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1. Introduction

Particle current rectification is an important mechanism that 
controls transport at small scales. It is based on the breaking 
of the intrinsic randomness of Brownian fluctuations thus 
facilitating the motion of the particles in a preferred direction  
[1, 2]. The mechanism takes place when a time-space sym-
metry is broken giving rise to the failure of detailed balance 
conditions and consequently to the appearance of a net current. 
This is what happens when particles move under the influence 
of an asymmetric (ratchet) potential of energetic or entropic 
nature or under the action of time-periodic forces [3–5].

Current rectification has also been predicted in transport 
through confined structures having irregular boundaries  
[5–15]. In this situation, the entropy (a function of the number 
of states accessible to the particles) is not a constant along the 
transport direction and entropic forces related to the entropy 

gradient act on the particles. Transport in the presence of 
entropic barriers, or entropic transport, plays an important 
role at the mesoscale and has been subject of many studies 
[16–22].

A new entropic rectification mechanism has recently been 
proposed for the case in which the channel through which par-
ticle move undergoes periodic deformations. Periodic changes 
of the channel structure result in time-dependent entropic bar-
riers that gives rise to peculiar transport properties. It has been 
found that channel pulsations may induce current reversal and 
resonant effects [23–25].

In this article, we study the efficiency of the entropic rec-
tification process in a pulsating channel by quantifying the 
phenom enon through a rectification coefficient that is ana-
lyzed in terms of the force applied, the height of the barrier 
and the diffusion coefficient. The coefficient characterizes the 
different rectification regimes. Rectification is also studied 
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under the prism of the energy dissipation in the process, or 
equivalently of the entropy production. We will show that 
at high values of the applied force the entropy production is 
practically invariant under inversion of the force. At small 
values of the force, when entropic effects are dominant, the 
symmetry is broken.

The article is organized as follows. In section 2, we briefly 
review the entropic transport model for a pulsating channel. 
Section 3 is devoted to the analysis of the rectification coeffi-
cient. In section 4, we analyze the energetic cost of the rectifi-
cation mechanism by computing the entropy production from 
the knowledge of the particle current and the force. Finally, in 
section 5 we present our main conclusions.

2. Entropic transport model for pulsating channels

We study the confined diffusion of N non-interacting Brownian 
particles through a 2D periodic channel whose walls may vary 
periodically in time. They consist of contiguous units of length 
2L formed by two subunits of length L, as is shown in figure 1.

The shape of the boundaries of the channel is periodically 
modulated in time with the height given by:

h(x, t) =





a1(t)x2 + d
2 ; 0 � x � b

2

−a1(t)(x − b)2 + s(t) ; b
2 < x � b

−a2(t)(x − b)2 + s(t) ; b < x � L+b
2

a2(t)(x − L)2 + d
2 ; L+b

2 < x � L

. (1)

Here b indicates the location of the point of maximum width 
and d is the width of the bottleneck. The time-dependent 

coefficients are a1(t) =
2[s(t)−d/2]

b2 , a2(t) =
2[s(t)−d/2]
(L−b)2  and 

s(t) = s0 + s1sin(ωt +Φ). The values of the parameters are 
set to guarantee the asymmetry of the subunits. The phase dif-
ference between adjacent subunits in one unit cell is given by:

Φ =




0 ; x ∈ [0, L]

π ; x ∈ (L, 2L]
. (2)

A phase lag Φ = π  means that consecutive subunits can shrink 
and enlarge alternatively such that the total volume does not 
change much, a realistic situation that may be observed in 
transport of particles through channels.

We will analyze the transport properties by means of 
the Fick–Jacobs equation, that governs the dynamics of the 
probability distribution of the ensemble of non-interacting 
Brownian particles

∂P(x, t)
∂t

=
∂

∂x

[
D(x, t)

∂P(x, t)
∂x

− D(x, t)
kBT

Feff(x, t)P(x, t)
]

.
 (3)
Here D(x, t) is an effective diffusion coefficient, that in our 
two-dimensional case is given by

D(x, t) = d0(1 + h′(x, t)2)(−1/3) (4)

where d0 corresponds to the diffusion coefficient of the parti-
cles when they move in an unbounded medium and Feff(x, t) is 
an effective force acting along the x-direction which is related 
to the energetic and entropic barrier contributions to the free 
energy A(x, t):

Feff(x, t) = −∂A(x, t)
∂x

= F0 + kBT
h′(x, t)
h(x, t) (5)

with A(x, t) .
= E − TS = −F0x − kBT ln h(x, t).

From equation (3), we can identify the instantaneous par-
ticle current

J (x, t) = −
[

D(x, t)
∂P(x, t)

∂x
− D(x, t)

kBT
Feff(x, t)P(x, t)

]
.

 (6)
The Fick–Jacobs approximation assumes that the probability 
density reaches equilibrium in the transverse direction much 
faster than in the longitudinal one. This requirement is ful-
filled if |h′(x, t)| � 1 for all times and positions, that is, when 
the cross section of the tube varies smoothly.

For the sake of simplicity, we use dimensionless quanti-
ties. We scale lengths with the unit length Lo  =  2L, times 
with the diffusion time τdif = L2

oγ/(kBTR) with γ the 
Stokes’ friction of a spherical particle of reference radius 
r and TR some reference temperature, energies with kBTR, 
forces with kBTR/Lo  and currents with Lo/τdif. We define 
the dimensionless diffusion coefficient D0 = T/TR that 
represents a reduced temperature. A typical diffusion con-
stant in colloids in aqueous solution is d0 ≈ 10−12 m2 s−1. 
Therefore a typical Brownian time scale or average time 
for a particle to diffuse a distance equal to its diameter is of 
the order of 1–100 s, for particles of sizes from 1 to 10 µm  
and velocities in the range 10−1−1 (µm) s−1. Besides, 
the validity of the Fick–Jacobs approach requires that the 
dimensionless frequency ω has to be smaller than one, this 
implies that modulations must be smaller than 20π rad s−1. 
These values are of the same order as the ones considered 
in recent experiments on transport of molecules in confined 
media subjected to entropic barriers and to a driving force 
[17].

We can express the effective force in terms of dimension-
less variables as:

Figure 1. Snapshot of a unit of the channel oscillating out of 
phase with period T for two different times. The solid (red) line 
corresponds to t  =  0 and the dotted (blue) line corresponds to 
t  =  T/2.
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Feff(x, t) = f0

(
1 +

1
f0

h′(x, t)
h(x, t)

)
 (7)

where the second term indicates the ratio between entropic 
and energy forces. This equation  shows that the effective 
force can equivalently be controlled by variations of the force, 
temper ature and period of the cell. The effect of a small force 
would then be tantamount to the effect of the temperature.

In addition to the requirements for the validity of the 
Fick–Jacobs equation  such as a smooth channel and slow 
oscillations, we assume high fluid viscosity and low particle 
density conditions. Therefore, under these assumptions we 
can neglect hydrodynamic particle-wall and particle-particle 
interaction effects in the motion of the particles.

3. Rectification efficiency

From the dimensionless Fick–Jacobs equation, we obtain 
numerically the probability density P(x, t) with periodic 
boundary conditions at x = 0, 1. We introduce the mean par-
ticle current as

j(t) =
∫ 1

0
J̃ (x, t)dx (8)

with J̃ (x, t) the dimensionless form of the probability cur-
rent given in equation (6). The average current J is given by 
the time average of the particle current j(t) in a time period 
τ = 2π/ω

J =
1
τ

∫ τ+t0

t0
j(t)dt. (9)

The particle current rectification strength achieved in the 
motion of colloids along the channel can be quantified through 
the rectification coefficient:

R =
J( f0)− J(−f0)
J( f0) + J(−f0)

. (10)

In the left panel of figure 2, we observe a rectification of 
the particle current as a function of f0. We find that R changes 

from negative to positive values as long |f0| increases. The 
inversion of R occurs for a critical value f0 = fR, that in our 
case is fR ≈ 1. This phenomenon relies on a change over 
between a regime dominated by the entropic barrier to one 
dominated by the energy one.In the inset of the left panel of 
figure 2, we plot the time average force F as a function of f0 
(positive), that is defined as:

F =
1
τ

∫ τ+t0

t0
f (t)dt (11)

with f (t) the ensamble average of Feff(x, t) at a given time.
For low external forces, F is negative due to the geometry 

of the channel. However as f0 increases, F becomes positive. 
The inversion of R can be understood from the behavior of 
F. We observe that the crossing of the horizontal axis occurs 
around the same value of f0, for both R and F. For low but 
positive values of f0, F is negative so the entropic forces domi-
nates the transport. For high and positive f0, F becomes posi-
tive then the energy barrier dominates. In other words, when 
the external force is very strong the dynamical response due to 
entropic forces is washed out. As the asymmetric contrib utions 
given by the geometry are negligible, the particle cur rent takes 
the same values for a positive and negative f0. This crossover 
relies on the relative importance between both contrib ution as 
it is expressed by the ratio in the second term of equation (7).

To show the competition of the different relevant time 
scales, we plot in figure 3 the dependence of R on D0 and ω. 
In the energy dominated regime and low diffusion, R is more 
negative as long the pulsation is faster. In this situation, the 
time scale corresponding to the diffusion process is large and 
the faster time scale of the entropic ratcheting dominates the 
dynamics. For larger D0, diffusive time scale dominates and R 
saturates to a value independent of ω.

The situation is similar for low diffusion in the entropic 
regime, however R achieves a higher absolute value. That is, 
the entropy barriers enhance the role of the asymmetric con-
finement on the motion of colloids, effect that is washed out 
in the energy regime (larger f0). For large diffusion, R tends to 
be independent of ω but always negative.

In figure  3 we observe a reversal of R when it is repre-
sented as a function of D0. As long f0 increases, R becomes 

Figure 2. Rectification coefficient as a function of the applied force and the entropic barrier. Left panel: R versus f0 for ω = 0.5 and 
∆S = 2.15. Inset: average mean force F versus versus f0. Right panel: R versus ∆S for low and high diffusion (D0  =  0.2,1). ω = 0.9 and 
f0  =  0.1 Other parameters are: s0  =  0.45, s1  =  0.2, b  =  0.25, L  =  1.
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less negative and inversion takes place. The value of D0 for 
which inversion occurs depends on ω. As long the diffusion 
time is smaller, the channel has to oscillates faster to produce 
the same inversion phenomena. This fact suggests the pres-
ence of a scaling regime in which the reversal phenomena 
scales with D0/(L2ω), for a constant f0.

The role played by the asymmetry of the channel is related 
to the entropic barriers. In the right panel of figure 2, we plot 
R versus ∆S, defined as the highest value achieved by the 
entropic barrier during its oscillation: ∆S ≡ ln(2(s0 + s1)/d). 
We observe that in the entropic regime, rectification efficiency 
can be improved for larger ∆S and lower values of D0.

4. Entropy production

The different rectification scenarios found can also be analyzed 
in terms of the energetic cost of the particle transport which 
can quantified by means of the entropy production rate σ(x, t). 
The dimensionless quantity (scaled in units of τdif/kB) is the 
product of the flux J̃ (x, t) and the effective driving force (or 
∂µ
∂x  with μ the chemical potential) Fµ

eff(x, t) = 1
ρ
∂ρ
∂x − Feff(x, t) 

that includes the enthalpic contribution:

σ(x, t) = −J̃ (x, t)Fµ
eff(x, t). (12)

In the linear regime where the flux is proportional to the force 
Fµ

eff(x, t), the entropy production is proportional to the force 
squared and thus depends on the applied force and the entropic 
force or equivalently on the shape of the channel. The scaling 
behavior found for the effective force would then give rise to a 
scaling of the entropy production. The entropy production aver-
aged over a period of time and space

σP =
1
τ

∫ τ+t0

t0
dt
∫ 1

0
dxσ(x, t) (13)

characterizes the dissipation inherent to particle transport.
In figure 4, we plot the entropy production normalized to 

the value obtained when ω → 0. Both quantities are positive 
and consequently the ratio is also positive for all frequencies. 

For a given ω, larger ratios are achieved in the entropic regime 
because the motion of the colloids is mainly ruled by the time-
modulated entropic forces. In the entropic regime, the entropy 
production takes a value slightly larger than the static one, 
thus the dissipation increases.

In figure 5, we observe that a reversal of f0 yields different 
values of the ratio σP/σ0 that depends on the specific shape of 
the channel given by ∆S.

It is interesting to analyze how a reversal of the direction 
of f0 affects the entropy production when the diffusion coef-
ficient changes. In figure 6, the ratio σP( f0)/σP(−f0) is pic-
tured as a function of D0, for two different frequencies. This 
figure  clearly shows the presence of the two quite distinct 
regimes dominated by entropic and energy forces.

When the effect of the external force dominates, the left/
right asymmetry vanishes, consequently the entropy produc-
tion is the same in both directions. This effect is enhanced 
when the colloids diffuse faster (larger D0) and tends to be 
independent of ω. As long f0 becomes larger, the system can 
be thought as colloids moving in a symmetric channel.

Figure 3. Rectification coefficient R versus D0 for ω = 0.5 (red) 
and ω = 0.9 (green). f0  =  1.5 (circle), f0  =  0.5 (square) and 
∆S = 2.15 and other parameters as in figure 2.

Figure 4. Reduced entropy production: σP(ω)/σ0(ω → 0) versus 
ω, for f0  =  1.5 (green) and f0  =  0.5 (red). ∆S = 1.75 and other 
parameters as in figure 2.

Figure 5. σ0(ω)/σP(ω → 0) versus ω for ∆S = 2.15 (squares) 
and ∆S = 1.17 (circles). f0  =  1.5 (red) and f0  =  −1.5 (green). 
Parameters as in figure 2.

J. Phys.: Condens. Matter 30 (2018) 244001



M F Carusela and J M Rubi 

5

However, in the entropic regime the time scales related to 
frequencies and diffusion evenly play a relevant role. A diffu-
sion time smaller than the characteristic time of the pulsation 
implies that the particle takes many time periods to travel a 
distance equal to one unit of the channel. Therefore, the effect 
of the time-dependent constraints imposed by the confine-
ment is enhanced and the entropy production is larger, with 
different values for the forward and backward directions.

The behavior described suggests an interesting mechanism 
to induce transport of particles through microchannels. When 
external forces are small, the entropic ratcheting induced by 
pulsations becomes the leading mechanism in the transport 
process. It can be used to improve the rectification efficiency 
and to control the entropy production, reducing the dissipation.

5. Conclusions

In this article, we have analyzed the efficiency of the particle 
current rectification process observed in channels whose shape 
is modulated periodically. We have proposed a rectification 
coefficient that measures the difference between the particle 
current induced by a given force acting along both directions 
of the channel. We have identified two rectification regimes. 
At low values of the forces, when entropic effects become 
important, rectification may be relevant. On the contrary, at 
high forces the effect of the entropic barrier fades away and 
rectification considerably diminishes.

We have examined the rectification regimes in terms of the 
entropy production which has been computed as a function of 
the applied force, the oscillation frequency the strength of the 
entropic barrier and the diffusion coefficient. The analysis of 
this quantity shows the existence of situations of minimum 
dissipation that can be selected upon varying these quantities. 
At high values of the force, the entropy production is invariant 

under inversion of the applied force. This invariance is broken 
at low forces when entropic effects become important.

The results obtained indicate how channels should be 
designed for a controllable current and dissipation and why 
existing structures in nature such as protein channels and 
pumps undergo their main functions on the basis of their par-
ticular forms.
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