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1. Introduction

The problem of finding those graphs that maximize or minimize the spectral radius of a 
connected graph on n vertices, within a given graph class H, has attracted the attention of 
many researchers. Usually, this kind of problem is solved through graph transformations 
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preserving the number of vertices, so that the resulting graph also belongs to H, and 
has a monotone behavior with respect to the spectral radius. We refer the reader to [12]
for more details about this technique and others. In [9], Lovász and Pelikán proved that 
the unique graph with maximum spectral radius among trees on n vertices is the star 
K1,n−1, and that the unique graph with minimum spectral radius is the path Pn. As far 
as we know, this article is the first one within this research line. Since adding edges to a 
graph increases the spectral radius (see Corollary 1), if H contains complete graphs and 
paths, then Kn maximizes and Pn minimizes ρ(G) among graphs in H, meaning that 
these two graphs have the minimum and the maximum spectral radius among graphs 
on n vertices when H is the class of all connected graphs. Consequently, several authors 
have considered the problem when H is a graph class not containing either paths or 
complete graphs and defined by a restriction of classical graph parameters. Graphs with 
a given independence number [10,5], and graphs with a given clique number [13] and 
graphs with given connectivity and edge-connectivity [6]. It is worth mentioning that 
the foundation stone that gives place to many subsequent articles in connection with 
this problem is that of Brualdi and Solheid [3]. For concepts and definitions used in this 
section, we refer the reader to Section 2.

In this article, we consider the class B(n, q) of block graphs on n vertices having all 
their blocks on q+1 vertices, for every q ≥ 2. For results related to the adjacency matrix 
of block graphs we refer to [2]. Trees are block graphs with all their blocks on two vertices. 
In connection with the spectral radius on trees, the following result was obtained.

Theorem 1.1. [9] If T is a tree on n vertices, then 2 cos
(

π
n+1

)
= ρ(Pn) ≤ ρ(T ) ≤

ρ(K1,n−1) =
√
n− 1.

In an attempt to generalize Theorem 1.1, we find the unique graph in G ∈ B(n, q) that 
reaches the minimum spectral ρ(G) in the case in which G has at most three pairwise 
adjacent cut vertices. Besides, we present a lower bound for ρ(G).

Theorem 1.2. If G ∈ B(n, q), then ρ(G) ≤ ρ(S(n, q)) and S(n, q) is the unique graph 
that maximizes the spectral radius. In addition, if G has at most three pairwise adjacent 
cut vertices then ρ (P q

b ) ≤ ρ(G) and P q
b is the unique graph that minimizes the spectral 

radius in the class B(n, q), where b = n−1
q .

The upper bound was already obtained in [8], using a notion of adjacency matrix for 
uniform hypertrees equivalent to the adjacency matrix of blocks graphs having all their 
blocks of the same size. To the best of our knowledge, there is no result about the lower 
bound. Many articles have been published on uniform hypertrees but using a tensor 
associated to them, but this concept has no immediate connection with the notion of 
adjacency matrix presented in [8]. We have strong evidence, obtained by the aid of Sage 
software, that the hypothesis of having at most three pairwise adjacent cut vertices; in 
connection with the minimum of the spectral radius; can be dropped.
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This article is organized as follows. In Section 2 we present some definitions and 
preliminary results. Section 3 presents two graph transformations having a monotone 
behavior with respect to the spectral radius. Section 4 is devoted to putting together 
all previous results, to prove our main result. Section 5 presents a lower bound for the 
spectral radius. Finally, Section 6 contains a summary of our work and two conjectures 
are posted.

2. Preliminaries

2.1. Definitions

All graphs; mentioned in this article, are finite, and have neither loops nor multiple 
edges. Let G be a graph. We use V (G) and E(G) to indicate the set of vertices and 
the set of edges of G, respectively. A graph on one vertex is called a trivial graph. 
Let v be a vertex of G, NG(v) (resp. NG[v]) stands for the (closed) neighborhood of v
(resp. NG(v) ∪ {v}), if the context is clear the subscript G is omitted. We use dG(v) to 
symbolize the degree of v in G, or d(v), provided the context is clear. By G we denote 
the complement graph of G. Given a set F of edges of G (resp. of G), we mean by G −F

(resp. G +F ) the graph obtained from G by removing (resp. adding) all the edges in F . 
If F = {e}, we use G − e (resp. G + e) for short. Let X ⊆ V (G), we use G[X] to indicate 
the graph induced by X. By G − X we denote the graph G[V (G) \ X]. If X = {v}, 
we use G − v for short. Let G and H be two graphs, we use G + H to designate the 
disjoint union between G and H, and G+ stands for the graph obtained by adding an 
isolated vertex to G. We mean by Pn and Kn the path and the complete graph on n
vertices.

We mean by A(G) the adjacency matrix of G, and ρ(G) stands for the spectral 
radius of A(G), we refer to ρ(G) as the spectral radius of G. If x is the principal 
eigenvector of A(G), which is indexed by V (G), we use xu to indicate the coordi-
nate of x corresponding to the vertex u. We use PG(x) to designate the character-
istic polynomial of A(G); i.e., PG(x) = det(xIn − A(G)). It is easy to prove that 
PKn

(x) = (x − n + 1)(x + 1)n−1.
A vertex v of a graph G is a cut vertex if G −v has a number of connected components 

greater than the number of connected components of G. Let H be a graph. A block of H, 
also known as a 2-connected component, is a maximal connected subgraph of H having 
no cut vertex. A block graph is a connected graph whose blocks are complete graphs. 
We use B(n, q) to denote the family of block graphs on n vertices whose blocks have 
q + 1 vertices. Notice that if B ∈ B(n, q) and b is its number of blocks, then b = n−1

q . 
Let G be a block graph, a leaf block is a block of G such that it contains exactly one 
cut vertex of G. We use S(n, q) to designate the block graph in B(n, q) having b blocks 
with only one cut vertex. By P q

b we designate the block graph in B(bq + 1, q) with 
at most two leaf blocks when n − 1 > q and no cut vertices when n − 1 = q, called 
(q, b)-path-block.
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2.2. Preliminary results

This subsection is split into two parts. In the first one, we present the results needed 
to deal with the minimum spectral radius in B(n, q), and in the second one, we briefly 
describe the previous result in connection with the maximum spectral radius in this 
class.

Tools for the minimum. We will introduce a partial order on the class of graphs. We will 
use it to develop graph transformations used to prove our main result. This technique 
was pioneered by Lovász and Pelikán [9].

Definition 1. Let G and H be two graphs. We mean by G ≺ H, if PH(x) > PG(x) for all 
x ≥ ρ(G).

It is immediate that if G ≺ H then ρ(H) < ρ(G). The spectrum radius is nondecreas-
ing with respect to the subgraph partial order.

We repeatedly use the following Lemma to deal with the subgraph partial order pre-
viously defined.

Lemma 2.1. If H is a proper subgraph of G, then ρ(H) < ρ(G).

The reader is referred to [1] for the proof of the above lemma. In particular, adding 
edges to a graph increases the spectral radius.

Corollary 1. If G is a graph such that uv /∈ E(G), then ρ(G) < ρ(G + uv).

The following technical lemma is a useful tool to develop graph transformations.

Lemma 2.2. [7] If H is a spanning subgraph of the graph G, then PG(x) ≤ PH(x) for all 
x ≥ ρ(G). In addition, if G is connected, then G ≺ H.

Let G and H be two graphs. If g ∈ V (G) and h ∈ V (H), the coalescence between G
and H at g and h, denoted G ·hg H, is the graph obtained from G and H, by identifying 
vertices g and h (see Fig. 1). We use G ·H for short. Notice that any block graph can be 
constructed by recursively using the coalescence operation between a block graph and a 
complete graph.

In the 70s, Schwenk published an article containing useful formulas for the charac-
teristic polynomial of a graph [11]. The part corresponding to minimizing the spectral 
radius of the main result of this research is based on the following Schwenk’s formula, 
linking the characteristic polynomial of two graphs and the coalescence between them.

Lemma 2.3. [11] Let G and H be two graphs. If g ∈ V (G), h ∈ V (H), and F = G ·H, 
then
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Fig. 1. The coalescence of graphs G and H at vertices g and h.

PF (x) = PG(x)PH−h(x) + PG−g(x)PH(x) − xPG−g(x)PH−h(x).

More details on Lemmas 2.2 and 2.3 can be found in [4].
The following two technical lemmas will play an important role to prove the main 

result of this article.

Lemma 2.4. Let H be a graph, let v, w ∈ V (H) such that H − w ≺ H − v, and let G
be a connected graph. If G1 and G2 are the graphs obtained by means of the coalescence 
between G and H at u ∈ V (G), and v or w respectively, then G1 ≺ G2.

Proof. By Lemma 2.3, the characteristic polynomials of G1 and G2 are

PG1(x) = PG−u(x)PH(x) + (PG(x) − xPG−u(x))PH−v(x)

and

PG2(x) = PG−u(x)PH(x) + (PG(x) − xPG−u(x))PH−w(x),

respectively, and thus

PG2(x) − PG1(x) = (PG(x) − xPG−u(x))(PH−w(x) − PH−v(x)). (1)

By Lemmas 2.1 and 2.2, G ≺ (G − u)+. Therefore, since H −w ≺ H − v, by Lemma 2.1
and (1), we have G1 ≺ G2. �
Lemma 2.5. Let H1, H2 be two graphs such that either H1 = H2 or H1 ≺ H2, let vi ∈
V (Hi) for each i = 1, 2 such that H2 − v2 ≺ H1 − v1, and let G be a connected graph. 
If Gi is the graph obtained by means of the coalescence between G and Hi at v ∈ V (G)
and vi for each i = 1, 2, then G1 ≺ G2.

Proof. By applying Lemma 2.3 as in Lemma 2.4, we obtain

PG2(x) − PG1(x) = (PG(x) − xPG−v(x))(PH2−v2(x) − PH1−v1(x))

+ (PH2(x) − PH1(x))PG−v(x).
(2)

By Lemmas 2.1 and 2.2, G ≺ (G − v)+. Therefore, since either H1 = H2 or H1 ≺ H2
and H2 − v2 ≺ H1 − v1, by (2) and Lemma 2.1, we conclude that G2 ≺ G1. �
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Fig. 2. From left to right H, H1, and H2.

Tools for finding the maximum. The below theorem was proved in the context of studying 
the spectral radius of the adjacency matrix of the q+1-uniform hypertrees. This matrix 
agrees with that of a block graph having all their blocks of size q + 1.

Theorem 2.1. [8, Theorem 4.1] If G ∈ B(n, q), then

ρ(G) ≤ ρ(S(n, q)) =
q − 1 +

√
(q − 1)2 + 4(n− 1)

2 .

Besides, S(n, q) is the unique graph maximizing ρ(G).

Although the minimum spectral radius of a q+1-uniform hypertrees was also consid-
ered in the literature under the notion of spectral radius of the hypermatrix, also called 
tensor, associated to a uniform hypertree (see e.g. [14, Corollary 19]), the reader should 
notice that this notion does not have an immediate relationship with the notion of the 
spectral radius of the adjacency matrix of a block graph.

3. Graph transformations

To ease the reading of the next proposition we recommend seeing Fig. 2.

Proposition 1. Let G be a connected graph, and let u ∈ V (G) such that G −u is connected. 
Let H be the graph obtained from S(k(q − 1) + 1, k) by adding for all 1 ≤ i ≤ k one 
pendant (q, bi)-path-block (possibly empty, i.e., bi = 0) to each leaf block, let v ∈ V (H)
be the vertex of degree k(q− 1) and let w ∈ V (H) be any vertex in leaf block of H. If H1

is the graph obtained by the coalescence between G and H at u and v, H2 is the graph 
obtained by the coalescence between G and H at u and w, then H1 ≺ H2.

Proof. Observe that H−w is connected and H−v is a disconnected spanning subgraph 
of H − w. Thus, by Lemma 2.2 H − w ≺ H − v. Therefore, the result follows from 
Lemma 2.4. �
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Fig. 3. From left to right G, G(4, 1) and G(3, 3).

The following proposition plays a central role to prove the main result of this article. 
We use G(r, s) to indicate the graph obtained by means of the coalescence between G
and a copy of Kr at u ∈ V (G) and any vertex of the complete graph, and between G
and Ks at v ∈ V (G) and any vertex of the complete graph (see the example depicted in 
Fig. 3).

Proposition 2. Let G be a connected graph and let u, v ∈ V (G). If r and s are two integers 
such that 1 ≤ r ≤ s − 2, G −u ≺ G − v or G −u = G − v, then G(r, s) ≺ G(r+ 1, s − 1).

Proof. By applying Lemma 2.3 to G(r, s) at v, we obtain

PG(r,s)(x) = (x + 1)s−2[(x− s + 2)PG(r,s)−Ks−1(x) − (s− 1)PG(r,s)−Ks
(x)]. (3)

Applying again Lemma 2.3 to PG(r,s)−Ks−1(x) and PG(r,s)−Ks
(x), we obtain

PG(r,s)(x) = (x + 1)s+r−4{(x− s + 2)[(x− r + 2)PG(x) − (r − 1)PG−u(x)]

− (s− 1)[(x− r + 2)PG−v(x) − (r − 1)PG−{u,v}(x)]}.

By symmetry

PG(r+1,s−1)(x) = (x + 1)s+r−4{(x− s + 3)[(x− r + 1)PG(x) − rPG−u(x)]

− (s− 2)[(x− r + 1)PG−v(x) − rPG−{u,v}(x)]}.

Hence

PG(r+1,s−1)(x) − PG(r,s)(x) = (x + 1)s+r−4{(s− r − 1)[PG(x) + PG−u(x)

+ PG−v(x) + PG−{u,v}(x)] + (x + 1)(PG−v(x)

− PG−u(x))}.
(4)

Therefore, if 1 ≤ r ≤ s − 2, by (4) and Lemma 2.1, G(r, s) ≺ G(r + 1, s − 1). �
A (q, b)-path-block in B(n, q) have blocks B1, . . . , Bb such that V (Bi) ∩V (Bi+1) = {vi}

for every 1 ≤ i ≤ b − 1 and V (Bi) ∩ V (Bj) = ∅ whenever 1 ≤ i < j ≤ n and |i − j| > 1. 
Let G be a graph and let v, w ∈ V (G) be two adjacent vertices. We use G[q, k, �] to mean 
the graph obtained by adding a pendant (q, �)-path-block at v and a pendant (q, k)-path-
block at w, where 1 ≤ � ≤ k, and G[q, r, 0] stands for the graph obtained from G by 
adding just a (q, r)-path block at w. By “pendant at v”, we mean identifying a noncut 
vertex from one of the two leaf blocks with a noncut vertex v ∈ V (B1) (see Fig. 4).
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Fig. 4. From left to right G[3, 3, 4] and G[3, 2, 5].

Proposition 3. Let G ∈ B(n, q) with at least one cut vertex. If � and k are two positive 
integers such that 1 ≤ � ≤ k and G[q, k, �] has at most three adjacent cut vertices, then 
G[q, k, �] ≺ G[q, k + 1, � − 1].

Proof. We mean by P q
� (resp. P q

k ) the (q, �)-path-block (resp. (q, k)-path-block) whose 
blocks are B1, . . . , B� (resp. B′

1, . . . , B
′
k), where v = v0, w = v′0, and v� and v′k stand for a 

fixed arbitrary noncut vertex of B� and B′
k, respectively. By Gl[q, k, �] (resp. Gr[q, k, �]) 

we indicate the graph G[q, k, �] −v� (resp. G[q, k, �] −v′k). When both vertices are removed, 
we use Glr[q, k, �]. By applying Lemma 2.3 to Gl[q, k, � −1] at v�−1 the following identity 
is derived.

PG[q,k,�](x) = (x + 1)q−1((x− q + 1)PG[q,k,�−1](x) − qPGl[q,k,�−1](x)). (5)

Analogously

PG[q,k,�](x) = (x + 1)q−1((x− q + 1)PG[q,k−1,�](x) − qPGr[q,k−1,�](x)). (6)

By combining (5) and (6) we obtain

PG[q,k+1,�−1](x) − PG[q,k,�](x) = q(x + 1)q−1(PGl[q,k,�−1](x) − PGr[q,k,�−1](x))). (7)

Again, by using properly Lemma 2.3, we derive the next identity

PGl[q,k,�](x) = (x + 1)2q−3{(x− q + 1)[(x− q + 2)PG[q,k−1,�−1](x)

− (q − 1)PGl[q,k−1,�−1](x)] + q((q − 1)PGlr [q,k−1,�−1](x)

− (x− q + 2)P r (x))}.
G [q,k−1,�−1]
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Fig. 5. From left to right (G − v)[3, 2, 0] and Gr[3, 2, 0].

Analogously,

PGr[q,k,�](x) = (x + 1)2q−3{(x− q + 1)[(x− q + 2)PG[q,k−1,�−1](x)

− (q − 1)PGr[q,k−1,�−1](x)] + q((q − 1)PGlr[q,k−1,�−1](x)

− (x− q + 2)PGl[q,k−1,�−1](x))}.

Hence

PGl[q,k,�](x) − PGr[q,k,�](x) = (x + 1)2(q−1)(PG�[q,k−1,�−1](x)

− PGr[q,k−1,�−1](x)).
(8)

By applying (8) repeatedly, we obtain for every 1 ≤ j ≤ �

PGl[q,k,�](x) − PGr[q,k,�](x) = (x + 1)2j(q−1)(PGl[q,k−j,�−j](x)

− PGr[q,k−j,�−j](x)).
(9)

Replacing in (7), we obtain that for every 0 ≤ j ≤ � − 1

PG[q,k+1,�−1](x) − PG[q,k,�](x) = q(x + 1)(2j+1)(q−1)(PGl[q,k−j,�−j−1](x)

− PGr[q,k−j,�−j−1](x)).
(10)

In particular, if j = � − 1

PG[q,k+1,�−1](x) − PG[q,k,�](x) = q(x + 1)(2�−1)(q−1)(P(G−v)[q,k−�+1,0](x)

− PGr[q,k−�+1,0](x)).
(11)

Thus, it suffices to prove that Gr[q, t, 0] ≺ (G − v)[q, t, 0] for all t ≥ 1 (see Fig. 5). First 
observe that, since G has at least one cut vertex, there exists a graph H1 ∈ B(n, q)
such that Gr[q, t, 0] is the coalescence between H1 and P q

t+1 − vt+1 at a noncut vertex 
x ∈ V (H1) and a noncut vertex v0 ∈ V (B1) of P q

t+1−vt+1 respectively. Analogously, (G −
v)[q, t, 0] is the coalescence between H1 and P q

t+1−v0 at a noncut vertex x ∈ V (H1) and a 
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noncut vertex y ∈ V (B1) \{v0} of P q
t+1−v0 respectively. From this observation combined 

with Lemma 2.5 and Proposition 2, we conclude that Gr[q, t, 0] ≺ (G − v)[q, t, 0]. �
4. Main result

Let G ∈ B(n, q) and let B be a block of G. We say that B is a special block of type 
one if B has at least two pendant path-blocks at v ∈ V (B) (see Fig. 2, the block whose 
vertex set is {v, x, y} is a special block of type one). We say that B is a special block 
of type two if B has a pendant path-block at v ∈ V (B) and a pendant path-block at 
w ∈ V (B) with v �= w (see Fig. 4, the block whose vertex set is {u, v, w} is a special 
block of type two). The following lemma, whose proof is omitted, will be used to prove 
our main result.

Lemma 4.1. If G ∈ B(n, q), then G either is a (q, b)-path-block, has a special block of type 
one, or has a special block of type two.

Now we are ready to put all pieces together to prove the main result of the article.

Proof of Theorem 1.2. The upper bound follows from Theorem 2.1. Assume that G ∈
B(n, q) and it is not a path-block. By Lemma 4.1, G has either a special block of type 
one or a special block of type two. Hence, by Propositions 1 and 3, there exists a graph 
transformation onto G, involving the corresponding pendant path-blocks, such that the 
resulting graph G′ satisfies ρ(G′) < ρ(G) and G′ has a special block less than G. There-
fore, continuing with this procedure as long as G′ is a path-block, we conclude that 

ρ 
(
P q

n−1
q

)
< ρ(G) for all G ∈ B(n, q). �

5. Lower bound for the spectral radius

Theorem 5.1. Let G ∈ B(n, q) and let n − 1 > q. Then,

ρ(G) ≥ q +
√
q

2

for every 2 ≤ q ≤ 4, and

ρ(G) ≥ q + 4 + (q − 1)
√

2
q + 3

√
2

,

for every q ≥ 5.

Proof. Assume now that q ≥ 2 and b ≥ 3. By Lemma 2.1, we know that ρ(P q
3 ) ≤

ρ(P q
b ) ≤ ρ(G) for every graph G ∈ B(n, q). By simple calculation, using Lemma 2.3, we 

obtain the characteristic polynomial of P q
3
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PP q
3
(x) = (x + 1)3q−4

(
(x− q)(x + 2) + 1

)
fq(x), (12)

where fq(x) := (x −q)
(
(x −q)(x +2) +1

)
−2q. Since fq(x) = −2q when (x −q)(x +2) +1 =

0, we have that ρ(P q
3 ) is the greatest root of fq(x). Furthermore, since fq(x) is an 

increasing function on (q, +∞) and fq(q) < 0, we have that ρ(P q
3 ) is the unique root of 

fq(x) on (q, +∞).
On one hand,

fq

(
q +

√
q

2

)
= q + 4

8
√
q + q(q − 6)

4 ≤ 0 and fq(q + 1) = 4 − q ≥ 0,

for every 2 ≤ q ≤ 4. Hence

ρ(G) ≥ q +
√
q

2 .

On the other hand,

fq(q + 1) = 4 − q ≤ 0 and fq(q +
√

2) = 4 + 3
√

2 ≥ 0,

for every q ≥ 5. Taking into account that f ′′
q (x) > 0 for every x ∈ (q, +∞) we conclude 

that

ρ(G) ≥ q + 4 + (q − 1)
√

2
q + 3

√
2

,

where lower bound is the root of the linear function passing through the points (q+1, 4 −q)
and (q +

√
2, 4 + 3

√
2). �

6. Discussions and further research

We have presented three graph transformations to deal with the minimum spectral 
radius of this class of block graphs, namely Propositions 1, 2, and 3, but the last one 
has a very strong hypothesis on graph G. We do not know if they can be weakened. 
Nevertheless, we have collected very strong computational evidence that drives us to the 
following conjecture.

Conjecture 1. If G ∈ B(n, q) \ {P q
b }, then G ≺ P q

b .

Consequently, if this statement were true, the following weaker conjecture would be 
also true.

Conjecture 2. If G ∈ B(n, q) \ {P q
b }, then ρ(P q

b ) < ρ(G).
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We believe that for proving Conjecture 1 new graph transformations need to be de-
veloped.

Another interesting graph class to study the problem of finding the maximum and 
minimum spectral radius, related to the one considered in this paper, is the class formed 
by those block graphs on n vertices having exactly b blocks not necessary all of them 
with the same size.
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