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1. Introduction

To find lower and upper bounds for the spectral radius of a graph is a problem that 
have attracted the attention of many researchers. Probably, one of the most important 
motivations for studying this topic is due to a problem posted by Brualdi and Solheid 
in [1]. They proposed, in that article, to characterize the graphs having the maximum 
spectral radius among graphs on n vertices in a determined class of graphs. Since then, 
a wide variety of results on this topic have been published. In addition, finding bounds 
for the spectral radius of any graph in terms of nonspectral parameters is interesting 
enough. Many works can be found in the specialized literature. A recently published 
book summarizes most of the results related to this topic [2].

Lu and Lin find the only graph which maximizes the spectral radius among trees 
with prescribed independence number [3]. In [4], the authors find the unique connected 
graph on n vertices, with given connectivity and prescribed independence number having 
maximal spectral radius. Our contribution, in that line of work, is to find the unique 
graph G ∈ G(n, α) with maximal spectral radius, where G(n, α) denote the class of block 
graphs, which are precisely those connected graph whose blocks are complete graphs. 
Indeed, we have been able to prove that the pineapple on n vertices having independence 
number α is that unique graph. Notice that this block graphs is a superclass of trees. 
More precisely, trees are block graphs having all their blocks of cardinality two. In our 
result this restriction, imposed in [3] on the considered class of graphs, is dropped.

This article is organized as follows. Section 2 is devoted to introduce some preliminary 
results and definitions. In Section 3 we find the unique block graph on n vertices and 
given independence number α with maximum spectral radius and we also present an
upper bound for the spectral radius of this graph in terms of n and α.

2. Preliminaries

2.1. Definitions

All graphs, mentioned in this article, are finite, have no loops and multiple edges. Let 
G be a graph. We use V (G) and E(G) to denote the set of vertices and the set of edges of 
G, respectively. Let v be a vertex of G, NG(v) (resp. NG[v]) stands for the neighborhood 
of v (resp. NG(v) ∪ {v}), if the context is clear the subscript G will be omitted. We use 
dG(v) to denote the degree of v in G, or d(v) provided the context is clear. A vertex of 
degree |V (G)| − 1 is called universal vertex. By G we denote the complement graph of 
G. Given a set F of edges of G (resp. of G), we denote by G −F (resp. G +F ) the graph 
obtained from G by removing (resp. adding) all the edges in F . If F = {e} we use G − e

(resp. G + e) for short. Let X ⊆ V (G), we use G[X] to denote the graph induced by X. 
By G −X we denote the graph G[V (G) \X]. If X = {v} we use G − v for short.

Let A, B ⊆ V (G) we said that A is complete to (resp. anticomplete to) B if every vertex 
in A is adjacent (resp. nonadjacent) to every vertex of B. A set of pairwise nonadjacent 
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vertices of G is called an independent set (or stable set). The independence number of G, 
denoted α(G), is the maximum cardinality of an independent set of G. A clique is a set of 
pairwise adjacent vertices. A simplicial vertex of a graph G is a vertex v such that N(v)
is a clique. We denote by Kn the complete graph on n vertices. A tree is a connected and 
acyclic graph. By K1,n−1 we denote the tree on n vertices having a universal vertex. A 
leaf of a tree is a vertex of degree one and a support vertex in a tree is the only vertex 
adjacent to a leaf. Given two graphs G and H, we use G = H to denote that G and H
are isomorphic graphs.

Let G be a graph. We denote by A(G) the adjacency matrix of G, and ρ(G) stands for 
the spectral radius of A(G), we refer to ρ(G) as the spectral radius of G. Perron-Frobenius 
theorem implies that the principal eigenvector of A(G) has all its entries either positive 
or negative. In addition, ρ(G) coincides with the maximum eigenvalue of G. The reader is 
referred to [5, Ch. 6] for a simple proof of this observation. If x is the principal eigenvector 
of A(G) which is clearly indexed by V (G), we use xu to denote the coordinate of x
corresponding to the vertex u.

2.2. Technical results

Adding edges to a graph increases the spectral radius of a graph.

Lemma 1. If G is a graph such that uv /∈ E(G), then ρ(G) < ρ(G + uv).

The problem of finding those graphs that maximizes the spectral radius of a graph 
on n vertices within a given class H of graphs, have been solved by means of graphs 
transformations that increases the spectral radius. We refer to the reader to [2] for more 
details about this and other techniques. Notice that if H contains the complete graphs, 
then Kn maximizes ρ(G) for every G ∈ H, because of Lemma 1. Lovász and Pelikán 
in [6] prove that the unique graph with maximum spectral radius among the trees on 
n vertices is the star K1,n−1 defining a partial order within the trees by means of their 
characteristic polynomials.

Theorem 1. [6] If T is a tree on n vertices, then ρ(T ) ≤
√
n− 1. In addition, the equality 

holds if and only if T = K1,n−1.

Nevertheless, in order to easily prove this result, using the technique of graph trans-
formations, the following result can be used.

Lemma 2. [7] Let G be a connected graph and let u, v ∈ V (G) such that xu ≤ xv. If 
{v1, . . . , vr} ⊆ N(u) \N(v), then

ρ(G) < ρ(G− {uv1, . . . , uvr} + {vv1, . . . , vvr}).
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Lemma 2 is proved by the first time in [7] but for an easy proof the reader is referred 
to [8]. We would like to point out that Theorem 1 can be proved, using Lemma 2 by 
showing that if T is a tree on n vertices having the maximum spectral radius then there 
is only one support vertex. Otherwise there would exist two support vertices u and v
in T satisfying xu ≤ xv and thus if w is a leaf adjacent to u, and nonadjacent to w, 
then ρ(T ) < ρ(T − uw + vw). Therefore, the tree having the maximum spectral radius 
is K1,n−1 whose only support vertex is its vertex of degree n − 1.

In the following lemma we consider a set of vertices u1, . . . , u� of a graph G, where xi

stands for xui
for every 1 ≤ i ≤ �.

Lemma 3. Let G be a connected graph and let u1, . . . , uk, uk+1, . . . , u� ∈ V (G) such that ∑k
i=1 xi ≤

∑�
i=k+1 xi, and let W ⊆ V (G) \ {u1, . . . , u�}. If {u1, . . . , uk} is complete to 

W and {uk+1, . . . , u�} is anticomplete to W , then

ρ(G) < ρ(G− {wui : w ∈ W and 1 ≤ i ≤ k} + {wui : w ∈ W and k + 1 ≤ i ≤ �}).

It is worth mentioning that Lemma 3 was presented in [4] by Lu and Lin but in 
an slightly different way. They prove that ρ(G) ≤ ρ(G∗) when |W | = 1 and that the 
inequality is strict when 

∑k
i=1 xi <

∑�
i=k+1 xi.

3. Block graphs with given independence number

The adjacency matrix of block graph were studied by Bapat and Roy in [9]. Through-
out of this section we will need some definitions and concepts introduced next. A vertex v
of a graph G is a cut vertex if G −v has a number of connected components greater than 
the number of connected components of G. We use S1(G) to denote the set of simplicial 
vertices of G.

Let H be a graph. A block of H, also known as 2-connected component, is a maximal 
connected subgraph of H having no cut vertex. A block graph is a connected graph whose 
blocks are complete graphs. We use G(n, α) to denote the family of block graphs on n
vertices and independence number α. A simplicial block of H is a block B having at least 
a simplicial vertex in H. Let G be a block graph, a leaf block is a block of G such that 
contains exactly one cut vertex of G. Notice that every vertex but one, in a leaf block, 
is a simplicial vertex.

Next we will state and prove technical results needed to demonstrate the main state-
ment of this section.

Lemma 4. Let G be a block graph and let B a simplicial block of G. If S is a maximum 
independent set of G, then |S ∩ V (B)| = 1. In addition, such a maximum independent 
set S can be chosen so that S ∩ V (B) = {v}, where v is any simplicial vertex of G such 
that NG[v] = V (B).
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Fig. 1. A block graph, each of its blocks is a simplicial one and its has two leaf blocks.

Fig. 2. Block graphs with three leaf blocks, two nonleaf simplicial blocks and a nonsimplicial block.

Proof. Consider a maximum independent set S and let B be a simplicial block of G. 
Hence there exists a vertex v ∈ S1(G) such that V (B) = NG[v]. Thus there exists a 
vertex w ∈ V (B) ∩ S, because of the maximality of S, since otherwise S ∪ {v} would 
be an independent set. Therefore, |V (B) ∩ S| = 1. In addition, since S is a maximum 
independent set, S′ = S \{w} ∪{v} is also a maximum independent set. We can proceed 
in this way with each simplicial block in order to obtain a maximum independent set as 
stated in the lemma. �
Corollary 1. Let G be a block graph. Then, there exists a maximum independent set S
such that S ∩ V (B) = {v} for each leaf block B of G, where NG[v] = V (B).

Proof. It suffices to notice that if B is a leaf block of G, then B is a simplicial block of 
G. Therefore, the result immediately follows from Lemma 4. �

Let G be a block graph. We use L(G) to denote the set of vertices of G belonging 
to any leaf block. Let B be a block of G. We use L(B) to denote the set of simplicial 
vertices of those leaf blocks of G having exactly one vertex in common with V (B). By 
�G(B) we denote the number of these leaf blocks. When the context is clear enough we 
use �(B) for short. In the graph depicted in Fig. 1, if B is the block induced by {g, j, k}, 
then L(B) = {a, c, d} and �(B) = 1; and in the graph depicted in Fig. 2, if B is the block 
induced by {g, j, k}, then L(B) = {a, c, d, n} and �(B) = 2.

Corollary 2. If G is a block graph and B is a leaf block of G, then

α(G) = α(G−B) + 1.

Proof. The proof follows from Lemma 4. �
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Lemma 5. Let G be a block graph and let B be a leaf block of H = G − (L(G) ∩ S1(G)), 
where v is its only cut vertex of H in V (B). Then, the following conditions hold:

1. α(G) = α(G − (V (B) ∪ L(B))) + �(B) + 1, if V (B) has a simplicial vertex in G.
2. α(G) = α(G − ((V (B) ∪L(B)) \ {v})) + �(B), if V (B) has no simplicial vertex in G.

Proof. Let G be a block graph and let v the only cut vertex of H in V (B). Notice that 
H is the graph obtained from G by removing every simplicial vertex belonging to a leaf 
block of G. By Corollary 1, G has a maximum independent set S such that if B′ is any 
leaf block of G having a simplicial vertex w, then V (B′) ∩S = {w}. Hence if V (B) has a 
simplicial vertex in G, then v /∈ S. Therefore, the only vertices of V (B) ∪L(B) in S are 
those simplicial vertices in a leaf block of G having a vertex in common with V (B) and 
exactly one of the simplicial vertices of G in V (B), the remaining vertices of S are in 
V (G) \ (V (B) ∪L(B)) and the result holds. If V (B) does not have any simplicial vertex 
of G, then (V (B) ∪ L(B)) \ {v} has in S exactly one vertex for each leaf block of G
having a vertex in common with V (B) and v might belong or not to S, thus the second 
statement holds. �

The following lemma will allow to describe with more precision the structure of those 
block graphs with prescribed independence number having maximum spectral radius. 
Recall that two blocks in a graph have at most one vertex in common, which is also a 
cut vertex.

Lemma 6. If G is a block graph with maximum spectral radius among all block graphs 
with independence number α, and B1 and B2 are leaf blocks of G − (L(G) ∩S1(G)), then 
|V (B1) ∩ V (B2)| = 1.

Proof. Suppose, towards a contradiction, that V (B1) ∩V (B2) = ∅. Assume that vi is the 
only cut vertex in V (Bi) that does not belong to a leaf block of G, for each i ∈ {1, 2}. 
We are going to split the proof into the three only possible cases. Let x be a principal 
eigenvector of G having all its coordinates positive.

Case 1: V (Bi) ∩ S1(G) 	= ∅ for each i ∈ {1, 2}.

Let Si = V (Bi) ∩ S1(G) for each i ∈ {1, 2}. Consider for instance the graph depicted 
in Fig. 1 where those blocks playing the roles of B1 and B2 are those induced by {g, j, k}
and {i, �, m}, respectively. In this case v1 = k, v2 = �, S1 = {j} and S2 = {m}.

By Lemma 5 we know that

α = α

(
G−

( 2⋃
(V (Bi) ∪ L(Bi))

))
+ �G(B1) + �G(B2) + 2.
i=1
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Assume, without losing generality, that 
∑

a∈S1
xa + xv1 ≤

∑
a∈S2

xa + xv2 . We con-
struct a graph G∗ from G as follows. We delete every edge sv with s ∈ S1 ∪ {v1} and 
v ∈ V (B1) \ (S1 ∪ {v1}) and then we add every edge vw with v ∈ V (B1) \ (S1 ∪ {v1})
and w ∈ V (B2). Clearly, G∗ is a block graph and its block B′ whose vertex set is 
(V (B1) \ (S1 ∪ {v1})) ∪ V (B2) has at least a simplicial vertex because V (B2) has a 
simplicial vertex in G, and the block B′′ induced by S1 ∪ {v1} in G∗ is a leaf block of 
G∗. Besides, B′ is a leaf block of G∗ − (L(G∗) ∩ S1(G∗)) having a simplicial vertex and 
�G∗(B′) = �G(B1) + �G(B2). By Lemmas 1 and 3, ρ(G) < ρ(G∗). In virtue of Lemma 5
and Corollary 2 applied to B′′

α(G∗) = α(G∗ − V (B′′)) + 1
= α((G∗ − V (B′′)) \ (V (B′) ∪ L(B′))) + �G∗(B′) + 2

= α

(
G−

( 2⋃
i=1

(V (Bi) ∪ L(Bi))
))

+ �G(B1) + �G(B2) + 2.

We reach a contradiction.

Case 2: Exactly one of V (B1) or V (B2) has a simplicial vertex of G.

Assume, without losing generality, that V (B1) has at least one simplicial vertex of G
and V (B2) ∩ S1(G) = ∅. Let S = V (B1) ∩ S1(G)

Consider for instance the graph depicted in Fig. 2 where those blocks playing the 
roles of B1 and B2 are those induced by {i, �, m} and {g, j, k}, respectively. In this case 
v1 = �, v2 = k and S = {m}.

By Lemma 5 we know that

α = α

(
G−

(( 2⋃
i=1

(V (Bi) ∪ L(Bi))
)

\ {v2}
))

+ �G(B1) + �G(B2) + 1.

If xv2 ≤
∑

a∈S xa + xv1 , then the block graph G∗ obtained by deleting every edge bv2
with b ∈ (V (B2) \ {v2}) and by adding every edge bv1 with b ∈ (V (B2) \ {v2}) satisfies, 
by Lemma 2, that ρ(G) < ρ(G∗). Notice that B1 is a block of G∗ having at least one 
simplicial vertex such that �G∗(B1) = �G(B1), and B′

2 = G∗[(B2 − v2) ∪ {v1}] is a block 
of G∗ having no simplicial vertices such that �G∗(B′

2) = �G(B2). Besides, both of B′
1 and 

B′
2 are leaf blocks of G∗ \ (L(G∗) ∩ S1(G∗)), where B′

1 = B1, and thus by Lemma 5

α(G∗) = α

(
G∗ −

( 2⋃
i=1

(V (B′
i) ∪ L(B′

i))
))

+ �G∗(B′
1) + �G∗(B′

2) + 1

= α

(
G−

(( 2⋃
i=1

(V (Bi) ∪ L(Bi))
)

\ {v2}
))

+ �G(B1) + �G(B2) + 1.

Thus we reach a contradiction.
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Fig. 3. Block graphs with four leaf blocks, one nonleaf simplicial blocks and two nonsimplicial blocks.

Suppose now that xv2 ≥
∑

a∈S xa + xv1 . We construct a block graph G∗ from G as 
follows. We delete every edge sv with s ∈ S ∪ {v1} and v ∈ V (B1) \ (S ∪ {v1}), and we 
add every edge vw with v ∈ V (B1) \ (S ∪ {v1}) and w ∈ V (B2). Clearly, the block B′ of 
G∗ whose vertex set is V (B1 − (S ∪ {v1})) ∪ V (B2) has no simplicial vertex of G∗ and 
�G∗(B′) = �G(B1) + �G(B2), and the block B′′ induced in G∗ by S ∪{v1} is a leaf block. 
By Lemmas 1 and 3, ρ(G) < ρ(G∗). By Lemma 5 and Corollary 2

α(G∗) = α((G∗ − V (B′′)) \ ((V (B′) ∪ L(B′)) \ {v2})) + �G∗(B′) + 1

= α

(
G−

(( 2⋃
i=1

(V (Bi) ∪ L(Bi))
)

\ {v2}
))

+ �G(B1) + �G(B2) + 1.

We reach a contradiction.

Case 3: V (Bi) has no simplicial vertex of G for each i ∈ {1, 2}.

Consider for instance the graph depicted in Fig. 3 where those blocks playing the roles 
of B1 and B2 are those induced by {g, j, k} and {i, �, m}, respectively. In this case v1 = k

and v2 = �.
By Lemma 5 we know that

α = α(G) = α

(
G−

(( 2⋃
i=1

(V (Bi) ∪ L(Bi))
)

\ {v1, v2}
))

+ �G(B1) + �G(B2).

Assume, without losing generality, that xv1 ≥ xv2 . We transform G into the block graph 
G∗ by deleting every edge v2u with u ∈ V (B2) \ {v2} and adding every edge v1u with 
u ∈ V (B2) \ {v2}. By Lemma 2, ρ(G) < ρ(G∗). Let define the blocks B′

1 and B′
2 of G∗

as those induced by V (B1) and V ((B2 − v2) ∪ {v1}), respectively. In addition, B′
1 and 

B′
2 are blocks of G∗ − (L(G∗) ∩ S1(G∗)) such that �G∗(B′

i) = �G(Bi) for each i ∈ {1, 2}. 
Besides, by Lemma 5,

α(G∗) = α

(
G∗ −

(( 2⋃
i=1

(V (B′
i) ∪ L(B′

i))
)

\ {v1}
))

+ �G∗(B′
1) + �G∗(B′

2)

= α

(
G−

(( 2⋃
i=1

(V (Bi) ∪ L(Bi))
)

\ {v1, v2}
))

+ �G(B1) + �G(B2).
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Fig. 4. Block graph G with G − (L(G) ∩ S1(G)) having all its block sharing the cut vertex v.

Fig. 5. From left to right we have Pα−1
5−α+1 for every 1 ≤ α ≤ 4.

Since we reach a contradiction in all of the cases we conclude that every pair of leaf block 
of G − (L(G) ∩ S1(G)) have a common cut vertex (see for instance the graph depicted 
in Fig. 4) and thus every leaf block of G − (L(G) ∩ S1(G)) have the same common cut 
vertex in G − (L(G) ∩ S1(G)). �

The pineapple P p
q is the graph whose vertex set can be partitioned into a clique Q on 

q vertices and a stable set I on p vertices such that every vertex of I is adjacent to the 
same vertex in Q (see Fig. 5).

Theorem 2. Let G ∈ G(n, α). Then, ρ(G) ≤ ρ(Pα−1
n−α+1). In addition, the equality holds 

if and only if G = Pα−1
n−α+1.

Proof. Let G be a block graph with maximum independence set α. Assume that α ≥ 2, 
otherwise G = P 0

n = Kn. By Lemma 6 either every block of G − (L(G) ∩ S1(G)) has 
common cut vertex v (see Fig. 4 for an example), or G − (L(G) ∩S1(G)) = Kr. Let b be 
the number of nonleaf blocks having at least one simplicial vertex, let t be the number 
of leaf blocks sharing the cut vertex v, and let � be the number of leaf blocks of G such 
that v is not in their vertex sets. By Lemma 5 and Corollary 2, α = � + 1 whenever 
b = 0, t = 0 and G − (L(G) ∩ S1(G)) 	= Kr, or α = b + t + �, otherwise.

In the sequel, we transform G into G∗, whose vertex sets agree, where v either is the 
only cut vertex of G∗ in every nonleaf block of G∗ or is the only simplicial vertex of the 
only nonleaf block of G∗, we will use b∗ to denote the number of nonleaf blocks in G∗

having at least one simplicial vertex, and t∗ to denote the number of leaf blocks sharing 
the cut vertex v, and �∗ to denote the number of leaf blocks such that v does not belong 
to them. We will split the proof into four claims.

Claim 1: There exists at most one nonleaf block in G without simplicial vertices.
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Suppose, towards a contradiction, that there exist two nonleaf blocks B1 and B2

without simplicial vertices. Consider the graph G∗ obtained from G by adding every 
edge v1v2 with vi ∈ V (Bi) \ {v} for each i ∈ {1, 2}. Clearly, G∗ is a block graph. On the 
one hand, if b = 0 and t = 0 then b∗ = 1, whenever there is exactly two nonleaf blocks 
sharing the cut vertex v, or else b∗ = 0, t∗ = t and �∗ = �. On the other hand, b∗ = b, 
t∗ = t and �∗ = �. Hence α(G∗) = α. Besides, by Lemma 1 we have ρ(G) < ρ(G∗). 
We reach a contradiction. Therefore, G has at most one nonleaf block without simplicial 
vertices.

From Claim 1 we can conclude α = b + t + �.

Claim 2: There exists at most one nonleaf block B1

Suppose, towards a contradiction, that there exist two nonleaf blocks B1 and B2 in G. 
By Claim 1 at most one of B1 and B2 have no simplicial vertex. First, assume, without 
lose of generality, that V (B2) contains no simplicial vertex. Set S1 = V (B1) ∩S1(G). We 
transform the graph G into G∗ by adding every edge v1v2 with vi ∈ V (B1) \{v} for every 
i ∈ {1, 2}. Clearly, b∗ = b, �∗ = � and t∗ = t. Hence α(G∗) = α. In addition, by Lemma 1, 
ρ(G) < ρ(G∗), reaching a contradiction. Finally, assume that V (Bi) ∩ S1(G) 	= ∅ and 
let Si = V (Bi) ∩ S1(G), for each i ∈ {1, 2}. Suppose, without losing generality, that ∑

u∈S1
xu ≥

∑
u∈S2

xu. We construct the graph G∗ from G by deleting every edge xy with 
x ∈ S2 and y ∈ V (B2) \ (S2 ∪{v}) and adding every edge yz with y ∈ V (B2) \ (S2 ∪{v})
and z ∈ V (B1) \ {v}. Clearly, b∗ = b − 1, t∗ = t + 1 and �∗ = �. Hence, α(G∗) = α. 
Besides, by Lemma 3, ρ(G) < ρ(G∗), reaching a contradiction.

Claim 3: Every block in G is a leaf block.

Suppose, towards a contradiction, that G has at least a nonleaf block. First assume 
that B (by Claim 1) is the only nonleaf block in G having no simplicial vertex. Hence, by 
Claim 2, the remaining blocks are leaf blocks. Let B′ be one of those leaf blocks having v′

as the only cut vertex of B′ in G. By Lemma 1, the graph G∗ obtained from G by adding 
every edge ww′ with w ∈ V (B) \ {v′} and w′ ∈ V (B′) \ {v′} satisfies ρ(G) < ρ(G∗). In 
addition, b∗ = 1, t∗ = t and �∗ = � − 1. Hence, α(G∗) = α, reaching a contradiction.

Assume now that every nonleaf block of G has at least one simplicial vertex. By Claim 
2 we conclude that G has only one nonleaf block having at least one simplicial vertex. 
Hence there exists a leaf block B having u as the only cut vertex of G. Suppose that 
B′ is another leaf block having u′ as the only cut vertex of G with u′ 	= u. Assume first 
that xu ≥ xu′ . By Lemma 2, the graph G∗ obtained from G by deleting every edge w′u′

with w′ ∈ V (B′) \ {u′} and adding every edge w′u with w′ ∈ V (B′) \ {u′}, satisfies 
ρ(G) < ρ(G∗). Notice that, b∗ = b − 1 = 0, whenever � = 2, and b∗ = b if � > 2. In both 
cases α(G∗) = α. By symmetry, if xu ≤ xu′ applying the analogous transformation we 
obtain a graph G∗ with α(G∗) = α such that ρ(G) < ρ(G∗). We reach a contradiction.
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Claim 4: G = Pα−1
n−α+1.

Claim 3 implies that every block in G is a leaf block, sharing a cut vertex u. Hence 
it remains to prove that at most one block B has at least three vertices. Notice that 
if every leaf block in G has exactly two vertices, then G = K1,n−1. Suppose, towards 
a contradiction, that B1 and B2 are two leaf blocks having at least three vertices. Let 
ui ∈ V (Bi) such that ui 	= u and let Si = V (Bi) \ {u, ui}, for each i ∈ {1, 2}. Assume, 
without losing generality, that 

∑
s∈S2

xs ≤
∑

s∈S1
xs. Hence, by Lemmas 1 and 3, the 

graph G∗ obtained from G by deleting every edge u2s with s ∈ S2 and adding every edge 
u2w with w ∈ S1 ∪ {v1}, satisfies ρ(G) < ρ(G∗). Besides, clearly α(G∗) = α, reaching a 
contradiction. �

The following lemma gives an upper bound of the spectral radius of the pineapple
graph.

Lemma 7. Let Pα−1
n−α+1 be the pineapple graph with 2 ≤ α ≤ n − 2. Then

ρ(Pα−1
n−α+1) ≤ β − 1 +

√
(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)

4β − 2 , (1)

for 2 ≤ α ≤ n −
√
n− 1, and

ρ(Pα−1
n−α+1) ≤

2
√
n− 1 +

√
(α− 1)γ2 + (n− α)(2 − γ)

2 + γ
, (2)

for n −
√
n− 1 < α ≤ n − 2, where β = n − α + 1 and γ = 1 − n−α−1√

n−1 .

Proof. In [10, Proposition 1.1], it is proved that the characteristic polynomial p(x) =
det(xI −A), where A is the adjacency matrix of Pα−1

n−α+1, is given by

p(x) = xα−2(x + 1)n−α−1(x3 − (n− α− 1)x2 − (n− 1)x + (α− 1)(n− α− 1)).

Perron-Frobenius implies that ρ(Pα−1
n−α+1) coincides with the maximum positive root of

q(x) = x3 − (n− α− 1)x2 − (n− 1)x + (α− 1)(n− α− 1). (3)

We will find an upper bound to the maximum positive root of q. Notice that the 
pineapple Pα−1

n−α+1 contains Kn−α+1 and K1,n−1 as a subgraph, based on this fact 
max{n − α, 

√
n− 1} ≤ ρ(Pα−1

n−α+1) (see [11, Corollary 7] for more details). We will split 
the task into two cases.

Case 1: 2 ≤ α ≤ n −
√
n− 1.
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It is easy to see that

ρ(Pα−1
n−α+1) = β − 1 + t,

where β = n − α + 1 and t is the maximum positive solution of

x3 + (2β − 1)x2 + (β2 − n)x− (α− 1) = 0.

Since t > 0, we have that

(2β − 1)t2 + (β2 − n)t− (α− 1) < 0.

It follows immediately that

t ≤
√

(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)
4β − 2 .

Finally, we conclude

ρ(Pα−1
n−α+1) ≤ β − 1 +

√
(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)

4β − 2 .

Case 2: n −
√
n− 1 < α ≤ n − 2.

It is easy to see that

ρ(Pα−1
n−α+1) =

√
n− 1 + t,

where t is the maximum positive solution of

x3 +
√
n− 1(2 + γ) x2 + 2(n− 1)γ x− (n− α)(n− α− 1) = 0,

where γ = 1 − n−α−1√
n−1 . Since t > 0, we see that

√
n− 1(2 + γ) t2 + 2(n− 1)γ t− (n− α)(n− α− 1) < 0.

It follows immediately that

t ≤
√

(α− 1)γ2 + (n− α)(2 − γ) −
√
n− 1γ

2 + γ
.

Finally, we conclude



C.M. Conde et al. / Linear Algebra and its Applications 614 (2021) 111–124 123
ρ(Pα−1
n−α+1) ≤

√
n− 1 +

√
(α− 1)γ2 + (n− α)(2 − γ) −

√
n− 1γ

2 + γ
(4)

=
2
√
n− 1 +

√
(α− 1)γ2 + (n− α)(2 − γ)

2 + γ
. �

Remark 1. In this remark, we compare the bounds for the spectral radius ρ(Pα−1
n−α+1)

obtained in Lemma 7 with those found in [11, Corollaries 7 and 8].
Under the assumption 2 ≤ α ≤ n −

√
n− 1, we have

ρ(Pα−1
n−α+1) ≤ β − 1 +

√
(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)

4β − 2 .

By the Mean Value Theorem, we see that

√
(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)

4β − 2 = 4(n− β)(2β − 1)
(4β − 2)2

√
ξ

= (n− β)√
ξ

,

where (β2 − n)2 < ξ < (β2 − n)2 + 4(n − β)(2β − 1). It follows that

β − 1 +
√

(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)
4β − 2 < β − 1 + (n− β)

β2 − n
.

Hence the bound (1) refines the one present in [11, Corollaries 7].
We now turn to the case n −

√
n− 1 < α ≤ n − 2. By (4), we have

ρ(Pα−1
n−α+1) ≤

√
n− 1 +

√
(α− 1)γ2 + (n− α)(2 − γ) −

√
n− 1γ

2 + γ

By the Mean Value Theorem, we see that

√
(α− 1)γ2 + (n− α)(2 − γ) −

√
n− 1γ

2 + γ
= (n− α)(1 − γ)

2
√
ξ

,

where (n − 1)γ2 < ξ < (α− 1)γ2 + (n − α)(2 − γ). It follows that

√
n− 1 +

√
(α− 1)γ2 + (n− α)(2 − γ) −

√
n− 1γ

2 + γ
<

√
n− 1 + (n− α)(1 − γ)

2
√
n− 1γ

.

Thus the bound (2) refines the one presented in [11, Corollaries 8].

Corollary 3. Let G ∈ G(n, α). Then,

ρ(G) ≤ β − 1 +
√

(β2 − n)2 + 4(n− β)(2β − 1) − (β2 − n)
, (5)
4β − 2
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for 2 ≤ α ≤ n −
√
n− 1, and

ρ(G) ≤ 2
√
n− 1 +

√
(α− 1)γ2 + (n− α)(2 − γ)

2 + γ
, (6)

for n −
√
n− 1 < α ≤ n − 2, where β = n − α + 1 and γ = 1 − n−α−1√

n−1 .
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