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Abstract. We explored the generalised Kippenhan-Schlüter model non-isothermal stationary
states for solar prominences where we made some improvements. The most important is to
use recent observed values of radiative losses to build the piecewise heat balance equation.
We explicity found several stationary states without and with magnetic shear solutions for the
system of equations in the beta plasma range between 0 and 1,6. Finally, we computed magnetic
streamlines field for the different shears. Joining all these elements we obtained a catalogue to
study the stability of the prominence candidates.

1. Introduction
Quiescent solar prominences are structures extended into the solar corona, are denser and colder
than coronal neighborhood. They have a small width compared to their length and height. Also,
they have lifetimes from minutes to months and present relative small velocity flows. Therefore it
implies that structures must be close to energy balance equilibrium [1]. The magnetic field is one
of the agents of thermal isolation respect its environment [2]. Costa et al. [3] made an stability
analysis using thermodynamic irreversible energy principles for different solar ambients (For
examples, see [4] and [5]). The goal in that work was extend and generalize the MHD energy
principle of Bernstein [6] using a general procedure considering irreversible thermodynamics
processes where Bernstein’s principle is a particular case. This method includes dissipation and
it shows explicitly the contributions of radiation, heat mechanisms and magnetic energy (see
equations 36 and 37 in [3]). Applied this method to solar prominences shows an alternative
point of view to understand which mechanisms participates into its developing and stability
structure. Recently, several works used the isothermal Kippenhan-Schlüter (KS) model [7] to
study the prominence dynamics where were performed numerical simulations and compared
with observations. (To see some examples [8], [9], [10], [11] and [12]) In particular, Costa et al
[3] used this general energy principle onto the isothermal KS model to study oscillation wave
modes. In this way is possible to identify which is the relative importance between different
sources like radiation and thermal heating and also is possible to compare with observational
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data periods corresponding to typical oscillation of the cromosphere and photosphere which can
be explained as internal prominence modes. A natural extension of that work is to examine the
non-isothermal case, i.e. the Generalized Kippenhan-Schlüter model (KS-G). The KS-G model
has the advantage to bring solutions into a wide range of β plasma. This variation of β allows
to determine the relevance of the different contributions to the prominence stability and its
internal wave modes i.e. magnetic energy, thermal heating and radiative losses, comparing for
example, with force-free models (low β range) where is most difficult to identify it. To do this,
it is necessary to recompute previous results of this simple model upgrading and revalidating
the dynamical solutions of KS-G model for quiescent prominences. In that way, in a next work,
will be possible to study stability and modal structure corresponding to perturbations from the
equilibria using the appointed sources before. According the beta plasma definition, Milne et
al. [13], [14] found that in the range 0 and 1.6 exists stationary solutions for different heating
functions models. For a better description we took sixteen regions cooling of radiative values
from recent works [15] and recompute profiles of temperature, density, pressure and magnetic
fields. We extend the analysis to the whole range −1 ≤ x ≤ 1 checking the symmetry of the
solutions. Finally, we computed the magnetic field streamlines. This is a working progress where
the next stage of our project will be recompute the variational principle using the collection of
solutions obtained here to generalize the aforementioned study.

1.1. Kippenhahn-Schlüter Model
Following Milne et al. [13] we worked onto the extension of Kippenhahn-Schlüter model taking
into account thermal effects. For convenience we used the set of equations in adimensional form.
Firstly, the equations that describes balance between hydrostatic, gas and magnetic pressure in
a stationary regime are

β
dp

dx
= −2Bz

dBz

dx
(1)

dBz

dx
=

1

2
βρ (2)

where β = 2μp1/B
2
0 is the “beta” plasma, being the characteristical pressure is p1 = 1.67 ×

10−13Kg/m3. μ is the magnetic permeability. B0 is the characteristical magnetic field in the x
coordinate, p is the gas pressure and Bz the magnetic field in the z direction as shown in Figure
1. Pressure p and temperature T are related by the state equation of an ideal gas

p = ρT (3)

The heat balance between mechanical heating, radiation losses and thermal conductivity is

d

dx

(
T 5/2

B2

dT

dx

)
= Cρ2Tα − C1(T )ρ (4)

Finally, the magnetic field is:
B2 = 1 +B2

y +B2
z (5)

where B is the magnetic field in cartesian coordinates, using as normalization Bx = B0. By
other way x is the normalized position, being x = 0 at the prominence center and x = 1 its
external boundary in the solar corona. ρ, is the gas density and T the temperature.
The constant C is defined like:

C =
χ p21 Tα−3.5

1

g2 κ
(6)
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Table 1. Values of radiative losses from CHIANTI using sixteen cooling regions [15]

Temperature (K) χ α

T < 1.26× 104 2.02× 10−15 8.06
1.26× 104 ≤ T < 1.58× 104 5.60× 10−2 4.78
1.58× 104 ≤ T < 2.51× 104 1.36× 1024 −1.26
2.51× 104 ≤ T < 3.16× 104 1.46× 1017 0.32
3.16× 104 ≤ T < 7.9× 104 3.11× 1011 1.58
7.9× 104 ≤ T < 1.0× 105 4.44× 1016 0.53
1.0× 105 ≤ T < 1.25× 105 2.31× 1020 −0.22
1.25× 105 ≤ T < 2.0× 105 1.44× 1017 0.41
2.0× 105 ≤ T < 2.51× 105 1.20× 1019 0.05
2.51× 105 ≤ T < 3.98× 105 2.02× 1027 −1.47
3.98× 105 ≤ T < 7.94× 105 6.38× 1017 0.22
7.94× 105 ≤ T < 1.0× 106 1.40× 1019 0.0
1.0× 106 ≤ T < 2.0× 106 1.26× 1024 −0.82
2.0× 106 ≤ T < 3.98× 106 4.14× 1028 −1.54
3.98× 106 ≤ T < 1.0× 107 7.74× 1016 0.23
1.0× 107 ≤ T < 3.16× 107 2.06× 1025 −0.98
T < 3.16× 107 3.20× 1016 0.20

Figure 1. Schematic representation of a prominence. The x-axis is normal to prominence sheet,
while the y-axis runs along the length of the prominence. The quantity φ is the shear angle
between the prominence normal and the horizontal magnetic field. Values at the center are
denoted by the subscript 0, while in the external corona are denoted by the subscript 1, see [13].

where T1 is the characteristical temperature T1 = 2 × 106K, the gravity g = 274m/s2 and the
thermal conductivity κ = 3× 10−11. C is a temperature piecewise function and C1 is:

C1(T ) =

{
0 si T < 0.1;
C(T = p = x = 1) si T ≥ 0.1.

We defined a zero heat region near x ∼ 0, the center prominence and in x = 1 we assured no-heat
exchange with the external environment. The values of χ and α will be different in each region
as shown in the Table 1. This is the most relevant improvement respect the work of Milne et al
[13], where they used the Hildner’s six regions cooling [16].
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1.2. Boundary conditions
To solve the system is necesary to specify β and Bz and also four boundary conditions, the first
two are according to maintain the symmetry as shown in Figure 1:

Bz = 0 at x = 0 (7)

dT

dx
= 0 at x = 0 (8)

The next two conditions are stablished to assure the continuity with the coronal values

ρ = 1 at x = 1 (9)

T = 1 at x = 1 (10)

In this way, the shear angle is directly:

Φ = arctg(By) (11)

2. Semi-analytical solutions
The system equations 1 to 4 constitutes a two-point boundary-value problem, and it has not got
analytical solution. Then, it is necessary to solve it numerically. Also, the character of piecewise
functions C1(T ) and α(T ) inserts into equation 4 strong gradients between cooling regions being
a source of numerical errors. Another source of troubles is that the model we are using is not
valid beyond x = 1 where vertical variations become important [13]. This system could be solved
via Runge-Kutta method building an elementary code or using numerical solvers tools for ODE
equations [17]. The boundary conditions are fullfiled by shooting, it means, fixing ρ0 and T0

at x = 0 and varying β and By until satisfy the boundary conditions at x = 1. This strategy
is easy and fast to obtain the collection of solutions that we are searching for a theoretical
comprehension explained in the Introduction. Increase a 3D model requires a more sofisticated
tool. In this way it is possible to obtain temperature, magnetic field, pressure and density. Also,
compare and check it with semi-analytical expressions it is important (see equations 11 and 12
in [13]). Therefore, we took the temperature profile from the numerical solution and we use it
as input for the following analytical expressions.

dBz

dx
− 1

2

βp

T
= 0 (12)

d

dx

(
T
dBz

dx

)
+

d

dx

(
1

2
B2

z

)
= 0 (13)

Then, the solutions are:

Bz(x) =
√
βp0 tanh

[
1

2
�(x)

√
βp0

]
(14)

p(x) = p0 sech2
[
1

2
�(x)

√
βp0

]
(15)

where

�(x) =

∫ x

0

dy

T (y)
(16)

If T = 1 we recover the Kipenhahn-Schlüter model (1957).
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Left: Numerical pressure profiles. Right: semi-analytical pressure profiles.

Figure 2. Top: β is in the range [0.02−0.67], inferior curves, lower β, upper curves, higher values.
Experiments are setted as β= 0.02; 0.04; 0.06; 0.08; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 y 0.67 from bottom
to top curves. Medium: β= 0.7; 0.8; 0.9; 1.0; 1.1 y 1.2. The qualitative change is for β = 0.7,
values greater that 0.8, tends to isothermic behaviour. Bottom: β: 1.3; 1.4; 1.5 and 1.6.

3. Checking consistency
We checked numerical and semi-analytical solutions comparing between different β, here we
present the pressure evolution. Also for convenience, the profiles are in the range 0 ≤ x ≤ 1,
but the solutions are completely symmetric in the range −1 ≤ x ≤ 0.

3.1. Numerical setting
In Table 2 we showed the input values to set the experiments and the outputs in the boundaries.
If we divided the values of T0 in cold (T ≤ 0.1) and hot solutions (T ≥ 0.1), we noted that for
higher shears the stationary states corresponds to hot solutions.

3.2. Pressure Evolution
We divided the solutions in three ranges, at the top of Figure 2 solutions for 0.02 < β < 0.67,
at medium of Figure 2 for 0.7 < β < 1.2, and at the bottom for 1.3 < β < 1.6. We noted a
qualitative change of behaviour around β = 0.67 for higher values the profiles tends to isothermal
solutions.
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Table 2. Input and outputs values of the numerical experiments.

By β T0 p0 p(1) T (1) Bz(1)

0 0.02 0.000081 58.4 1.00684 1.00611 1.07138
0 0.6 0.00136 3.595 1.00125 1.00195 1.2475
0 1.6 0.999999 2.000 0.98292 1.00326 1.27567
0.5 0.025 0.000089 42.12 1.00784 0.99481 1.01387
0.5 0.6 0.001045 3.593 1.00093 1.00997 1.24709
0.5 1.6 0.999 2.12 1.00245 1.00394 1.33719
5.8 0.025 0.000175 1.2 1.00555 1.02614 0.0697222
5.8 0.6 0.47 1.51 1.00443 1.00085 0.550763
5.8 1.6 0.935 2.3 1.00233 1.05758 1.44093
10 0.025 0.54 1.03 1.018 1.005 0.017
10 0.6 0.73 1.31 1.007 1.011 0.426
10 1.6 0.95 1.9 0.985 1.118 1.21

Left: Temperature profiles. Right: Density profiles.

Figure 3. Top: left, temperature and right, density. β is in the range [0.02−0.67], inferior curves,
lower β, upper curves, higher values. Experiments are setted as β= 0.02; 0.04; 0.06; 0.08; 0.1; 0.2;
0.3; 0.4; 0.5; 0.6 y 0.67 from bottom to top curves. Medium: β= 0.7; 0.8; 0.9; 1.0; 1.1 y 1.2. The
qualitative change is for β = 0.7, values greater that 0.8, tends to isothermic behaviour. Bottom:
β: 1.3; 1.4; 1.5 and 1.6.
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Figure 4. Left: Density (blue), pressure (green) and temperature (red) profiles.Right: Same
magnitudes near x = 1.

Figure 5. Magnetic field streamlines with By = 0,Φ = 0

3.3. Profiles of Temperature and Density
In Figure 2 we checked that the semi-analytical and numerical solutions have a good degree of
coincidence. In the Figure 3 we showed the corresponding profiles of temperature and density
for different values of β. Here is possible to see explicitly that the solutions are consistent with
the fact that prominences are denser and closer in its interior.

3.4. Checking the state equation of an ideal gas
Last quality test is to check boundary conditions and the state equation for an ideal gas. Here
we selected for β = 0.02, 0.6 and 1.6; we showed for the whole range for values of x in the Figure
4 (left) and near the boundaries (right) where the boundary conditions are fulfilled numerically.
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Figure 6. Magnetic field streamlines with By = 0.5,Φ = 28o

Figure 7. Magnetic field streamlines with By = 5.8,Φ = 80o

Figure 8. Magnetic field streamlines with By = 10,Φ = 84o

4. Magnetic field streamlines for non-isothermal cases
We selected for three values of β different magnetic shears to see how to affect the magnetic
field streamlines. Φ = {0o, 28o, 80o, 84o} which corresponds respectively to By = {0, 0.5, 5.8, 10}
The Figure 5 is the reference case without shear, the behaviour of streamlines increasing β is
qualitative similar. However, in the Figures 6, 7 and 8, we can see when the shears increase,
the streamlines tends to alligned into direction ŷ. The case β = 0.025 is the most sensitive
to change with shear. For β = 0.6, we have change with shear too, but is lower respect to
β = 0.025. Finally, for β = 1.6 the effect is weak comparing the another two cases.
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Temperature Density Pressure

Figure 9. Case By = 0.5,Φ = 28o. For the temperature lower curve is for β = 0.025,
intermediate curve for β = 0.6 and upper one for β = 1.6. For density and pressure the curves
are upper β = 0.025, intermediate β = 0.6 and lower β = 1.6.

Temperature Density Pressure

Figure 10. Case By = 5.8,Φ = 80o. For the temperature lower curve is for β = 0.025,
intermediate curve for β = 0.6 and upper one for β = 1.6. For density and pressure the curves
are upper β = 0.025, intermediate β = 0.6 and lower β = 1.6.

Temperature Density Pressure

Figure 11. Case By = 10,Φ = 84o. For the temperature lower curve is for β = 0.025,
intermediate curve for β = 0.6 and upper one for β = 1.6. For density and pressure the curves
are upper β = 0.025, intermediate β = 0.6 and lower β = 1.6.

4.1. Temperature, density and pressure profiles for different shears
In this paragraph we saw how the shear affects temperature, density and pressure profiles for
the same values of β. The case By = 0 is shown in subsection 3.4. From Figures 9, 10 and 11
is clear that for β = 0.025 is the most sensitive for the change of shear. More specifically when
increase the shear the system has a tendency to be isothermic.



10

1234567890 ‘’“”

ASTRONUM 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1031 (2018) 012012  doi :10.1088/1742-6596/1031/1/012012

5. Conclusions and next steps
In this work we explored for Kippenhan-Schlüter model extended to non-isothermal stationary
states. We upgraded the piecewise heat equation according the values of Table 1. For these
reason we used recent observed values to improve the heat equation subdividing in sixteen
cooling regions in place to six cooling regions due to Hildner’s values. Before to make the
numerical experiments for several cases we checked consistency between analytical and semi-
analytical solutions. After that, we began to analyse the behaviour of different profiles for
several values of β, in this way we explicitly showed temperature, density and pressure profiles.
We found several stationary states without and with magnetic shear solutions for the system of
equations in the β range between 0 and 1.6 which corresponds to solar prominences. Beyond
this value of β we can not find stationary solutions which satisfies boundary conditions in the
solar corona.
After that, we selected for β = 0.025, 0.6 and 1.6 cases to study the behaviour of magnetic
field streamlines for different magnetic shears. In all cases the increasing of shear modifies the
streamlines tends to allign in the y direction. The case β = 0.025 is the most sensitive with the
change of shear.We obtain non-isothermal solutions for values of β lower than 0.7, meanwhile
for higher values (β > 0.7) solutions corresponds to Kippenhan-Schlüter isothermic model and
it is independent of the shear.
By another way, if By component of magnetic field is higher than Bx the system will have a
tendency to be isothermic, independently of the values of β.
This work is a first step to perform a catalogue to analyse the stability of this kind of structures
using variational principles. Joining all these elements we have a catalogue to study in a next
stage of our project the stability of the prominence candidates in this minimalistic unidimensional
context.
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