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Abstract
In this work we compare different implementations of two interatomic potential models, one the empirical Tersoff–
Brenner and the other the semi-empirical tight-binding, to be used in the thermal transport study of silicon nanosystems.
The calculations are based on molecular dynamics simulations. In the case of Tersoff–Brenner potential, two free soft-
ware packages were used, while for tight-binding potential, an in-house code was developed. Both approaches require
an enormous amount of computing effort, so the use of acceleration tools for adequate performance is crucial. We pres-
ent a detailed study of each computational tool used: efficiency, advantages and disadvantages, and the results of applica-
tion to the calculation of thermal conductance of structured silicon nanocrystals subjected to a temperature gradient.
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1. Introduction

The study of thermal transport properties of nanostructured

low-dimensional systems is a highly relevant topic due to

the technological implications.1,2 The study is usually

based on numerical simulations, which makes computa-

tional tools a key element. Of these, the simulation mole-

cular dynamics (MD) technique is a natural candidate to

be used, where the interatomic potential modeling is a cru-

cial issue and classical or quantum mechanical approaches

can be implemented. The last approach to a solid material

provides accurate results in calculating its physical proper-

ties but, to the date, its full implementation is usually very

expensive computationally for systems of more than some

hundreds of atoms. On the other hand, empirical and semi-

empirical potentials can provide satisfactory results for

thermal, mechanical, and electronic properties of materi-

als, especially in bulk. Moreover, these approximations are

widely used due to the reasonable computing resource

requirements. However, in the case of empirical approxi-

mations mainly, the price to pay is less transferability for

systems with a large surface-to-volume ratio, requiring a

critical analysis when it is applied to small systems.3,4

In this work, we study the thermal transport of silicon

nanosystems, modeling the atomic interactions using: (1) a

classic empirical potential of Tersoff–Brenner (Tersoff)5,6

over two closed software packages7,8; and (2) a semi-

empirical tight-binding (TB) potential9,10 over an in-house

software. To do that we recreate a non-equilibrium ther-

modynamical state by means of Langevin’s MD simula-

tion for both potential models.

In both approaches, the manipulation of a reasonable

number of atoms (which can range from a few hundred to

a few thousand) requires a parallel environment and high

computing capabilities. In the case of the Large-scale

Atomic/Molecular Massively Parallel Simulator

(LAMMPS) we use the message passing interface (MPI)

and OPENMP environments provided by the software and

the graphical processors units version also, while the other

used package is based solely on a graphics processing unit

(GPU). To solve the TB problem, the developed in-house

software deals with the resolution of a simple eigensystem

in each iteration. However, it is only necessary to obtain
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slightly more than a half of the eigenvalues with lower

absolute values. For this purpose, we apply different stra-

tegies using MPI and OPENMP paradigms, measuring

their efficiencies.

There are many strategies for this type of problem faced

in multiple ways by different scientific teams. In all cases

they have one thing in common: simulation jobs require an

enormous amount of computing time. In this work we pro-

pose three strategies using different tools that offer advan-

tages and disadvantages due to their inherent use and the

amount of computing time required by each of them. In

particular, the strategies using pure GPUs produce the best

computing efficiency. On the other hand, the package that

uses TB provides a more precise calculation from the point

of view of the physics of the problem, but its performance

is much lower. In this way, we will show the analysis car-

ried out on these tools to show three ways of facing the

same problem that obtain results of different precision with

different degrees of computational performance.

The paper is organized as follow: the next section will

describe the physical model and the two interatomic poten-

tials, Tersoff and TB. In Section 3 we present simulation

results of some thermal transport properties for the physi-

cal model described. Section 4 is devoted to discuss the

advantages and disadvantages of each solver used for the

TB potential. In Section 5 we present an efficiency analy-

sis of all the tools used. Finally, we include some general

conclusions of our work.

2. Atomic interaction models

The physical system of interest on which both simulation

approaches will be applied for studying the heat transport

is ultra-thin silicon nanocrystals with a central hole of dif-

ferent sizes. These nanocrystals can be the building blocks

to create artificial periodic nanostructures that can be used

to design and control phonon bands. These are ideal plat-

forms to study the interplay between structural factors and

heat transport, where thermal conductivity can be tuned

over two or three orders of magnitude by nanostructur-

ing.11–14

We model the silicon nanocrystal by a rectangular

prism with faces Si{100} and a volume of

493 493 16Å3, which is structured by a centered square

hole of side a in the thinner direction (see Figure 1). In the

direction of the longer side, a temperature gradient is

applied (see Figure 2).

The thermal transport simulation is performed by using

a MD approach describing atomic interactions with differ-

ent levels of approximation and, therefore, with different

computational performance in the treatment of systems

with a large number of atoms in the nanometric scale.3,4

We consider for the atomic interactions the two following

models: (a) a classical Tersoff potential; and (b) an adapted

TB potential for MD simulations.

There are important aspects to consider when choosing

potentials for simulations. Accuracy should be considered,

on the one hand, to reproduce the properties of interest as

best as possible. On the other hand, the transferability

allows them to be used to study properties for which they

have not been adjusted. Finally, essential aspects when

performing numerical simulations are computation time

and computational performance.

Figure 1. Perspective views of the structural model of an ultra-
thin silicon nanocrystal with a square hole centered on the face
(001).

Figure 2. Schematic illustration of the Si nanopatterned setup
used in molecular dynamics simulations. A nanoribbon of length
L is connected to a hot (H) and cold (C) reservoir at its ends.
Heat flows from H to C. It Free boundary conditions are applied
in the transverse direction of the heat flux. A square hole of side
a equal to N units cells is patterned. N goes from 0 to 5. The
sheet is divided in M equally spaced blocks (indicated by vertical
dashed lines). Block 1 corresponds to the source of heat, while
block M corresponds to the sink.
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The Tersoff-type potentials5,6 take into account the elec-

tronic wave functions in an effective way, considering the

nuclei of the atoms in fixed positions of the crystalline

structure. These potentials can be expanded in terms of

many-body interactions, which depend on the relative dis-

tances of atoms and the number of and angles between

bonds, and produce reasonably accurate potential energy

landscapes for materials with covalent and metallic bonds.

From the computational point of view, there are many soft-

ware packages that implement this kind of approximation

with a very good performance. For MD simulations with

this potential type, two free packages were used: (a) free

software LAMMPS8; and (b) the Graphics Processing

Units Molecular Dynamics (GPUMD) package.7

We implement a semi-empirical TB potential adapted to a

MD simulation scheme.9,10 This model uses as expansion

basis s and p valence electronic orbitals of Si atoms to

describe the electronic fundamental state. Hopping integrals

of the Hamiltonian matrix and repulsive ion pair potentials

are parameterized by using short-range pair functions,

depending on the distance between neighboring ions.

Numerically, this approach requires solving the diagonaliza-

tion of the Hamiltonian matrix for a sufficiently large number

of eigenvalues and eigenvectors that allows the expansion of

all valence electrons into non-bonding and bonding states.

For more details about this potential and also the study of

thermal conductance in comparison with the Tersoff

approach, see Mancardo Viotti et al.15 and Bea et al.16

3. Thermal transport simulation

Firstly, a thermalization of the system to 300 K is carried

out. For modeling the initial atomic structure, atom posi-

tions are set like in the ideal Si crystal. Ideal nanocrystals

are used to initialize the LAMMPS simulations. Instead

for TB and GPUMD simulations, nanocrystals with recon-

structed faces are modeled. The first atomic plane on ideal

surface is arranged in rows of dimers with (2x1) periodi-

city (see Figure 1),17 as described in a previous work.16

Once the system is thermalized, the structure is coupled in

its ends to two thermal reservoirs at different temperatures.

Therefore, the evolution is under a non-equilibrium state,

establishing a temperature gradient along the system.3 The

coupling to the thermal reservoirs is through three atomic

layers in each longitudinal end connected to a Langevin

thermal bath at TH = 350 K (hot bath) and TC = 250 K

(cold bath), respectively (see Figure 2).

We integrate the equations of motion for a time long

enough to guarantee that a stationary state is reached.

Once achieved, we compute the energy E injected

(absorbed) by (from) the hot (cold) bath. In this way we

calculate the heat current J as the rate dE=dt at which

energy is injected into (taken out of) the system per unit

time. So according to Fourier’s law for heat conduction,

the thermal conductance of the system G can be defined

through the following relation:

J =G DT , ð1Þ

where DT = TH � TC = 100 K is the temperature differ-

ence along the system. The thermal conductance is a mea-

sure of the capability of the system to transfer heat. It is

not an intrinsic property of the material but of the system

as a whole.

In Figure 3 we show the thermal conductance as a func-

tion of hole size as predicted by TB and Tersoff potential

models, using the three codes analyzed here. The data

simulated by TB and GPUMD codes were extracted from

our recently published previous work.16 For the Tersoff

potential model, the conductance displays a monotonic

decrease with a. GPUMD and LAMMPS (both version

used) implementations display a reasonably good agree-

ment within the error intervals, considering that on the

faces of the nanocrystal one simulates an ideal structure

while the other is a structure with reconstructed surfaces.

For a . 10 nm, the TB potential model also presents a

monotonic decrease but with a larger rate. Nevertheless,

the predictions of the TB model deviates from those of the

Tersoff’s. This discrepancy is enhanced with the size of

the hole, suggesting a significant role of the surface effects,

which is not accurately considered by Tersoff models due

to their low transferability conditions.

From eigenvalues and eigenvectors of the TB

Hamiltonian matrix, the local density of states (LDOS)

projected onto a single atom or group of atoms can be

Figure 3. Thermal conductance G versus hole size a, obtained
with the three codes used in this work. The hole size range
from cases with no hole (a= 0) to a 5× 5 hole. All curves
descend with the increase of a. The data are calculated within a
± 5% error interval (error bars are not shown). GPUMD:
Graphics Processing Units Molecular Dynamics; LAMMPS:
Large-scale Atomic/Molecular Massively Parallel Simulator.
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computed (see Figure 4). So we take advantage of all the

electronic information provided by the TB potential for

highlighting somehow the surface effect when the surface-

to-volume ratio increases. The LDOS is projected onto

atoms being within an imaginary slice having the same

width a of the hole (hole slice), which covers the entire

cross-section through which heat flows. Close to the Fermi

level, the DOS of the nanocrystal with a 23 2 hole resem-

bles that of the one with no hole, while for nanocrystals

with 43 4 and 53 5 holes, the DOS differs from that of

the flat nanocrystal and exhibits a greater number of non-

bonding states, which are located on the surface.

The numerical computations also allow one an insight

into the thermal energy distribution along the system. We

show in Figure 5 a bidimensional temperature map for the

flat and for the 33 3 hole structure, calculated with the

TB model. Local temperatures are calculated with a time

average of the kinetic energy and a spatial average in the

out-of-plane direction. This map evidences how the hole

affects the local temperature distribution in a non-trivial

way. This effect is enhanced as long the surface size hole

to surface size nanocrystal ratio increases.

4. Tight-binding performance
improvements

In order to solve the problem involved in the potential TB,

once the Hamiltonian of the system has been built, it is

necessary to obtain from the raised system a sufficient

number of eigenvalues to characterize the linked states

and the first ones above the zero line. In this way, basi-

cally the problem is reduced to obtains a number of eigen-

values and eigenstates of ½K�½F�= l½F�. For systems of N

atoms, the dimensions of the matrices will be 4N 3 4N

and have the generic form shown in Figure 6. The number

of required eigenvalues is in the range [2N+ 4N, 2N+
4N* 0.1]. There are tools to solve this type of matrix prob-

lem when dealing with positive defined matrices18 or

semi-defined ones.19 If the system does not have these

properties, it is possible to use a direct solver such as the

one provided by the EisPACK libraries.20 When the

matrices are scattered or their dimensions large enough, an

iterative method can be passed that generally provides a

few eigenvalues efficiently.21,22

Figure 4. Time-averaged local density of states (LDOS)
projected onto a group of atoms contained within a slice of
width a, enclosing the hole, for nanocrystals with no hole (flat),
a 2× 2 hole, a 4× 4 hole, and a 5× 5 hole. The DOSs were
calculated from eigenvalues and eigenvectors of the tight-binding
Hamiltonian matrix. The DOS projected onto four bulk atoms
of flat nanocrystal is also shown (curve with gray shading).
Energies are set to zero by taking as reference the Fermi level of
a flat nanocrystal.

flat 3 x 3 hole

Figure 5. Two-dimensional temperature map averaged in time
and space along the z-axis direction (perpendicular to the plane
of heat propagation). Two cases corresponding to nanocrystals
with no hole (flat) and a 3 × 3 hole are shown. Each plot
represents the top view of an 18× 18× 1 grid subdividing the
structure volume, in which pixel colors indicate the average
temperature of atoms within the subvolumes, according to the
color scale shown on the right-hand side.

Figure 6. Example of a tight-binding matrix structure showing
no nulls distribution.
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In the cases analyzed in this work the matrices were

clearly sparse with a ratio of no nulls of approximately

0.034. Although in this scenario it would seem wise to

address the solution mode using solvers that exploit this

particularity, we see that this is not efficient. The rela-

tively small size of the matrices involved, together with

the large number of required eigenvalues, make the

problem an interesting case of analysis. Examples of this

type of system that pose a compromise between the size

of the matrices and the number of necessary eigenvalues

can be found in other calculation packages, such as the

one used in SIESTA,17 where a linear numerical combi-

nation of an orbital base is solved over a uniform space

grid. In this case, a dispersed matrix system of high

dimensions, on which an appreciable number of eigenva-

lues (usually 1/3) is required, is resolved using the

method of Jacobi–Davidson (JD), in this case including

deflation, extracting converged eigenvalues from the

solution subspace.17,23

For our particular case we have tested three lines of sol-

vers. (1) Firstly, we use DSYEVX provided by the

LAPACK library,18 based on the bisection method with

inverse iterations that works with dense, symmetrical

matrices. The solver provides as a solution all the eigenva-

lues of the matrix and their corresponding eigenvectors.

This solver is fast and efficient for a relatively small num-

ber of atoms (\ 1000). However, the amount of memory

required for large-scale matrices, as well as their disper-

sion, seemed limiting factors that suggested the possibility

of exploring other models. Note that for a number of 5080

atoms, the dimensions of the matrices reach 20,320 3

20,320, and about 12,200 eigenvalues are required. In this

case we expand the problem to a solver parallelized using

the ScaLAPACK version (pDSYEVX) of this same sol-

ver.24 We also tested the pDSYEVD solver, based on the

divide and conquer algorithm that has faster results on

some occasions. On the other hand, and to take advantage

of the dispersion of the matrices, we focus on using scat-

tered iterative systems such as those provided by the

ARPACK library,19 which uses a modified Arnoldi system

to obtain the requested eigenvalues and with the option to

calculate eigenvectors.25 Along the same lines we use a

method based on the JD algorithm, in this case including

deflation, extracting converged eigenvalues from the solu-

tion subspace. While the efficiency of the dispersed algo-

rithms mentioned, both Arnoldi and JD, is well known, it

is also true that their degree of efficiency increases when

(a) the matrix is sufficiently large and (b) the required

eigenvalues are relatively few, although the mentioned

methods allow obtaining portions limiting eigenvalues in

well-located regions of the spectrum.

5. Efficiency analysis
5.1. Distributed and shared memory approximation

All our calculations were carried out on two systems. We

use the TUPAC supercomputer,26 a 48 TFLOPS machine

with 4352 AMD Opteron cores distributed among 68 com-

puting nodes. Thirty-two Tesla 2090 Nvidia boards can be

used for the GPU. Five separate networks support the

interconnection of nodes: three separated Ethernet net-

works for monitoring and administration, and two QDR

Infiniband networks with very low latency designed for

message interchange during computing. In addition, we

use a Server Intel Xeon 2xCPU E5-2620 v3, 2.4 GHz,

with x86-64 architecture.

The performances obtained for the three lines of diago-

nalization solvers yielded dramatically better figures in the

LAPACK/ScaLAPACK cases, with computation times as

detailed in Table 1. The relative times between both sol-

vers, although comparable in order of magnitude, differ by

one factor, especially in cases with the highest number of

atoms.

Figure 7 shows a scalability curve obtained using

ScaLAPACK (pDSYEVX) for the different sizes of the

problem considered. We verified a strong scalability,

obtaining better performance in the cases of greater sys-

tems. Somehow the optimal times provided by the algo-

rithm come from the division obtained with the minimum

value of processors involved. Increasing the number of

processors does not seem to compensate for the inherent

communications, except in the case of N = 5081 where the

configuration of 64 processors yields the minimum resolu-

tion time (see Figure 8). On the other hand, it is interesting

Table 1. Comparison of computation times between the different solvers used and for different sizes of matrices. The number of
calculated eigenvalues for each size of matrix is indicated.

Solver N= 4× 300 N= 4× 1200 N= 4× 5080

LAPACK 1200 eig. 3.29 s 4800 eig. 252.41 s 20,324 eig. 17,264.15 s
ARPACK 600 eig. 13.90 s 2500 eig. 1335.85 s 10,300 eig. –
JD 620 eig. 639.76 s 2500 eig. 43682.80 s 10,300 eig. –
ScaLAPACK/pDSYEVD 1200 eig. 2.60 s 4800 eig. 82.17 s 20,324 eig. 8345.76 s
ScaLAPACK/pDSYEVX 640 eig. 4.53 s 2500 eig. 71.78 s 10,200 eig. 2564.49 s

JD: Jacobi–Davidson.
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to mention that the central processing unit (CPU) time

consumed by pDSYEVD solver, based on the algorithm of

dividing and conquering, is better for low matrix dimen-

sions, but when we increase the number of atoms this

advantage is lost, resulting in pDSYEVX always being the

better the option.

It should be clarified the LAPACK serial code times are

still advantageous compared to the parallel ones for small

systems (less than 1000 atoms). However, for larger sys-

tems and a number of processors greater than four, parallel

times several orders of magnitude smaller can be obtained.

It is also noteworthy that the loss of scalability or the

dependence of the computer time frame on the resolution

grid used by the library is noticeable, with anti-intuitive

fluctuations being observed practically in all the related

tests. However, as the matrix of our problem is non-

variable in size and shape, it is possible to determine the

optimal mesh at the beginning based on the casuistry

developed and evolve the solution in the optimal config-

uration of processors to obtain the shortest time of possible

computing.

On the other hand, the empirical potentials used in

LAMMPS have a good scalability in a small number of

processors, losing the ideal behavior for a number greater

than 32, a situation that is known when running with MPI

across multi-core nodes, where communication bottlenecks

are often suffered.27 We present a plot of this behavior in

Figure 7 for a number of atoms close to 2200. Even though

LAMMPS and TB use different algorithms, we apply them

to analyze the same physical problem with different degree

of transferability, but with the emphasis on the unavoid-

able considerations about the computational performance.

5.2. GPU environment

We compare the use of LAMMPS-GPU and GPUMD, two

similar packages based on CUDA and GPUs. As we are

not developers of these two packages, the objective of

improving their speedup is outside the scope of this work.

We run the same problem over a Nvidia GM107GL

(Quadro K2200) board for systems with approximately

2200 atoms with different behavior for each package.

In the case of GPUMD is necessary to explain several

points. Firstly, it was written in CUDA C++and requires a

CUDA-enabled Nvidia GPU of computing capability of

no less than 3.5. Secondly, it was developed for use with

GPUs with the aim to accelerate classical MD simulations.

That establishes a difference with LAMMPS, which uses

tools to accelerate preexisting solvers. This package is

highly efficient for doing MD simulations with many-body

potentials, such as the Tersoff potential using a single

GPU, which can run 100 MD steps for a one-million-atom

system within 1 second,7 resulting in it being particularly

good for heat transport applications. Thirdly, just a few

classical and semiclassical potentials have been included

until now, and there is much less progress on the

Figure 7. Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and ScaLAPACK (pDSYEVX) speedup. In the
LAMMPS case, the simulations were made over the environment used to obtain the conductance values (2200 atoms
approximately). ScaLAPACK was tested over a fictitious arrays of atoms to analyze weak and strong scalability.

Figure 8. Computation times of the two solvers ScaLAPACK
used in three array sizes.
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acceleration of force evaluations for many-body potentials

compared to pairwise ones. With these points in mind and

for the Tersoff many-body potential, the double precision

performance of GPUMD is equivalent to that of

LAMMPS running with about 100 CPU cores.7 In our case

the times involved to solve the same reference problems

run with LAMMPS (2200 atoms) are in the range of

3600.0–4500.0 seconds for the entire calculus.

In the case of LAMMPS-GPU, there are some limita-

tions in the implementations reported by the developers

that make it difficult to know the optimal number of CPUs

per GPU to be used. In general is necessary use a para-

meter sweep to find optimal settings for the different

packages. In general, reported measures only show the best

results for each package. In contrast, with the GPUMD

software, LAMMPS uses an accelerator that takes advan-

tage of the hardware features, but it is done in different

ways and acceleration is not always guaranteed. As a con-

sequence, for a particular simulation on specific hardware,

one package may be faster than the other. In our test, we

use double precision computations and the CUDA pack-

age. Moreover, the number of atoms is not within the rec-

ommended parameters for LAMMPS. Apparently, in a

hybrid MPI/GPU parallelism, the speedup versus CPU will

be significant with more than 32,000 particles per node

(i.e., per GPU). This relation is not accomplished in our

calculation and LAMMPS makes several load balances in

a dynamical way. In our reference case of 2200 atoms we

obtain computing times in the GPU similar to that involved

in four MPI task calculations. When the size of the hole

increase, the times using the GPU present a small decreas-

ing, showing the mentioned dynamical load balance action.

The use of the hybrid execution MPI-GPU does not help,

showing a performance degradation. More information

related to the two GPU packages can be founded in

Zheyong et al.,7 Moore,27 and Nguyen et al.28

6. Conclusions

In this work, we analyzed different computational schemes

for simulating the thermal transport of silicon nanosys-

tems. We considered different interatomic models and

implemented MD simulations using different codes. These

approaches were applied to the study of the thermal trans-

port of an ultra-thin silicon nanocrystal.

The thermal conductance obtained by LAMMPS, using

the Tersoff potential, is similar to the one calculated by

GPUMD, being of the order of 10�9 W/K, which is associ-

ated with a thermal conductivity of around 0.5 W/(m K),

depending on the hole size. These values imply a thermal

conductivity for a system of this size that is two orders of

magnitude less than the bulk silicon conductivity of 148

W/(m K). This is a phenomenon already observed in ultra-

thin silicon membranes.29

The Tersoff potential is an empirical bond-order poten-

tial fitted with experimental data. However, it is not capa-

ble of describing properly the effect of the surface and the

low dimensionality of the system that have some implica-

tions in the transport of energy. Nevertheless, the effi-

ciency from the computational point of view is in general

better, even in the MPI version of LAMMPS. On the other

hand, the lesser times involved in the simulations using the

GPU (both in case of the LAMMPS-GPU and GPU) con-

vert those options into the most effective from the compu-

tational point of view.

Using a semi-empirical TB model, which is more reli-

able due to its higher transferability, is adequate for nanos-

tructured low-dimensional systems with a high surface-to-

volume ratio. As a counterpoint, the computational costs

increase considerably because this method involves diago-

nalization of a matrix at each time step, as a numerical

performance analysis of different eigenvalue resolution

methods was performed.

We optimized as far as we can the TB in-house solver.

The results obtained by different diagonalization methods

gave better figures for the solver included in the

LAPACK/ScaLAPACK libraries. Although the computa-

tion times obtained with ScaLAPACK are comparable in

order of magnitude to those obtained with LAPACK, they

can be reduced by some factors in cases with a higher

number of atoms.
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