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Abstract. Buckling of semi-flexible filaments appears in different systems and scales. Some
examples are: fibers in geophysical applications, microtubules in the cytoplasm of eukaryotic
cells and deformation of polymers freely suspended in a flow. In these examples, instabilities
arise when a system’s parameter exceeds a critical value, being the Euler force the most
known. However, the complete time evolution and wavelength of buckling processes are not
fully understood. In this work we solve analytically the time evolution of a filament under a
constant compressive force in the small amplitude approximation. This gives an insight into
the variable force scenario in terms of normal modes. The evolution is highly sensitive to the
initial configuration and to the magnitude of the compressive load. This model can be a suitable
approach to many different real situations.

1. Introduction
The beam theory stablishes that when a compressive force is applied to the end of a slender rod,
it collapses and buckles when the force exceeds a critical value [1, 2]. The shape of the buckled
filament depends on the boundary conditions. The Euler force depends on the rod geometry
and its elasticity. For a clamped-clamped filament its value is:

Pc = 4π2
EI

L2
, (1)

where E, I and L are the filament’s Young modulus, the second moment of inertia and length,
respectively. Importantly, the critical force does not depend on the environment where the
buckling takes place. However, the way the buckling proceeds after the critical force is surpassed
(e.g. the characteristic time taken for the filament to achieve a stationary shape) does strongly
depend on the surrounding viscosity [3]. In Fig. 1 a slender filament immersed in glycerol
compressed under two different loads is shown. For forces slightly larger that the Euler one the
filament displays a sinusoidal shape with a characteristic wavelength of the order of its length.
On the other hand, if the load largely exceeds the critical value, the filament deforms more
rapidly and with a shorter wavelength.

http://creativecommons.org/licenses/by/3.0
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Figure 1. Snapshots of a compressing polyethylene terephthalate filament in glycerol for two
different values of the applied force. The length of the filament is 30 cm.

Deformation of flexible fibers is of interest in areas such as physics, biology or engineering,
and in view of their potential applications in many different industrial fields. Examples include
the manufacturing of fiber-reinforced composites [4, 5], the rheology of biological polymers [6],
and the motility of microorganisms [7, 8]. The use of long optical fibers has been suggested as a
method to realize distributed in situ measurements (temperature for instance) on natural water
flows [9]. Also fibers are widely used by petroleum engineers [10] to enhance the proppant
transport capabilities of fracturing fluids, or to prevent the backflow of proppant. Other
domains of application are civil engineering (special cements, structural reinforcement), textile
engineering, bio engineering and medicine.

In this work we develop an general description of the behaviour of filaments immersed in a
viscous medium under compression in terms of normal modes. Our approach intends to explore
a general phenomenon that can be found in a variety of micro to macro scales systems and
applications.

2. Theoretical approach
The shape of a semi-flexible filament is determined by the position of its neutral axis r(l), with
l a curvilinear coordinate along the filament varying from 0 to L. This configuration has an
elastic energy due to strain ε given by:

VE =
1

2
EA

∫ L

0
ε2(l)dl =

1

2
EA

∫ L

0
(|r′(l)| − 1)2dl , (2)

where A is the transversal area of the filament. Also, the filament has a bending energy given
by its curvature C:

VB =
1

2
EI

∫ L

0
C2(l)(1 + ε(l))2dl =

1

2
EI

∫ L

0

|r′(l)× r′′(l)|2

|r′(l)|4
dl . (3)

In both formulas the primes indicate derivative with respect to the coordinate l. Applying a
Lagrangian minimization principle, one can compute the forces on an infinitesimal segment dl at
position l due to strain (elastic force fE) and curvature (bending force fB), which are produced
by the neighbouring segments. The full expressions are rather complicate, involving up to the
fourth derivative of the position r(l).

Since the filament is immersed in an homogeneous viscous medium, we consider the viscous
drag on a filament element as fV = −cṙ. In this expression c is the drag coefficient per unit
length, which is proportional to the dynamical viscosity, and the dot accounts for time derivative.
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In an overdamped regime, the inertia term can be neglected and the equation of motion for
an infinitesimal segment is given by:

fE + fB + fV = 0 . (4)

If the filament motion is constrained to two dimensions, its shape can be parametrized as:

r(l) = (l + δx(l); δy(l); 0) , (5)

and we consider a small amplitude approximation δx, δy � L.
Replacing this parametrization in Eq. (4), it can be shown that δx′′ and higher order

derivatives are proportional to second order derivatives of δy. Moreover, the time derivative
δẋ is exponentially small after a short initial time τE given by

τE =
c

EA

(
L

π

)2

. (6)

Also, when the filament is under a compressive load P , at first order we obtain for the strain

δx′(l) = − P

EA
, (7)

which is usually much smaller than one. Taking into account this result, the amplitude in the
transversal direction δy is determined by the following equation:(

1 +
2P

EA

)
EIδy′′′′ + Pδy′′ + c⊥δẏ = 0 . (8)

This is the so called hydrodinamic equation [3]. To solve this linear differential equation, we
propose separation of variables and exponential dependence:

δy(l, t) = C exp(kl) exp(Γt) . (9)

Replacing this proposed solution into Eq. (8) we obtain(
1 +

2P

EA

)
EIk4 + Pk2 + cΓ = 0 . (10)

This is a fourth order polynomial in k which gives four possible solutions which can be
superposed. It is convenient to redefine the parameters as:

p =
L2P(

1 + 2P
EA

)
EI

, (11)

γ =
cL4Γ(

1 + 2P
EA

)
EI

= τBΓ , (12)

κ = kL . (13)

The value p corresponds to a dimensionless compressing load and γ is the dimensionless
decaying/growing rate, whose natural scale is a characteristic bending time τB, which is
much bigger than τE for a slender filament. In terms of these dimensionless parameters the
characteristic polynomial can be written as:

κ4 + pκ2 + γ = 0 . (14)
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For γ < 0, which corresponds to a decreasing solution in time, the four possible solutions are
κ = {iκ1;−iκ1;κ2;−κ2}, with

κ1 =

√√
p2 − 4γ + p

2
, (15)

κ2 =

√√
p2 − 4γ − p

2
. (16)

Therefore in this case the general solution can be written as a superposition of circular and
hyperbolic trigonometric functions.

For 0 < γ < p2/4, the amplitude grows exponentially, and there are four possible pure
imaginary solutions κ = {iκ1;−iκ1; iκ3;−iκ3}, with κ1 as in Eq. (15), and

κ3 =

√
p−

√
p2 − 4γ

2
. (17)

These solutions can be written as circular trigonometric solutions. For γ > p2/4 the four
possible values of κ are complex. Nevertheless, it turns out that these solutions do not arise for
the boundary conditions that we study. The general solutions can be written as

δy(l, t) = [C1 cos(κ1l/L) +D1 sin(κ1l/L) + C2 cosh(κ2l/L) +D2 sinh(κ2l/L)] exp(γt/τB) ( 8)

δy(l, t) = [C1 cos(κ1l/L) +D1 sin(κ1l/L) + C3 cos(κ3l/L) +D3 sin(κ3l/L)] exp(γt/τB), (19)

for negative and positive γ, respectively. The constants Ci and Di should be much smaller than
L to fulfill the small deformation approximation, and in the case of a growing solution with
γ > 0, it will only be valid for a time such that Ci exp(γt/τB)� L.

We are particularly interested in the clamped-clamped boundary condition, as shown in
Fig. 1, where both ends remain horizontal, and always at the same vertical position. Due
to the symmetry of these boundary conditions, it is more convenient to shift the coordinate
l, going from −L/2 to L/2. Therefore the clamped-clamped boundary condition corresponds
to δy(±L/2, t) = 0 and δy′(±L/2, t) = 0. These four conditions provide us four equations
to determine the constants Ci and Di. Moreover, with simple sums and substractions of the
equations, they decouple to

C1 cos(κ1/2) + C2 cosh(κ2/2) = 0 , (20)

−C1κ1 sin(κ1/2) + C2κ2 sinh(κ2/2) = 0 , (21)

D1 sin(κ1/2) +D2 sinh(κ2/2) = 0 , (22)

D1κ1 cos(κ1/2) +D2κ2 cosh(κ2/2) = 0 . (23)

The first two equations determine symmetric solutions, while the last two antisymmetric ones.
In order to avoid the trivial solution, the determinant for each pair of equations should be zero.
For γ < 0:

J (+)(p, γ) = κ2 sinh(κ2/2) cos(κ1/2) + κ1 sin(κ1/2) cosh(κ2/2) , (24)

J (−)(p, γ) = κ2 cosh(κ2/2) sin(κ1/2)− κ1 cos(κ1/2) sinh(κ2/2) . (25)

1,
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Figure 2. (a) Plot of dimensionless characteristic rates γ versus compressive force p for the
first symmetric (S) and antisymmetric (A) modes. (b) Detail for the first symmetric and
antisymmetric modes. The insets display the filament shapes for p = 40, 150 and 450. Dashed
line represents a mode with a decaying amplitude.

We can proceed in the same way for the case 0 < γ < p2/4, and the determinants are:

J (+)(p, γ) = κ3 sin(κ3/2) cos(κ1/2)− κ1 sin(κ1/2) cos(κ2/2) , (26)

J (−)(p, γ) = κ3 cos(κ3/2) sin(κ1/2)− κ1 cos(κ1/2) sin(κ3/2) . (27)

The dimensionless parameter p is determined using Eq. (11). The values of γ that vanish the
corresponding determinants, provide quantized hydrodynamic modes.

We plot these quantized values of γ as a function of the parameter p in Fig. 2 for the
first four modes (those with the highest value of γ). For p < 4π2 all modes have a negative
value of γ, corresponding to a compressive force smaller than the critical value. As this value
is surpassed, there are growing modes which contribute to the buckling process, being the
first two the fastest ones. We also observe an interesting successive crossovers between the
symmetric and antisymmetric modes. This implies that for some range of compressing force p,
the antisymmetric mode grows faster than the symmetric one, and for other ranges the opposite
situation is observed (see Fig. 2).

The shape of the different modes, for decaying rates γ < 0 are:

Ψ(+)
n (p, u) = Kn [cosh(κ2/2) cos(κ1u)− cos(κ1/2) cosh(κ2u)] , (28)

Ψ(−)
n (p, u) = Kn [sinh(κ2/2) sin(κ1u)− sin(κ1/2) sinh(κ2u)] , (29)

corresponding to symmetric and antisymmetric modes, respectively. The dimensionless
coordinate along the filament u = l/L ranges from -1/2 to 1/2. For growing rates γ > 0
the filament shapes are:
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Ψ(+)
n (p, u) = Kn [cos(κ3/2) cos(κ1u)− cos(κ1/2) cos(κ3u)] , (30)

Ψ(−)
n (p, u) = Kn [sin(κ3/2) sin(κ1u)− sin(κ1/2) sin(κ3u)] . (31)

These modes depend parametrically on the compressive force. For a given value of p, the different
possible discretized values of γ determine the corresponding values of κ1 and κ2 (or κ3 if γ > 0)
through Eqs. (15), (16) and (17). For a convenient choice of the arbitrary constants Kn, the
different modes are orthonormal, fulfilling∫ 1/2

−1/2
Ψn(p, u)Ψm(p, u)du = δnm (32)

The general solution for a constant compressing load P is

δy(l, t) =
∞∑
n=1

anΨn(p, l/L) exp(γnt/τB) (33)

where the coefficients an are determined from the initial condition of the filament projected
on each eigenmode. As an example, in Fig. 2 (b), we plot the shape of the first two modes.
We observe that as the parameter p increases, the modes have more nodes and the typical
wavelengths are shorter. This situation describes the experimental behaviour observed in Fig. 1.

3. Conclusions
In this paper we have explored the buckling dynamics of a semi-flexible filament immersed in a
viscous environment. We have found analytical solutions of the hydrodynamics beam equation in
the small deformation limit in terms of hydrodynamics modes. These modes have characteristic
relaxation times and critical forces, which depend on geometrical and mechanical parameters of
the filament, the medium viscosity and the magnitude of the compression. When the compression
load is very small, the filament shape straightens. However, if the compression magnitude
surpassed a critical value, an interesting scenario occurs: the buckling shape will depend on
the magnitude of the compression. Moreover, successive crossovers between symmetric and
antisymmetric modes are observed, depending on the particular value of the compressive load.

These results show that the shape of a filament under compression is more complex than
that of a single sinusoidal mode. This work provides a theoretical explanation that can help to
understand the evolution of filament buckling when a variable force is applied, which it is the case
in most experiments. The spatio-temporal characterization of the buckling can have significant
importance in many field applications where a flexible filament is dramatically compressed within
a viscous environment.
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