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1. Introduction

A simplicial complex K of dimension d is vertex-minimal if it is a d-simplex or it has d + 2 vertices. It is not hard to
see that a vertex-minimal homogeneous (or pure) complex of dimension d is either an elementary starring (t,a)A? of a
d-simplex or the boundary dA%t! of a (d+1)-simplex. On the other hand, a general non-pure complex with minimum num-
ber of vertices has no precise characterization. However, since vertex-minimal pure complexes are either balls or spheres, it
is natural to ask whether there is a non-pure analogue to these polyhedra within the theory of non-homogeneous balls and
spheres. In [5] G. Minian and the author introduced NH-manifolds, a generalization of the concept of manifold to the non-
pure setting (somewhat similar to Bjorner and Wachs’s extension of the shellability definition to non-pure complexes [3]).
In this theory, NH-balls and NH-spheres are the non-pure versions of combinatorial balls and spheres.

The purpose of this article is to study minimal NH-balls and NH-spheres, which are respectively the non-pure coun-
terpart of vertex-minimal balls and spheres. Note that dA%t! is not only the d-sphere with minimum number of vertices
but also the one with minimum number of facets. For non-pure spheres, this last property is strictly stronger than vertex-
minimality and it is convenient to define minimal NH-spheres as the ones with minimum number of facets. With this
definition, minimal NH-spheres with the homotopy type of a k-sphere are precisely the non-pure spheres whose nerve is
dAKt1 3 property that also characterizes the boundary of simplices. On the other hand, an NH-ball B is minimal if it is
part of a decomposition of a minimal NH-sphere, i.e. if there exists a combinatorial ball L with BN L = 0L such that B+ L
is @ minimal NH-sphere. This definition is consistent with the notion of vertex-minimal simplicial ball (see Lemma 4.1
below).

Surprisingly, minimal NH-balls and NH-spheres can be characterized by a property involving Alexander duals. Denote
by K* the Alexander dual of a complex K relative to the vertices of K. Set inductively K*©@ = K and K*™ = (K*Mm—Dy*,
Thus, in each step K*® is computed relatively to its own vertices, i.e. as a subcomplex of the boundary of the simplex of
minimum dimension containing it. We call (K*(’”))mel\r0 the sequence of iterated Alexander duals of K. The main result of the
article is the following.
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Theorem 1.1. Let K be a finite simplicial complex.

(i) There is an m e Ny such that K*(™ is the boundary of a simplex if and only if K is a minimal N H-sphere.
(i) There is an m € Ny such that K*(™ is a simplex if and only if K is a minimal N H-ball.

In any case, the number of iterations needed to reach the simplex or the boundary of the simplex is bounded above by the number of
vertices of K.

Note that K* = A? if and only if K is a vertex-minimal d-ball which is not a simplex, so (ii) describes precisely all
complexes converging to vertex-minimal balls. Theorem 1.1 characterizes the classes of AY and dA? in the equivalence
relation generated by K ~ K*.

2. Preliminaries
2.1. Notation and definitions

All simplicial complexes that we deal with are assumed to be finite. Given a set of vertices V, |V| will denote its
cardinality and A(V) the simplex spanned by its vertices. A% := A({0, ...,d}) will denote a generic d-simplex and 9A¢ its
boundary. The set of vertices of a complex K will be denoted Vi and we set Ag := A(Vk). A facet of a complex K is a
simplex which is not a proper face of any other simplex of K. We denote by f(K) the number of facets in K. A ridge is a
maximal proper face of a facet. A complex is pure or homogeneous if all its facets have the same dimension.

We denote by o * 7 the join of the faces 0,7t € K (if 0 N7 =¢) and by K * L the join of the complexes K and L
(if Vg NV =@). By convention, if ¢ is the empty simplex and {#J} the complex containing only the empty simplex then
K*{#) =K and K %@ = ¢. Note that dA? = {(#}}. For o € K, Ik(c,K)={t € K: tNo =0, T+0 €K} denotes its link and
st(o, K) =0 xlk(o, K) its star. The union of two complexes K, L will be denoted by K + L. A subcomplex L C K is said to
be top generated if every facet of L is also a facet of K.

The notation K N\ L will mean that K (simplicially) collapses to L. A complex is collapsible if it collapses to a single
vertex and PL-collapsible if it has a subdivision which is collapsible. The simplicial nerve N'(K) of K is the complex whose
vertices are the facets of K and whose simplices are the finite subsets of facets of K with non-empty intersection.

Two complexes are PL-isomorphic if they have a common subdivision. A combinatorial d-ball is a complex PL-isomorphic
to AY. A combinatorial d-sphere is a complex PL-isomorphic to dA9*1. By convention, 9 A® = {#} is a sphere of dimension
—1. A combinatorial d-manifold is a complex M such that lk(v, M) is a combinatorial (d — 1)-ball or (d — 1)-sphere for every
v e Vy. A(d—1)-simplex in a combinatorial d-manifold M is a face of at most two d-simplices of M and the boundary
oM is the complex generated by the (d — 1)-simplices which are faces of exactly one d-simplex. Combinatorial d-balls and
d-spheres are combinatorial d-manifolds. The boundary of a combinatorial d-ball is a combinatorial (d — 1)-sphere.

2.2. Non-homogeneous balls and spheres

In order to make the presentation self-contained, we recall first the definition and some basic properties of non-
homogeneous balls and spheres. For a comprehensive exposition of the subject, the reader is referred to [5] (see also
[6, §2.2] for a brief summary).

NH-balls and NH-spheres are special types of NH-manifolds, which are the non-pure versions of combinatorial man-
ifolds. NH-manifolds have a local structure consisting of regularly-assembled pieces of Euclidean spaces of different di-
mensions. In Fig. 1 we show some examples of NH-manifolds and their underlying spaces. NH-manifolds, NH-balls and
NH-spheres are defined as follows.

Definition. An NH-manifold (resp. NH-ball, NH-sphere) of dimension O is a combinatorial manifold (resp. ball, sphere) of
dimension 0. An NH-sphere of dimension —1 is, by convention, the complex {#}. For d > 1, we define by induction:

e An NH-manifold of dimension d is a complex M of dimension d such that Ik(v, M) is an NH-ball or an NH-sphere
(possibly of dimension —1) for all v € V.

e An NH-ball of dimension d is a PL-collapsible NH-manifold of dimension d.

e An NH-sphere of dimension d and homotopy dimension k is an NH-manifold S of dimension d such that there exist a
top generated NH-ball B of dimension d and a top generated combinatorial k-ball L such that B4+L=S and BNL =9L.
We say that S = B + L is a decomposition of S and write dimy(S) for the homotopy dimension of S.

The definitions of NH-ball and NH-sphere are motivated by the classical theorems of Whitehead [9] and Newman [7]
(see e.g. [8, Corollaries 3.28 and 3.13]). Just like for classical combinatorial manifolds, it can be seen that the class
of NH-manifolds (resp. NH-balls, NH-spheres) is closed under subdivision and that the link of every simplex in an
NH-manifold is an NH-ball or an NH-sphere. Also, the homogeneous NH-manifolds (resp. NH-balls, NH-spheres) are
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Fig. 1. Examples of NH-manifolds (dark gray areas are 3-dimensional). (a), (d) and (e) are NH-spheres of dimension 1, 3 and 2 and homotopy dimension
0, 2 and 1 respectively. (b) is an NH-ball of dimension 2 and (c), (f) are NH-balls of dimension 3. (g) is an NH-manifold which is neither an NH-ball nor
an NH-sphere. The sequence (a)-(d) evidences how NH-manifolds are inductively defined.

precisely the combinatorial manifolds (resp. balls, spheres). Globally, a connected NH-manifold M is (non-pure) strongly
connected: given two facets o, T € M there is a sequence of facets o =ny,...,n: =t such that n; N n;41 is a ridge of n; or
ni+1 for every 1 <i <t —1 (see [5 Lemma 3.15]). In particular, NH-balls and NH-spheres of homotopy dimension greater
that O are strongly connected.

Unlike for classical spheres, non-pure NH-spheres do have boundary simplices; that is, simplices whose links are
NH-balls. However, for any decomposition S =B + L of an NH-sphere and any o € BN L, lk(c,S) is an NH-sphere with
decomposition lk(o, S) =lk(o, B) +lk(o, L) (see [5, Lemma 4.8]). In particular, if o € BN L then lk(o, B) is an NH-ball.

Remark 2.1. Note that the “combinatorial” adjective may be safely removed from the previous remarks since a triangulated
manifold all of whose simplices’ links are homeomorphic to spheres or balls is a combinatorial manifold (see the proof of
[5, Theorem 3.6]). In particular, pure NH-balls are necessarily combinatorial balls since collapsible non-balls cannot occur
in the combinatorial setting.

2.3. The Alexander dual

For a finite simplicial complex K and a ground set of vertices V 2 Vi, the Alexander dual of K (relative to V) is the
complex

K ={c CV|V\o ¢K}.

The main importance of K*V lies in the combinatorial formulation of Alexander duality: H;(K*V) ~ H""=3(K). Here n = |V|
and the homology and cohomology groups are reduced (see e.g. [1,2]). In what follows, we shall write K* := K*Vk and
KT :=K* if T =V \ V. With this convention, K¥ = K* if T = . Note that (A%)* =@ and (0A%+")* = (@}.

The relationship between Alexander duals relative to different ground sets of vertices is given by the following formula
(see [6, Lemma 3.2]):

K™ =971 * Ax + T K*. (%)
Here K* is viewed as a subcomplex of Ag. It is easy to see from the definition that (K*)V¥\Vk* = K and that (K7)* = K if
K # AY (see [6, Lemma 3.2]). The following result characterizes the Alexander dual of vertex-minimal complexes.

Lemma 2.2 ([6, Lemma 3.6]). If K = A9 + u xIk(u, K) with u ¢ AY, then K* = lk(u, K)* where T = Vi \ Vstw,K)-

It can be shown that K* is an NH-ball (resp. NH-sphere) if and only if K* is an NH-ball (resp. NH-sphere). This
actually follows from the next result involving a slightly more general form of formula (), which we include here for future
reference.

Lemma 2.3 ([6, Lemma 5.1]). If Vx C V and n # @, then L := dn x A(V) + n * K is an NH-ball (resp. NH-sphere) if and only if K is
an NH-ball (resp. NH-sphere).

3. Minimal N H-spheres

In this section we introduce the non-pure version of A9 and prove part (i) of Theorem 1.1. Recall that f(K) denotes the
number of facets of K. We shall see that for a non-homogeneous sphere S, requesting minimality of f(S) is strictly stronger
than requesting that of V. This is the reason why vertex-minimal NH-spheres are not necessarily minimal in our sense.
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To introduce minimal NH-spheres we note first that any complex K with the homotopy type of a k-sphere has at least
k + 2 facets. This follows from the fact that the simplicial nerve N (K) is homotopy equivalent to K.

Definition. An NH-sphere S is said to be minimal if f(S) = dimj(S) + 2.
Note that, equivalently, an NH-sphere S of homotopy dimension k is minimal if and only if A'(S) = d A1,

Remark 3.1. Suppose S = B + L is a decomposition of a minimal NH-sphere of homotopy dimension k and let v € V.
Then lk(v, S) is an NH-sphere of homotopy dimension dimp(lk(v,S)) =k — 1 and lk(v, S) = lk(v, B) + lk(v, L) is a valid
decomposition (see §2.2). In particular, f(lk(v, S)) > k + 1. Also, f(lk(v, S)) <k + 3 since f(S) <k + 3 and f(k(v, S)) #k+ 2
since otherwise S is a cone. Therefore, f(lk(v, S)) =k + 1 = dimy(lk(v, S)) + 2, which shows that lk(v, S) is also a minimal
NH-sphere.

We next prove that minimal NH-spheres are vertex-minimal.
Proposition 3.2. If S is a d-dimensional minimal N H-sphere then |Vs| =d + 2.

Proof. Let S = B + L be decomposition of S and set k = dimy(S). We shall prove that |Vs| <d + 2 by induction on k. The
case k =0 is straightforward, so assume k > 1. Let n € B be a facet of minimal dimension and let w denote the intersection
of all facets of S different from 7. Note that w # ¢ since NV'(S) = dAK*! and let u € @ be a vertex. Since n ¢ L then w € L
and hence u € L. By Remark 3.1, Ik(u, S) is a minimal NH-sphere of dimension d’ <d — 1 and homotopy dimension k — 1.
By inductive hypothesis, |Viku. s)| <d' +2 <d + 1. Therefore, st(u, S) is a top generated subcomplex of S with k + 1 facets
and at most d 4 2 vertices. By construction, S = st(u, S) + . We shall show that V; C Vg ,s). Since B = st(u, B) + 7, by
strong connectivity there is a ridge o € B in st(u, B) Nn (see §2.2). By the minimality of  we must have n = w x o for
some vertex w. Now, o € st(u, B) N\ n C st(u, S) Nn; but st(u,S) N n # o since, otherwise, S =st(u, S) +n \ st(u, S) \\ u,
contradicting the fact that S has the homotopy type of a sphere. We conclude that w € st(u, S) since every face of n not
contained in o contains w. Thus, |Vs| = |Vg@,s) U Vyl = |Vsu,s)l <d+2. O

This last proposition shows that, in the non-pure setting, requesting the minimality of f(S) is strictly more restrictive
than requesting that of |Vs|. For example, a vertex-minimal NH-sphere can be constructed from any NH-sphere S and a
vertex u ¢ Vs by the formula S:= Ags+u % S. It is easy to see that if S is not minimal, neither is S.

Remark 3.3. By Proposition 3.2, a d-dimensional minimal NH-sphere S may be written S = A? + u x lk(u, S) for some
u¢ A?, Note that for any decomposition S = B + L, the vertex u must lie in L (since this last complex is top generated). In
particular, lk(u, S) is a minimal NH-sphere by Remark 3.1.

As we mentioned above, the Alexander duals play a key role in characterizing minimal NH-spheres. We now turn to
prove Theorem 1.1 (i). We derive first the following corollary of Proposition 3.2.

Corollary 3.4. If S is a minimal N H-sphere then |Vs«| < |Vs| and dim(S*) < dim(S).

Proof. Vs+ C Vs follows from Proposition 3.2 since if S = A9 + u  Ik(u, S) then u ¢ S*. In particular, this implies that
dim(S*) # dim(S) since S* is not a simplex by Alexander duality. O

Theorem 3.5. Let K be a finite simplicial complex and let T be a simplex (possibly empty) disjoint from K. Then, K is a minimal
NH-sphere if and only if K™ is a minimal N H-sphere. That is, the class of minimal N H-spheres is closed under taking Alexander dual.

Proof. Assume first that K is a minimal NH-sphere and set d = dim(K). We proceed by induction on d. By Proposition 3.2,
we can write K = A9 +uxlk(u, K) for some vertex u ¢ A If T = ¢ then, by Lemma 2.2, K* = lk(u, K)? for 0=V \ Vs, K)-
By Remark 3.3, lk(u, K) is a minimal NH-sphere. Therefore, K* = Ik(u, K)? is a minimal NH-sphere by inductive hypothesis.
If T #£0, K" =01 * Ag + 7 % K* by formula (*). In particular, K* is an NH-sphere by Lemma 2.3 and the case 7 = . Now,
by Alexander duality,

dimp(K?) = |Vg U V| —dimp(K) — 3 = |Vg| + |V¢| — dimp(K) — 3 = dimp (K*) + |V¢].
On the other hand,
f(K) =101 * Ag + T % K*) =f(31) + f{(K*) = |V¢| + dimp(K*) + 2,

where the last equality follows from the case T = @. This shows that K* is minimal.
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Assume now that K7 is a minimal NH-sphere. If T # # then K = (K¥)* and if T = ¢ then K = (K*)V¥\Vk* (see §2.3). In
any case, the result follows immediately from the previous implication. O

Proof of Theorem 1.1 (i). Suppose first that K is a minimal NH-sphere. By Theorem 3.5, every non-empty complex in
the sequence {K*M™},cy, is a minimal NH-sphere. By Corollary 3.4, |V xmin| < |Vsm| for all m such that K*™ #£ (@},
Therefore, K*M0) = {¢j} for some mg < |V| and hence K*™M0~D =3Ad for some d > 1.

Assume now that K*™ = jAd for some m € Ng and d > 1. We proceed by induction on m. The case m = 0 corresponds
to the trivial case K = dA4. For m > 1, the result follows immediately from Theorem 3.5 and the inductive hypothesis. O

4. Minimal N H-balls

We now develop the notion of minimal NH-ball. The definition in this case is a little less straightforward than in the case
of spheres because there is no piecewise-linear-equivalence argument in the construction of non-pure balls. To motivate the
definition of minimal N H-ball, recall that for a non-empty simplex T € K and a vertex a ¢ K, the elementary starring (t,a) of
K is the operation which transforms K in (t,a)K by removing t *xlk(t, K) = st(t, K) and replacing it with a a1 *lk(t, K).
Note that when dim(t) =0 then (t,a)K is isomorphic to K.

Lemma 4.1. Let B be a combinatorial d-ball. The following statements are equivalent.

(1) |Vg| <d+ 2 (ie. Bis vertex-minimal).

(2) B is an elementary starring of AC.

(3) Bcaadt!,

(4) There is a combinatorial d-ball L such that B+ L =08A%" and BN L =4L.

Proof. We first prove that (1) implies (2) by induction on d. Since A? is trivially a starring of any of its vertices, we may
assume |Vg| =d + 2 and write B = A? + u xlk(u, B) for some vertex u ¢ A, Since Ik(u, B) is necessarily a vertex-minimal
(d — 1)-combinatorial ball then Ik(u, B) = (z,a)A%~! by inductive hypothesis. It follows from an easy computation that B is
isomorphic to (u* T, a)Af.

We next prove that (2) implies (4). We have

B=(t,0)A=ax 3t xlk(t, AY) = ax a7 % ATIMO =T — 7 4 Ad=diM@®),
Letting L := 7 % 9A?~4m® we get B+ L =dA*! and
BNL=adt 4+ dAd=dm® = j(g 4 gad=dim®y — 51
Finally, (4) trivially implies (3) and (1) trivially follows from (3). O

Definition. An NH-ball B is said to be minimal if there exists a minimal NH-sphere S that admits a decomposition S =
B+ L.

Note that if B is a minimal NH-ball and S =B + L is a decomposition of a minimal NH-sphere then, by Remark 3.1,
Ik(v, B) is a minimal NH-ball for every v € BNL (see §2.2). Note also that the intersection of all the facets of B is non-empty
since ' (B) C N (S) = dAKt1, Therefore, AV'(B) is a simplex. The converse, however, is easily seen to be false.

The proof of Theorem 1.1 (ii) will follow the same lines as its version for NH-spheres.

Proposition 4.2. If B is a d-dimensional minimal NH-ball then |Vg| <d + 2.

Proof. This follows immediately from Proposition 3.2 since dim(B) = dim(S) for any decomposition S = B + L of an
NH-sphere. O

Corollary 4.3. If B is a minimal NH-ball then |Vg«| < |Vg| and dim(B*) < dim(B).

Proof. We may assume B # A%, Vg« C Vg by the same reasoning made in the proof of Corollary 3.4. Also, if dim(B) =
dim(B*) then B* = AY. By formula (%), B = (B*)? = 0p * A? where p = Vg \ Vp«, which is a contradiction since |Vg| =
d+2. O

Remark 4.4. The same construction that we made for minimal NH-spheres shows that vertex-minimal N H-balls need not be
minimal. Also, similarly to the case of non-pure spheres, if B = A9 +u«lk(u, B) is a minimal NH-ball which is not a simplex
then for any decomposition S = B+ L of a minimal NH-sphere we have u € L. In particular, since lk(u, S) = lk(u, B) +1k(u, L)
is a valid decomposition of a minimal NH-sphere, then lk(u, B) is a minimal NH-ball (see Remark 3.3).
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Theorem 4.5. Let K be a finite simplicial complex and let T be a simplex (possibly empty) disjoint from K. Then, K is a minimal
NH-ball if and only if K* is a minimal N H-ball. That is, the class of minimal N H-balls is closed under taking Alexander dual.

Proof. Assume first that K is a minimal NH-ball and proceed by induction on d = dim(K). The case t = ¢ follows the same
reasoning as the proof of Theorem 3.5 using the previous remarks. Suppose then 7 # (. Since by the previous case K* is a
minimal NH-ball, there exists a decomposition S = K* + L of a minimal NH-sphere. By Proposition 3.2 and Proposition 4.2,
either K* is a simplex (and Vg \ Vgx = {w} is a single vertex) or Vg = Vi« C V. Let S := K" 4 T * L, where we identify
the vertex w with any vertex in Vi \ Vi« if K* is a simplex. We claim that S = K™ 4 7 = L is a valid decomposition of a
minimal NH-sphere. On one hand, formula () and Lemma 2.3 imply that K% is an NH-ball and that
S=0T* Ak +T*K*+ 1L =0T %Ak +T*S
is an NH-sphere. Also,
K'N(txD)=@r*xAgx+1xK*)N(T*L)
=3t *xL+Tx(K*NL)
=0T xL+T*0L
=9(t *L).
This shows that S = K7 + 7 L is valid decomposition of an NH-sphere. On the other hand,
f(S) =1(07) +£(S) = dim(t) 4+ 1 + dim(L) + 2 = dimy(S) + 2,

which proves that S is minimal. This settles the implication.
The other implication is analogous to the corresponding part of the proof of Theorem 3.5. O

Proof of Theorem 1.1 (ii). It follows the same reasoning as the proof of Theorem 1.1 (i) (replacing {#} with ¢). O

If K* = A? then, letting T = Vi \ V,a # 4, we have K = (K*)T = 3t * A% = (7, v)AHdm® This shows that Theo-
rem 1.1 (ii) characterizes all complexes which converge to vertex-minimal balls.

5. Further properties of minimal N H-balls and N H-spheres

In this final section we briefly discuss some characteristic properties of minimal NH-balls and NH-spheres.
Proposition 5.1. In a minimal NH-ball or NH-sphere, the link of every simplex is a minimal NH-ball or N H-sphere.

Proof. Let K be a minimal NH-ball or NH-sphere of dimension d and let o € K. We may assume K # AY. Since for a
non-trivial decomposition o = w * n we have lk(o, S) = lk(w, lk(n, S)), by an inductive argument it suffices to prove the
case 0 = v € Vi. We proceed by induction on d. We may assume d > 1. Write K = A4y *lk(u, K) where, as shown before,
Ik(u, K) is either a minimal NH-ball or a minimal NH-sphere. Note that this in particular settles the case v = u. Suppose
then v #u. If v ¢ Ik(u, K) then Ik(v, K) = A4~1. Otherwise, lk(v, K) = AT oy k(v Tk(u, K)). By inductive hypothesis,
Ik(v,lk(u, K)) is a minimal NH-ball or NH-sphere. By Lemma 2.2,

Ik(v, K)* =1lk(v, lk(u, K))",

and the result follows from Theorem 3.5 and Theorem 4.5. O

For any vertex v € K, the deletion K — v :={0 € K|v ¢ o} is again a minimal NH-ball or NH-sphere. This follows from
Proposition 5.1, Theorem 3.5, Theorem 4.5 and the fact that lk(v, K*) = (K — v)* for any v € Vg (see [6, Lemma 3.7 (1)]).
We can also show that minimal NH-balls are (non-pure) vertex-decomposable as defined by Bjérner and Wachs [4]. Recall
that a complex K is vertex-decomposable if

(1) K is a simplex or K = {#}}, or

(2) there exists a vertex v € K (called shedding vertex) such that
(@) K —v and lk(v, K) are vertex-decomposable and
(b) no facet of lk(v, K) is a facet of K — v.

Thus, if B = A%+ u xlk(u, B) is a minimal NH-ball which is not a simplex then u is a shedding vertex by Remark 4.4 and
an inductive argument on dim(B). In particular, minimal NH-balls are collapsible (see [4, Theorem 11.3]).

We next make use of Theorem 3.5 and Theorem 4.5 to compute (up to isomorphism) the number of minimal NH-spheres
and NH-balls in each dimension.
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Proposition 5.2. Let 0 <k <d.

(1) There are exactly (z) minimal N H-spheres of dimension d and homotopy dimension k. In particular, there are exactly 2¢ minimal
N H-spheres of dimension d.
(2) There are exactly 2¢ minimal N H-balls of dimension d.

Proof. We first prove (1). An NH-sphere with d =k is homogeneous by |6, Proposition 2.7], in which case the result is
obvious. Assume then 0 <k <d — 1 and proceed by induction on d. Let Sy denote the set of minimal NH-spheres of
dimension d and homotopy dimension k. If S € Sy it follows from Theorem 3.5, Corollary 3.4 and Alexander duality that
S* is a minimal NH-sphere with dim(5*) <d and dimp(S*) =d — k — 1. Therefore, there is a well defined application

d—1

f
Sae— |J  Sid-k
i=d—k—1

sending S to S*. We claim that f is a bijection. To prove injectivity, suppose Si,S» € Sy are such that S = S3. Let
pi=Vs; \ Vs (i=1,2). Since |Vs,| =d+ 2 =|Vs,| then dim(p1) = dim(p2) and, hence, S1 = (§])"' = (5;)”> = S3. To
prove surjectivity, let S € Sjd—k—1 Withd —k —1<j<d-1. Taking 7 = A4=i=1 we have ST e Sk and f(ST) =S (see
§2.3). Finally, using the inductive hypothesis,

d—1 d—1

[Sarl=" Y ISidk1l= D] (d_/i—1):<i>'

i=d—k—1 i=d—k—1

For (2), let By denote the set of minimal NH-balls of dimension d and proceed again by induction on d. The very same
reasoning as above gives a well defined bijection

d—1
f
Ba\ {aY) = | B
i=0
Therefore, using the inductive hypothesis,

d—1 d—1
Ba\ (A=) 1Bil=) 2'=2'-1. O
i=0

i=0

Finally, we give a direct combinatorial description of minimal NH-balls and NH-spheres. This description (and its proof)
was suggested by an anonymous referee. We are very grateful to him/her for this contribution.

Let V ={vq,...,v:}#@ and W be disjoint sets of vertices. Given a collection H = {H1, ..., H¢} of subsets of W, we let
K(V,W,H)c A(VUW) be the simplicial complex whose facets are the simplices n; := (V \ {v;}) UH; for 1 <i <t. Note
that

Vuw t>2
Vikw,wm) = H, t=1.

Proposition 5.3. Let K be a simplicial complex. Then

(1) K is a minimal NH-sphere of dimension d and homotopy dimension k if and only if K is isomorphic to K(V, W, H) for ver-
tex sets V. = {v1, ..., Vgpa} and W = {wy, ..., wg_y} and a collection H = {H1, ..., Hyy2} satisfying = Hy C Hy C --- C
Hga=W.

(2) K is a minimal N H-ball of dimension d if and only if K is isomorphic to K(V, W, H) for vertexsets V = {vq,...,v¢} t <d+1)
and W = {w1, ..., Wwgqa—¢} and a collection H = {H1, ..., H;} satisfying®#H1 CH, C---CH = W.

Proof. We deal with (1) first. Let K be a minimal NH-sphere of dimension d and homotopy dimension k and let
M., ..., ka2 be the facets of K. Since N'(K) = Ak then, for all 1 <i <k+ 2, there is a vertex v; € ﬂ#i n; (and then
vi¢ni). Set V:={v1,...,viq2} and let W := Vi \ V. We further set H; := V;, N W. By relabeling the n;’s we may assume
that |[Hq| < |Hz| <--- <|Hgy2|. Note that n; = (V \{v;}) UH; and that |W| =d—k by Proposition 3.2. It remains to show that
##=Hq1 S HyC--- C Hgyp =W.On one hand, Hi =¥ since K has k-dimensional facets and Hy, = W since dim(K) =d. On
the other hand, if H; ¢ H; for some i < j, then, given that [H;| < |H|]|, there are vertices w; € H; \ Hj and wj € H; \ H;. Let
o =V \{vj, vj}. Note that since the only facets of K containing o are n; and n; then lk(p, K) = (vj * A(H;)) + (vi * A(Hj)).
Consider L :=Ik(H; N Hj,lk(p, K)) (in particular, L =Ilk(p, K) if H; N H; =#). Now, L is an NH-ball or NH-sphere, since
p €K, and it is disconnected, since it contains the edges A({w;,v;}) and A({w}, v;}) in different components. The only
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possibility is that L is an NH-sphere of homotopy dimension O (see §2.2), but this cannot happen since there are two
components of dimension at least one.

Assume now that K = K(V, W, H) with the hypotheses as in the statement of (1). We will prove that K is a minimal
NH-sphere by induction on d. The case d =0 is trivial to check. Suppose d > 1. Let n; = (V \{vihD UH; (1 <i<k+2)
be the facets of K and note that K = ng42 + Vi42 * lk(viyo, K) since dim(ny42) =d and |Vk|=d + 2. By Lemma 2.2 and
Theorem 3.5 it suffices to prove that lk(viyo, K) is a minimal NH-sphere. But one can easily check that lk(viio, K) is
isomorphic to K(V, W, #H) where V =V \ {vg42}, W = Hiq and H = {H4, ..., Hg41). The result then follows from the
inductive hypothesis.

We next settle (2). Let K be a minimal NH-ball of dimension d. Then, there is a minimal NH-sphere S that admits
a decomposition S = K + L. By (1) we know that S = K(V, W, H) for some V = {vq,..., Vi), W ={wq,..., wq_} and
H={H1,..., Hpy2} satisfying @=H1 S Hy C--- C Hipa = W. Let 1i, ..., 15, be the facets of L, where n; = (V \ {vi}) U H;
as above. Since by dimensional reasons Hj, = --- = H;, = we can relabel the v;’s and Hj’s so ij = j for 1 < j <q. Then,
Vi=V\{vi,...,vg}, W= WU{vy,...,vq} and H := {Hg41U{v1, ..., Vg}, ..., Hey2a U{V1, ..., vq}} satisfy the requirements
of the statement.

The converse is similar to the case of minimal NH-spheres. O
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