2)

2
− f

(

x1 + x2

2

))

≤ 1

2
f(x1) +

1

2
f(x2)−

1

x2 − x1

∫ x2

x1

f(x)dx

≤ 3

2

(

f(x1) + f(x2)

2
− f

(

x1 + x2

2

))

.(2.4)
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That is, we have upper and lower bounds for the difference between the terms
that appear in the left of (2.2).

3. Norm inequalities involving operator version of Heron and Heinz
means

For the sake of simplicity, we denote

F (ν) =
1

2
|||AνXB1−ν + A1−vXBν |||, K(ν) = |||AνXB1−ν − A1−vXBν |||,

and

G(ν) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− ν)A
1

2XB
1

2 + ν

(

AX +XB

2

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for A,B ∈ B(H )+, X ∈ I and ν ∈ [0, 1]. We remind the reader of a result in [10,
Remarks 3.2 and 3.12] that the functions F (ν) and K(ν) are convex on [0, 1] and
attain their minimum at ν = 1/2.

As we have mentioned at the introduction, the authors of [10] have obtained a
complete interpolation and comparison of operator inequalities for Heron and Heinz
means. More precisely, they proved that G(ν) ≤ G(1/2) for ν ∈ [0, 1/2], G(ν) is an
increasing function for ν ∈ [1/2,∞) and

F (ν) ≤ G(α), (3.1)

for ν ∈ [1/4, 3/4] and α ≥ 1/2.

Theorem 3.1. Let 1/4 ≤ ν ≤ 3/4 and α ∈ [1/2,∞). Then

F (ν) ≤ (4r0 − 1)F (1/2) + 2(1− 2r0)G(α) ≤ G(α), (3.2)

and

F (1/2) + 2

(

2

∫ 3/4

1/4

F (ν)dν − F (1/2)

)

≤ G(α). (3.3)

where r0(ν) = min{ν, 1− ν}.

Proof. We first choose 1
4
≤ ν ≤ 1

2
. Then using the convexity of F (ν) (see [10, Remark

3.2]), we obtain

F (ν) = F

(

(2− 4ν)
1

4
+ (4ν − 1)

1

2

)

≤ (2− 4ν)F (1/4) + (4ν − 1)F (1/2). (3.4)

Now using (3.1) with ν = 1/4 in (3.4), we get

F (ν) ≤ (4ν − 1)F (1/2) + (2− 4ν)G(α), (3.5)

which is equivalent to

F (ν) ≤ (4r0 − 1)F (1/2) + 2(1− 2r0)G(α) ≤ G(α),
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for 1
4
≤ ν ≤ 1

2
.

If 1
2
≤ ν ≤ 3

4
, replace ν by 1− ν in (3.5) to get

F (ν) ≤ (3− 4ν)F (1/2) + 2(2ν − 1)G(α)

= (4r0 − 1)F (1/2) + 2(1− 2r0)G(α)

≤ G(α), (3.6)

as 1 − ν = r0 in this case. This completes the proof of the first conclusion. The
second conclusion follows by taking the sum of integrals with respect to ν of (3.5)
and (3.6) over [1/4, 1/2] and [1/2, 3/4], respectively. �

A matrix version of Theorem 3.1 has been proved by Ali et al. in [2, Theorem 2.2
and 2.5].

Theorem 3.2. Let 1/4 ≤ ν ≤ 3/4 and α ∈ [1/2,∞). Then

(4r0 − 1)F (1/2) + 2(1− 2r0)G(α) ≤ 2r2F (1/2) + (1− 2r2)G(α),

where r2(ν) = min{2ν − 1
2
, |1− 2ν|, 3

2
− 2ν} and r0(ν) = min{ν, 1− ν}.

Proof. Let l1 = (4r0−1)F (1/2)+2(1−2r0)G(α) and l2 = 2r2F (1/2)+(1−2r2)G(α).
By a simple calculation, we have

l1 − l2 =







0 if ν ∈ [1/4, 3/8] ∪ [5/8, 3/4];
(8ν − 3)F (1/2) + (3− 8ν)G(α) if ν ∈ [3/8, 1/2];
(−8ν + 5)F (1/2) + (8ν − 5)G(α) if ν ∈ [1/2, 5/8].

So, by the inequality F (1/2) ≤ G(α), we conclude that l1 − l2 ≤ 0. �

Remark 3.3. On combining the results of Theorems 3.1 and 3.2, we obtain the
following double inequality,

1

2
|||AνXB1−ν + A1−νXBν |||

≤ (4r0 − 1)|||A1/2XB1/2|||+ 2(1− 2r0)|||(1− α)A1/2XB1/2 + α

(

AX +XB

2

)

|||

≤ 2r2|||A1/2XB1/2|||+ (1− 2r2)|||(1− α)A1/2XB1/2 + α

(

AX +XB

2

)

|||

for A,B ∈ B(H )+, X ∈ I. This not only refines an inequality proved by Kaur et
al. in [11] but also lifts that from a matrix version to an operator one.

Our next result is a new comparison between the Heron and Heinz means. First,
a scalar version will be given.

Proposition 3.4. Let a, b > 0 and let 0 ≤ ν ≤ 1. Then

Hν(a, b) ≤
(

H1(a, b)

H 1

2

(a, b)

)1−ν

Fν(a, b). (3.7)

Proof. Without loss of generality, we may assume a = 1. Then the desired inequality
reduces to

bν + b1−ν

2
≤
(

1 + b

2
√
b

)1−ν (

(1− ν)
√
b+ ν

1 + b

2

)

. (3.8)
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To prove this inequality, let

f(ν) = log(bν + b1−ν)− (1− ν) log
1 + b

2
√
b
− log

(

2(1− ν)
√
b+ ν(1 + b)

)

.

Calculus computations show that

f ′′(ν) =
(−1 +

√
b)4

(−2
√
b(−1 + ν) + ν + bν)2

+
4b1+2ν log2 b

(b+ b2ν)2
.

It is clear that f ′′(ν) ≥ 0 for 0 ≤ ν ≤ 1. Hence, f is convex on [0, 1]. But then
f(ν) ≤ max{f(0), f(1)} = 0. Since f(ν) ≤ 0, we have

log(bν + b1−ν) ≤ (1− ν) log
1 + b

2
√
b
+ log

(

2(1− ν)
√
b+ ν(1 + b)

)

,

which is equivalent to (3.8). �

Notice that (3.7) reads as

aνb1−ν + a1−νbν

2
≤
(

a+ b

2
√
ab

)1−ν (

(1− ν)
√
ab+ ν

a + b

2

)

.

The factor a+b
2
√
ab

has appeared in recent studies of means refinements. The quantity
(

a+b
2
√
ab

)2

has been referred to as the Kantorovich constant. We refer the reader to

[14] and its references as a sample of some work treating this constant.
Our next result is a matrix version of (3.7).

Corollary 3.5. Let A,B ∈ M+
n , X ∈ Mn and 0 ≤ ν ≤ 1. If there are two positive

numbers m,M such that m ≤ A,B ≤ M, then
∥

∥

∥

∥

AνXB1−ν + A1−νXBν

2

∥

∥

∥

∥

2

≤
(

m+M

2
√
mM

)1−ν ∥
∥

∥

∥

(1− ν)A
1

2XB
1

2 + ν
AX +XB

2

∥

∥

∥

∥

2

.

Proof. Let A = Udiag(λi)U
∗ and B = V diag(µj)V

∗ be the spectral decompositions
of A and B, respectively. Letting U∗XV = Y, we have

AνXB1−ν + A1−νXBν

2
= U

diag(λν
i )Y diag(µ1−ν

j ) + diag(λ1−ν
i )Y diag(µν

j )

2
V ∗

= U
[λν

i µ
1−ν
j + λ1−ν

i µν
j ] ◦ [yij]

2
V ∗,

where ◦ stands for the Schur product. Since ‖ · ‖2 is unitarily invariant and recalling
(3.7), we get
∥

∥

∥

∥

AνXB1−ν + A1−νXBν

2

∥

∥

∥

∥

2

2

=
∑

i,j

(

λν
i µ

1−ν
j + λ1−ν

i µν
j

2

)2

|yij|2

≤
∑

i,j

(

λi + µj

2
√

λiµj

)2(1−ν)
(

(1− ν)λ
1

2

i µ
1

2

j + ν
λi + µj

2

)2

|yij|2

≤
(

m+M

2
√
mM

)2(1−ν) ∥
∥

∥

∥

(1− ν)A
1

2XB
1

2 + ν
AX +XB

2

∥

∥

∥

∥

2

2

,

where we have used the fact that m ≤ λi, µj ≤ M to obtain the last line. �
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4. The difference version of Heinz inequality

In this section, we still adopt the predefined function K(ν) = |||AνXB1−ν −
A1−νXBν |||.
Theorem 4.1. Let 1/4 ≤ ν ≤ 3/4. Then

K(ν) ≤ 2(1− 2r0)K(1/4), (4.1)

and
3/4
∫

1/4

K(ν)dν ≤ 1

4
K(1/4) ≤ 1

8
K(1), (4.2)

where r0(ν) = min{ν, 1− ν}.
Proof. We first prove the result for 1/4 ≤ ν ≤ 1/2. By a simple calculation, we

obtain r0(ν) ∈ [1/4, 1/2] and ν = 2(1−2r0)
4

+ 4r0−1
2

. Now, using the convexity of K(ν),
[10, Remark 3.12], we obtain

K(ν) ≤ 2(1− 2r0)K(1/4) + (4r0 − 1)K(1/2) = 2(1− 2r0)K(1/4),

as K(1/2) = 0. The case 1/2 ≤ ν ≤ 3/4 follows from the symmetry of function
K(ν) about the line ν = 1/2.
The second result is due to the sum of integrals of (4.1) with respect to ν over
[1/4, 1/2] and [1/2, 3/4], respectively. �

Remark 4.2. We remark that inequality (4.1) in Theorem 4.1 can be written as,

|||AνXB1−ν − A1−νXBν ||| ≤ 2(1− 2r0)|||A1/4XB3/4 − A3/4XB1/4|||,
equivalently,

|||AνXB1−ν − A1−νXBν ||| ≤ 2|1− 2ν| |||A1/4XB3/4 − A3/4XB1/4|||. (4.3)

Now recall (1.5) for ν = 1/4 or 3/4, we obtain,

|||A1/4XB3/4 −A3/4XB1/4||| ≤ 1

2
|||AX −XB|||. (4.4)

On combining (4.3) and (4.4), we obtain

|||AνXB1−ν − A1−νXBν ||| ≤ 2|1− 2ν| |||A1/4XB3/4 − A3/4XB1/4|||
≤ |1− 2ν||||AX −XB|||.

This proves that (4.1) in Theorem 4.1 interpolates (1.5). Similarly (4.2) refines the
integral version of (1.5).

Before stating the next generalization of the difference version of Heinz inequality,
we remind two lemmas. For the first lemma, we refer the reader to [9, p. 343]. For
the used notation, Y ◦Z refers to the Schur (Hadamard) product of Y and Z. That
is, it is the entrywise multiplication of Y and Z.

Lemma 4.3. If Y ∈ M+
n and Z ∈ Mn then

|||Y ◦ Z||| ≤ max
i

yii |||Z|||.

A good reference for the following Lemma is [5].
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Lemma 4.4. If (µi) are positive numbers, then for 0 ≤ r ≤ 1, the matrix Y whose

entries are

yij =

{

µr
i
−µr

j

µi−µj
, µi 6= µj

rµr−1
i , µi = µj

is positive definite.

Now we have the following generalization of the difference version of Heinz in-
equality.

Theorem 4.5. Let A,B ∈ M++
n and X ∈ Mn. Then for α ≥ 1, 1−α

2
≤ ν ≤ 1+α

2
,

and any unitarily invariant norm ||| · ||| on Mn,

α|||AνXB1−ν − A1−νXBν |||
≤ |2ν − 1|max(‖A1−α‖, ‖B1−α‖) |||AαX −XBα|||,

where ‖ · ‖ is the operator norm.

Proof. It suffices to prove the required inequality for the special case when A = B

and A is diagonal. Then the general case follows by replacing A with

(

A 0
0 B

)

and X with

(

0 X
0 0

)

.

So, assume A = diag(λi) > 0, and let W = AνXA1−ν −A1−νXAν . Then W = Y ◦Z
where Z = AαX −XAα and

Y =







λν
i λ

1−ν
j

−λ1−ν
i

λν
j

λα
i
−λα

j

. λi 6= λj

2ν−1
αλα−1

i

, λi = λj

.

Observe that when 1
2
≤ ν ≤ 1+α

2
, we have 0 ≤ 2ν−1

α
≤ 1 and hence, Y ≥ 0 because

yij = λ1−ν
i

(

(λα
i )

2ν−1

α − (λα
j )

2ν−1

α

λα
i − λα

j

)

λ1−ν
j

when λi 6= λj and yii = λ1−ν
i

(

2ν−1
α

λ2ν−1−α
i

)

λ1−ν
i by virtue of Lemma 4.4, on letting

r = 2ν−1
α

and µi = λα
i . Consequently, by Lemma 4.3,

|||W ||| ≤ max
i

yii |||Z|||

=
1

α
(2ν − 1)‖A1−α‖ |||Z|||.

Now, if 1−α
2

≤ ν ≤ 1
2
, we have Y ≤ 0, hence W = |Y | ◦ (−Z), which then implies

the result for these values of ν. �

Another generalization of the difference version reads as follows.

Theorem 4.6. Let A,B ∈ M++
n , X ∈ Mn and 0 < r ≤ 1. Then

|||ArX −XBr||| ≤ rmax(‖Ar−1‖, ‖Br−1‖)|||AX −XA|||.
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Proof. This follows immediately by noting that ArX − XAr = Y ◦ Z where A =
diag(λi), Z = AX −XA and

yij =

{

λr
i
−λr

j

λi−λj
, λi 6= λj

rλr−1
i , λi = λj

.

Then arguing like Theorem 4.5 implies the required inequality. �

On the other hand, a reverse of the difference version of the Heinz inequality
maybe obtained as follows.

Proposition 4.7. Let A,B ∈ B(H )++, X ∈ I and let ν 6∈ [0, 1]. Then

|||A1−νXBν −AνXB1−ν ||| ≥ |2ν − 1| |||AX −XB|||.

Proof. For C,D ∈ B(H )+, Z ∈ I and 0 ≤ µ ≤ 1, we have

|||CµZD1−µ − C1−µZDµ||| ≤ |2µ− 1| |||CZ − ZD|||. (4.5)

Now if ν 6∈ [0, 1], let µ = ν
2ν−1

. Then µ ∈ [0, 1]. For A,B ∈ B(H )++, X ∈ I, and let

C = A2ν−1, Z = A1−νXB1−ν and D = B2ν−1.

Then substituting these parameters in (4.5) implies the desired inequality. �

As mentioned in the introduction, in [10, Remark 3.12] it is proved that the
function ν 7→ |||A1−νXBν − AνXB1−ν ||| is convex on [0, 1]. In the next result,
we extend this convexity to R. The proof of this result is based on some delicate
manipulations of the given parameters. The computations follow the same reasoning
as in the proof of [17, Theorem 4, p. 14], and hence, we do not include them here.

Proposition 4.8. Let A,B ∈ B(H )++, X ∈ I and let K(ν) = |||A1−νXBν −
AνXB1−ν |||. Then f is convex on R.

This convexity entails the following difference version of the Heinz inequality. The
proof follows immediately from [17, Theorem 1, p.4 and Theorem 2, p.6], taking
a = 0, b = 1.

Corollary 4.9. Let A,B ∈ B(H )++, X ∈ I, ν ≥ 0 and let N ∈ N. Then

K(0) +

N
∑

j=1

2jν

[

K(0) +K(21−j)

2
−K(2−j)

]

≤ K(−ν).

On the other hand, if ν ≤ −1, then

K(0)−
N
∑

j=1

2j(1 + ν)

[

K(1) +K(1− 21−j)

2
−K(1− 2−j)

]

≤ K(−ν).

For example, when N = 1, the first inequality of the above corollary reduces to

(1 + 2ν)|||AX −XB||| ≤ |||A1+νXB−ν −A−νXB1+ν |||.
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5. Consequences of Jensen functionals of convex functions for
norm inequalities

Now, we are in a situation to obtain the following results which are the refinements
of (3.2) and (3.3).

Theorem 5.1. Let 1/4 ≤ ν ≤ 3/4 and α ∈ [1/2,∞). Then

F (ν) ≤ F (ν) + 2λmin

(

F (1/4) + F (1/2)

2
− F

(

1/4 + 1/2

2

))

≤ (4r0 − 1)F (1/2) + 2(1− 2r0)G(α) ≤ G(α), (5.1)

where r0 = min{ν, 1− ν} and λmin = min{2− 4r0, 4r0 − 1}.

Proof. First, we consider the case ν ∈ [1/4, 1/2]. Then we choose λ ∈ [0, 1] as
λ = 2− 4ν, i.e., ν = λ

4
+ 1−λ

2
. Using (2.3) we obtain that

F (ν) + 2λmin

(

F (1/4) + F (1/2)

2
− F

(

3/4

2

))

≤ 2(1− 2ν)F (1/4) + (4ν − 1)F (1/2),

where λmin = min{λ, 1− λ} = min{2− 4ν, 4ν − 1}. By (3.1), we have

F (ν) + 2λmin

(

F (1/4) + F (1/2)

2
− F

(

3/4

2

))

≤ (4ν − 1)F (1/2) + 2(1− 2ν)G(α).

So,

F (ν) + 2λmin

(

F (1/4) + F (1/2)

2
− F

(

3/4

2

))

≤ (4r0 − 1)F (1/2) + 2(1− 2r0)G(α).

Similarly, for ν ∈ [1/2, 3/4] we have

F (ν) + 2λmin

(

F (3/4) + F (1/2)

2
− F

(

5/4

2

))

≤ 2(2ν − 1)F (3/4) + (3− 4ν)F (1/2),

where λmin = min{λ, 1− λ} = min{4ν − 2, 3− 4ν}. Using again (3.1), we get

F (ν) + 2λmin

(

F (3/4) + F (1/2)

2
− F

(

5/4

2

))

≤ (4r0 − 1)F (1/2) + 2(1− 2r0)G(α).

As F is symmetric about ν = 1/2, we get the desired result. �

Theorem 5.2. Let 1/4 ≤ ν ≤ 3/4 and α ∈ [1/2,∞). Then

F (1/2) +

(

F (1/4) + F (1/2)

2
− F

(

1/4 + 1/2

2

))

+ 2

(

2

∫ 3/4

1/4

F (ν)dν − F (1/2)

)

≤ G(α).



NORM INEQUALITIES RELATED TO THE HERON AND HEINZ MEANS 11

Proof. First, we consider the case ν ∈ [1/4, 1/2]. Integrating inequality (5.1) we
obtain that

∫ 1/2

1/4

F (ν)dν + 2

(

F (1/4) + F (1/2)

2
− F

(

1/4 + 1/2

2

))
∫ 1/2

1/4

λmin(ν)dν

≤ F (1/2)

∫ 1/2

1/4

4ν − 1dν +G(α)

∫ 1/2

1/4

2(1− 2ν)dν

≤ 1/4G(α),

or equivalently,
∫ 1/2

1/4

F (ν)dν +
1

8

(

F (1/4) + F (1/2)

2
− F

(

3

8

))

≤ 1

8
F (1/2) +

1

8
G(α) ≤ 1

4
G(α). (5.2)

Mimicking the same idea in the interval [1/2, 3/4] and using the symmetry of F (ν),
we get

∫ 3/4

1/2

F (ν)dν +
1

8

(

F (1/4) + F (1/2)

2
− F

(

3

8

))

≤ 1

8
F (1/2) +

1

8
G(α) ≤ 1

4
G(α). (5.3)

Adding inequalities (5.2) and (5.3), we have
∫ 3/4

1/4

F (ν)dν +
1

4

(

F (1/4) + F (1/2)

2
− F

(

3

8

))

≤ 1

4
F (1/2) +

1

4
G(α) ≤ 1

2
G(α).

Finally, we conclude that

F (1/2) + 2

(

2

∫ 3/4

1/4

F (ν)dν − F (1/2)

)

+

(

F (1/4) + F (1/2)

2
− F

(

3

8

))

≤ G(α).

�

Next, we prove the results refining (4.1) and (4.2).

Theorem 5.3. Let 1/4 ≤ ν ≤ 3/4. Then

K(ν) ≤ K(ν) + 2λmin

(

1

2
K(1/4)−K(3/8)

)

≤ 2(1− 2r0)K(1/4), (5.4)

where r0 = min{ν, 1− ν} and λmin = min{2− 4r0, 4r0 − 1}.
Proof. First, we consider the case ν ∈ [1/4, 1/2]. Then we choose λ ∈ [0, 1] as
λ = 2− 4ν, i.e., ν = λ

4
+ 1−λ

2
. Using (2.3) we obtain that

K(ν) + 2λmin

(

K(1/4) +K(1/2)

2
−K

(

3/4

2

))

≤ 2(1− 2ν)K(1/4) + (4ν − 1)K(1/2),
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where λmin = min{λ, 1− λ} = min{2− 4ν, 4ν − 1}. Since K(1/2) = 0, we have

K(ν) + 2λmin

(

1

2
K(1/4)−K(3/8)

)

≤ 2(1− 2ν)K(1/4).

So,

K(ν) + 2λmin

(

1

2
K(1/4)−K(3/8)

)

≤ 2(1− 2r0)K(1/4).

Similarly, for ν ∈ [1/2, 3/4], we have

K(ν) + 2λmin

(

K(3/4) +K(1/2)

2
−K

(

5/4

2

))

≤ 2(2ν − 1)K(3/4) + (3− 4ν)K(1/2),

where λmin = min{λ, 1− λ} = min{4ν − 2, 3− 4ν}. Since K(1/2) = 0, we get

K(ν) + 2λmin

(

1

2
K(3/4)−K(5/8)

)

≤ 2(1− 2r0)K(3/4).

As K is symmetric respect to ν = 1/2, we get the desired result. �

Theorem 5.4. The following inequality holds,

3/4
∫

1/4

K(ν)dν ≤ 1

8
K(1/4) +

1

4
K(3/8). (5.5)

Proof. By simple calculations we obtain

λmin =















4ν − 1 for 1/4 ≤ ν ≤ 3/8
2− 4ν for 3/8 ≤ ν ≤ 1/2
4ν − 2 for 1/2 ≤ ν ≤ 5/8
3− 4ν for 5/8 ≤ ν ≤ 3/4.

Now, taking the sum of integrals of (5.4) with λmin as above in the respective
intervals and suitable r0, keeping in view symmetry of K(ν) about the line ν = 1

2
,

we obtain the required result. �

Remark 5.5. We claim that inequality (5.5) interpolates (4.2). Indeed,

3/4
∫

1/4

K(ν)dν ≤ 1

8
K(1/4) +

1

4
K(3/8) ≤ 1

4
K(1/4),

noting that K(3/8) ≤ 1/2K(1/4) + 1/2K(1/2), which follows from convexity of
K(ν).

Remark 5.6. Recently, Bhatia proved in [4] the following inequality in matrix version
for the case of the Schatten 2-norm

1

2
‖AνB1−ν +BνA1−ν‖2 ≤

1

2
‖AνB1−ν + A1−νBν‖2 = F2,I(ν),

for A,B positive definite matrices and ν ∈ [1/4, 3/4].
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Setting

F2,I(ν) =
1

2
‖AνB1−ν + A1−νBν‖2 .

and combining the last inequality with Theorem 5.1, we get the following statement:
if ν ∈ [1/4, 3/4] and α ∈ [1/2,∞), then

1

2
‖AνB1−ν +BνA1−ν‖2 ≤ F2,I(ν) ≤ F2,I(ν) + 2λmin

(

F2,I(
1
4
) + F2,I(

1
2
)

2
− F2,I

(

3

8

))

≤ (4r0 − 1)F2,I

(

1

2

)

+ 2(1− 2r0)G2,I(α) ≤ G2,I(α),

where r0 = min{ν, 1−ν}, λmin = min{2−4r0, 4r0−1} and G2,I(α) = ||(1−α)A
1

2B
1

2+
α
(

A+B
2

)

||2. In particular, if α ∈ [1/2, 1] we obtain

1

2
‖AνB1−ν +BνA1−ν‖2 ≤ F2,I(ν) ≤ F2,I(ν) + 2λmin

(

F2,I(
1
4
) + F2,I(

1
2
)

2
− F2,I

(

3

8

))

≤ (4r0 − 1)F2,I

(

1

2

)

+ 2(1− 2r0)G2,I(α) ≤ G2,I(α)

≤ G2,I(1) =

∥

∥

∥

∥

A+B

2

∥

∥

∥

∥

2

.

On Zou’s questions : In [19], the author presented a matrix inequality related to
Heinz and Heron means. More precisely, he obtained a matrix version of inequality
(1.2) for the Schatten norm. If ν ∈ [0, 1], A, B ∈ M+

n , then it holds

1

2
‖AνXB1−ν +BνXA1−ν‖2 ≤

∥

∥

∥

∥

(1− α(ν))A
1

2XB
1

2 + α(ν)

(

AX +XB

2

)∥

∥

∥

∥

2

, (5.6)

where α(ν) = 1 − 4(ν − ν2). In that paper, Zou proposed different conjecture or
open questions related to inequality (5.6).

An inequality weaker than (5.6) is

1

2
|||AνXB1−ν +BνXA1−ν ||| ≤ (1− α(ν))|||A 1

2XB
1

2 |||+ α(ν)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

AX +XB

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

with A,B ∈ M+
n , X ∈ Mn and for any unitarily invariant norm |||.|||. Zou conjec-

tured that this inequality is true.
Another possible comparison between the Heinz and Heron means is the following:

Hν(a, b) ≤ Fr0(a, b),

where ν ∈ [0, 1] and r0 = min{ν, 1− ν}. Zou [19] posed the following question: Is it
true that

F (ν) ≤ G(1− 2r0)?

According to Zou, to answer this question we have to decide whether the function

f(x) =
cosh(βx)

1− β + β cosh(x)
, 0 ≤ β ≤ 1,
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is positive definite. Here, we give a negative answer to this question. For this we
choose, ν = 0.42 and x1 = 1.7006, x2 = 0 x3 = 0.8047 then the matrix

(

cosh((1− 2ν)(xi − xj))

2ν + (1− 2ν) cosh(xi − xj)

)

=





1 0.8023 0.9454
0.8023 1 0.9560
0.9454 0.9560 1



 .

The determinant of the above matrix turns out to be −0.0012.

6. Refinements of the Cauchy–Schwarz inequality for matrices

For A,B ∈ B(H )+ and any real number r > 0, the inequality

||| |A∗B|r |||2 ≤ |||(AA∗)r||| · |||(BB∗)r|||, (6.1)

is called the operator Cauchy–Schwarz inequality. Let A,B be positive definite
matrices and X ∈ Mn. Then, for every positive real number r, we consider the
function

φ(t) = ||| |AtXB1−t|r ||| · ||| |A1−tXBt|r |||
which is convex on [0, 1] and attains its minimum at t = 1

2
. As a consequence of this

last fact, Hiai and Zhan [8] obtained the following inequality

||| |A1/2XB1/2|r |||2 ≤ φ(t) ≤ ||| |AX| r||| · ||| |XB| r|||, (6.2)

which is a refinement of (6.1).
In this section, we utilize the convexity of φ(t) and Theorem 2.1 to obtain a

refinement of the second inequality in (6.2).

Theorem 6.1. Let A,B ∈ M+
n and X ∈ Mn. Then for t ∈ [0, 1],

φ(t) ≤ φ(t) + λmin

(

φ(1/2) + φ(0)

2
− φ

(

1

4

))

≤ (1− 2t0)φ(0) + 2t0φ(1/2),

where t0 = min{t, 1− t} and λmin = min{1− 2t0, 2t0}.
Proof. The proof is a consequence of Theorem 2.1. �
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