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1. Introduction

Let B(H ) denote the algebra of all bounded linear operators acting on a complex sep-
arable Hilbert space H . If X ∈ B(H ) is compact, we denote by {sj(X)} the sequence 
of singular values of X, i.e. the eigenvalues of |X| = (X∗X) 1

2 , in decreasing order and 
repeated according to multiplicity. For p > 0, let ‖X‖p = (

∑
j sj(X)p)1/p = (tr |X|p)1/p, 

where tr is the usual trace functional. This defines a norm (quasi-norm, resp.) for 
1 ≤ p < ∞ (0 < p < 1, resp.) on the set

Bp(H ) = {X ∈ B(H ) : ‖X‖p < ∞},

which is called the p-Schatten class of B(H ); cf. [5].
Clarkson’s inequalities for operators in Bp(H ) (see [13]) assert that for 0 < p ≤ 2

2p−1(‖A‖pp + ‖B‖pp) ≤ ‖A−B‖pp + ‖A + B‖pp ≤ 2(‖A‖pp + ‖B‖pp), (1.1)

and for 2 ≤ p < ∞

2(‖A‖pp + ‖B‖pp) ≤ ‖A−B‖pp + ‖A + B‖pp ≤ 2p−1(‖A‖pp + ‖B‖pp). (1.2)

For p = 2 both inequalities (1.1) and (1.2) reduce to the parallelogram law

‖A−B‖2
2 + ‖A + B‖2

2 = 2(‖A‖2
2 + ‖B‖2

2).

This equality is related to the characterization of inner product spaces due to Jordan 
and von Neumann [12] in the following sense: let E be a real normed linear space. Then 
E is an inner product space if and only if the parallelogram law

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

holds for every x, y ∈ E.
The equality

2(‖A‖pp + ‖B‖pp) = ‖A−B‖pp + ‖A + B‖pp

holds for p �= 2 if and only if A∗B = AB∗ = 0, or equivalently the ranges of A and B
are orthogonal.

On the other hand, Mc Carthy [13] obtained for 1 < p ≤ 2 the following inequality

‖A−B‖qp + ‖A + B‖qp ≤ 2(‖A‖pp + ‖B‖pp)q/p, (1.3)

where 1
p + 1

q = 1. For p ≥ 2, this inequality is reversed. Many mathematicians have 
obtained different generalizations of (1.1) and (1.3) to n-tuples of operators by employ-
ing various techniques such as convexity and concavity of certain functions, complex 
interpolation method, etc.; see [3,4,6,8].
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Recently, Audenaert and Kittaneh in [1] have presented a number of conjectures and 
open problems in the theory of matrix and operator inequalities. More precisely, in 
Section 8.1 entitled “Clarkson inequalities for several operators” the authors, motivated 
by the inequalities given by Corollary 2.2 in [6], gave the following conjecture as a new 
natural generalization of (1.3) to n-tuples of operators.

Audenaert–Kittaneh’s Conjecture. Let A1, · · · , An ∈ Bp(H ).

(1) For 2 ≤ p < ∞, 1
p + 1

q = 1 we have

n

⎛
⎝ n∑

j=1
‖Aj‖pp

⎞
⎠

q/p

≤

∥∥∥∥∥∥
n∑

j=1
Aj

∥∥∥∥∥∥
q

p

+
∑

1≤j<k≤n

‖Aj −Ak‖qp. (1.4)

(2) For 0 < p ≤ 2, 1
p + 1

q = 1 we have

∥∥∥∥∥∥
n∑

j=1
Aj

∥∥∥∥∥∥
q

p

+
∑

1≤j<k≤n

‖Aj −Ak‖qp ≤ n

⎛
⎝ n∑

j=1
‖Aj‖pp

⎞
⎠

q/p

. (1.5)

In this paper, we obtain operator inequalities for the p-Schatten class which are a 
refinement of the identities in [7]; see also [11]. In addition, we obtain an approach to 
the inequalities conjectured by Audenaert and Kittaneh for the p-Schatten class and in 
particular we prove that Audenaert–Kittaneh’s Conjecture holds at least for the Hilbert–
Schmidt norm.

2. Refinements of some p-Schatten inequalities

In this section we present inequalities that can be consider as generalizations of the 
Clarkson–McCarthy inequalities to multiple arguments, and in particular we work with 
operators that satisfies an orthogonality condition. More explicitly, we consider Ai, Bi ∈
Bp(H ) such that 

∑
i Ai and 

∑
i Bi are orthogonal.

We begin with some lemmas that we use along the paper. The proof of the first one 
is straightforward and we omit it.

Lemma 2.1. Let A1, · · · , An, B1, · · · , Bn ∈ B(H ). If 
∑n

i,j=1 A
∗
iBj = 0, then

n∑
i,j=1

|Ai ±Bj |2 =
n∑

i,j=1
|Ai|2 + |Bj |2 ±

n∑
i,j=1

A∗
iBj + B∗

jAi =
n∑

i,j=1
|Ai|2 + |Bj |2.

The second lemma is rather technical.

Lemma 2.2. If A1, · · · , An ∈ Bp(H ) for some p > 0 and A1, · · · , An are positive, then 
for 0 < p ≤ 1;
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np−1
n∑

i=1
‖Ai‖pp ≤

(
n∑

i=1
‖Ai‖p

)p

≤
∥∥∥∥∥

n∑
i=1

Ai

∥∥∥∥∥
p

p

≤
n∑

i=1
‖Ai‖pp (2.1)

and for 1 ≤ p < ∞ the inequalities are reversed.

Basically, inequalities (2.1) and its reverse inequality were proved in [13] and [2], 
respectively. They are a refinement of Lemma 2.1 in [7]. These refinements follow from the 
well-known fact that Ms(x) ≤ Ms′(x) for 0 < s < s′, where Ms(x) = ( 1

n

∑n
i=1 x

s
i )1/s

if x = (x1, · · · , xn) is an n-tuple of non-negative numbers. A commutative version of 
the previous lemma for scalars is the following: if x = (x1, · · · , xn) is an n-tuple of 
non-negative numbers, then

np−1
n∑

i=1
xp
i ≤

(
n∑

i=1
xi

)p

≤
n∑

i=1
xp
i (2.2)

for 0 < p ≤ 1, and

n∑
i=1

xp
i ≤

(
n∑

i=1
xi

)p

≤ np−1
n∑

i=1
xp
i (2.3)

for 1 ≤ p < ∞.

Theorem 2.3. Let A1, · · · , An, B1, · · · , Bn ∈ Bp(H ) such that 
∑n

i,j=1 A
∗
iBj = 0. Then 

for 0 < p ≤ 2, p ≤ λ and 0 < μ ≤ 2,

2
1
2− 1

μn1− 1
μ

(
n∑

i=1
‖Ai‖μp +

n∑
i=1

‖Bi‖μp

) 1
μ

≤ n
1
2

(
n∑

i=1
‖Ai‖2

p +
n∑

i=1
‖Bi‖2

p

) 1
2

≤ n2( 1
p− 1

λ )

⎛
⎝ n∑

i,j=1
‖Ai ±Bj‖λp

⎞
⎠

1
λ

.

For 2 ≤ p, 0 < λ ≤ p and 2 ≤ μ, the inequalities are reversed.

Proof. Let 0 < p ≤ 2, p ≤ λ and 0 < μ ≤ 2. It follows from Mp(x) ≤ Mλ(x) that

n2( 1
p− 1

λ )

⎛
⎝ n∑

i,j=1
‖Ai ±Bj‖λp

⎞
⎠

1
λ

= n
2
p

⎛
⎝ 1
n2

n∑
i,j=1

‖ |Ai ±Bj | ‖λp

⎞
⎠

1
λ

≥

⎛
⎝ n∑

i,j=1
‖ |Ai ±Bj | ‖pp

⎞
⎠

1
p

.
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Applying the well-known fact that ‖T‖2
p = ‖ |T |2 ‖p/2 for any T ∈ Bp(H ) with p > 0

and Lemmas 2.1 and 2.2, we get

⎛
⎝ n∑

i,j=1
‖ |Ai ±Bj | ‖pp

⎞
⎠

1
p

=

⎛
⎝ n∑

i,j=1
‖ |Ai ±Bj |2 ‖p/2p/2

⎞
⎠

1
p

≥

⎛
⎜⎝
∥∥∥∥∥∥

n∑
i,j=1

|Ai ±Bj |2
∥∥∥∥∥∥
p/2

p/2

⎞
⎟⎠

1
p

=

∥∥∥∥∥∥
n∑

i,j=1
|Ai ±Bj |2

∥∥∥∥∥∥
1/2

p/2

=

∥∥∥∥∥∥
n∑

i,j=1
|Ai|2 + |Bj |2

∥∥∥∥∥∥
1/2

p/2

= n
1
2

∥∥∥∥∥
n∑

i=1
|Ai|2 +

n∑
i=1

|Bi|2
∥∥∥∥∥

1/2

p/2

. (2.4)

In the following inequalities we use that if T1, . . . , Tn are positive operators in Bp(H )
then

∥∥∥∥∥
n∑

i=1
Ti

∥∥∥∥∥
p

≥
n∑

i=1
‖Ti‖p (2.5)

for 0 < p < 1. This result had been showed by Bhatia and Kittaneh in Lemma 1 and in 
formula (7) of [2]. Using again Lemma 2.2 and the concavity of the function f(x) = xα

on [0, +∞) for 0 < α ≤ 1, we obtain

n
1
2

∥∥∥∥∥
n∑

i=1
|Ai|2 +

n∑
i=1

|Bi|2
∥∥∥∥∥

1/2

p/2

= n
1
2

⎛
⎝
∥∥∥∥∥

n∑
i=1

|Ai|2 +
n∑

i=1
|Bi|2

∥∥∥∥∥
μ
2

p/2

⎞
⎠

1
μ

≥ n
1
2

⎛
⎝(

n∑
i=1

‖ |Ai|2‖p/2 +
n∑

i=1
‖ |Bi|2 ‖p/2

)μ
2
⎞
⎠

1
μ

≥ n
1
2

(
(2n)

μ
2 −1

(
n∑

i=1
‖ |Ai|2‖

μ
2
p/2 +

n∑
i=1

‖ |Bi|2 ‖
μ
2
p/2

)) 1
μ

= n
1
2 (2n)

1
2− 1

μ

(
n∑

i=1
‖ |Ai|2‖

μ
2
p/2 +

n∑
i=1

‖ |Bi|2 ‖
μ
2
p/2

) 1
μ

= 2
1
2− 1

μn1− 1
μ

(
n∑

i=1
‖Ai‖μp +

n∑
i=1

‖Bi‖μp

) 1
μ

. � (2.6)

Taking μ = λ = p in Theorem 2.3, we obtain the following inequalities which are 
refinement of several results obtained in [7].
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Corollary 2.4. Let A1, · · · , An, B1, · · · , Bn ∈ Bp(H ) such that 
∑n

i,j=1 A
∗
iBj = 0. Then 

for 0 < p ≤ 2

2
p
2−1np−1

(
n∑

i=1
‖Ai‖pp +

n∑
i=1

‖Bi‖pp

)
≤ n

p
2

(
n∑

i=1
‖Ai‖2

p +
n∑

i=1
‖Bi‖2

p

) p
2

≤
n∑

i,j=1
‖Ai ±Bj‖pp.

For 2 ≤ p < ∞ the inequality are reversed.

Corollary 2.5. Let A1, · · · , An ∈ Bp(H ) such that 
∑n

i=1 Ai = 0. Then for 0 < p ≤ 2,

2
p
2 np−1

n∑
i=1

‖Ai‖pp ≤ (2n)
p
2

(
n∑

i=1
‖Ai‖2

p

) p
2

≤
n∑

i,j=1
‖Ai ±Aj‖pp. (2.7)

For 2 ≤ p < ∞, the inequalities are reversed.

Proof. The hypothesis 
∑n

i=1 Ai = 0 implies that 
∑n

i,j=1 A
∗
iAj = 0. The statement is 

therefore a consequence of Corollary 2.4. �
Our second result is a natural generalization of Theorem 2.5 in [7].

Theorem 2.6. Let A1, · · · , An, B1, · · · , Bn ∈ Bp(H ) such that 
∑n

i,j=1 A
∗
iBj = 0. Then 

for 0 < p ≤ 2, p ≤ λ and 0 < μ ≤ 2,

n

⎛
⎝ 1
n2

n∑
i,j=1

‖Ai ±Bj‖μp

⎞
⎠

1
μ

≤ n
1
2+ 1

p− 1
λ

(
n∑

i=1

∥∥∥(|Ai|2 + |Bi|2
)1/2∥∥∥λ

p

) 1
λ

.

For 2 ≤ p, 0 < λ ≤ p and 2 ≤ μ, the inequality is reversed.

Proof. We suppose that 0 < p ≤ 2, p ≤ λ and 0 < μ ≤ 2. Then

n

⎛
⎝ 1
n2

n∑
i,j=1

‖Ai ±Bj‖μp

⎞
⎠

1
μ

= n

⎛
⎝ 1
n2

n∑
i,j=1

(‖Ai ±Bj‖2
p)μ/2

⎞
⎠

1
μ

= n

⎛
⎝ 1
n2

n∑
i,j=1

‖|Ai ±Bj |2‖μ/2p/2

⎞
⎠

1
μ

≤ n

⎛
⎜⎝ 1
n2n

2(1−μ/2)

⎛
⎝ n∑

i,j=1
‖|Ai ±Bj |2‖p/2

⎞
⎠

μ/2
⎞
⎟⎠

1
μ
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=

⎛
⎝ n∑

i,j=1
‖|Ai ±Bj |2‖p/2

⎞
⎠

1
2

≤

⎡
⎣n

(∑
i=1

‖(|Ai|2 + |Bi|2)
1
2 ‖pp

)2/p
⎤
⎦

1
2

=

⎡
⎣n

(∑
i=1

(‖(|Ai|2 + |Bi|2)
1
2 ‖λp)p/λ

)2/p
⎤
⎦

1
2

≤

⎡
⎢⎣n

⎛
⎝n1− p

λ

(∑
i=1

‖(|Ai|2 + |Bi|2)
1
2 ‖λp

)p/λ
⎞
⎠

2/p
⎤
⎥⎦

1
2

= n
1
2+ 1

p− 1
λ

(
n∑

i=1

∥∥∥(|Ai|2 + |Bi|2
)1/2∥∥∥λ

p

) 1
λ

. �

3. A conjecture of Audenaert and Kittaneh

In [10] an operator extension of Bohr’s inequality is obtained. In particular, it follows 
from Corollary 2.3 the following statement

Proposition 3.1. Let T1, · · · , Tn, S1, · · · , Sn ∈ B(H ). Then

∑
1≤j<k≤n

|Tj − Tk|2 +
∑

1≤j<k≤n

|Sj − Sk|2 =
n∑

j,k=1

|Tj − Sk|2 −

∣∣∣∣∣∣
n∑

j=1
Tj − Sj

∣∣∣∣∣∣
2

. (3.1)

Utilizing the previous proposition with Sk = 0 for k = 1, · · · , n, we get

n∑
j=1

|Tj |2 = 1
n

∣∣∣∣∣∣
n∑

j=1
Tj

∣∣∣∣∣∣
2

+ 1
n

∑
1≤j<k≤n

|Tj − Tk|2. (3.2)

Now we obtain an Audenaert–Kittaneh’s Conjecture version with a weaker prefactor 
nq/2 instead of n.

Theorem 3.2. Let A1, · · · , An ∈ Bp(H ). For 2 ≤ p < ∞; 1
p + 1

q = 1,

nq/2

⎛
⎝ n∑

j=1
‖Aj‖pp

⎞
⎠

q/p

≤

∥∥∥∥∥∥
n∑

j=1
Aj

∥∥∥∥∥∥
q

p

+
∑

1≤j<k≤n

‖Aj −Ak‖qp. (3.3)

For 1 < p ≤ 2; 1 + 1 = 1, the inequality is reversed.
p q
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Proof. We only prove the case when 2 ≤ p < ∞; and 1
p + 1

q = 1. The other case can be 
proved by a similar argument. It follows from Lemma 2.2 that

nq/2

⎛
⎝ n∑

j=1
‖Aj‖pp

⎞
⎠

q/p

=

⎛
⎝np/2

n∑
j=1

‖ |Aj |2‖p/2p/2

⎞
⎠

q/p

≤

⎛
⎜⎝np/2

∥∥∥∥∥∥
n∑

j=1
|Aj |2

∥∥∥∥∥∥
p/2

p/2

⎞
⎟⎠

q/p

=

∥∥∥∥∥∥n
n∑

j=1
|Aj |2

∥∥∥∥∥∥
q/2

p/2

=

∥∥∥∥∥∥∥
∣∣∣∣∣∣

n∑
j=1

Aj

∣∣∣∣∣∣
2

+
∑

1≤j<k≤n

|Aj −Ak|2

∥∥∥∥∥∥∥
q/2

p/2

≤

⎛
⎜⎝
∥∥∥∥∥∥∥
∣∣∣∣∣∣

n∑
j=1

Aj

∣∣∣∣∣∣
2
∥∥∥∥∥∥∥
p/2

+
∑

1≤j<k≤n

∥∥∥ |Aj −Ak|2
∥∥∥
p/2

⎞
⎟⎠

q/2

≤

∥∥∥∥∥∥∥
∣∣∣∣∣∣

n∑
j=1

Aj

∣∣∣∣∣∣
2
∥∥∥∥∥∥∥
q/2

p/2

+
∑

1≤j<k≤n

∥∥∥ |Aj −Ak|2
∥∥∥q/2
p/2

=

∥∥∥∥∥∥
n∑

j=1
Aj

∥∥∥∥∥∥
q

p

+
∑

1≤j<k≤n

‖Aj −Ak‖qp,

which yields the desired inequality. �
Remark 3.3. Note that if p = q = 2 then by (3.3) and its reverse inequality, we get

n

⎛
⎝ n∑

j=1
‖Aj‖2

2

⎞
⎠ =

∥∥∥∥∥∥
n∑

j=1
Aj

∥∥∥∥∥∥
2

2

+
∑

1≤j<k≤n

‖Aj −Ak‖2
2, (3.4)

(we note that this relation is a simple consequence of (3.2)) and in particular if ∑n
j=1 Aj = 0, we have

n

⎛
⎝ n∑

j=1
‖Aj‖2

2

⎞
⎠ =

∑
1≤j<k≤n

‖Aj −Ak‖2
2. (3.5)

Therefore

2n

⎛
⎝ n∑

j=1
‖Aj‖2

2

⎞
⎠ =

n∑
‖Aj −Ak‖2

2. (3.6)

j,k=1
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This equality is related to a result due to Lorch [9] about the characterization of in-
ner product spaces. He proved that a normed space X is an inner product space if 
and only if for a fixed integer n ≥ 3 and x1, · · · , xn ∈ X with 

∑n
j=1 xj = 0 we have 

2n 
(∑n

j=1 ‖xj‖2
)

=
∑n

j,k=1 ‖xj − xk‖2.
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