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Nonlinear fluctuating hydrodynamics with many conserved fields:
The case of a three-dimensional anharmonic chain
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We propose a model for a chain vibrating in three dimensions, with first neighbors anharmonic interatomic
potential, which depends on their distance, and subjected to an external tension. In the framework of the
nonlinear fluctuating hydrodynamic theory, which was successfully applied to one-dimensional chains, we
obtain a heat mode, two longitudinal, and four transverse sound modes. We compute their spatiotemporal
correlations comparing the theoretical results with molecular dynamics simulations, finding a good agreement
for high temperatures. We find that the transverse sound modes behave diffusively, meanwhile the heat and
longitudinal sound modes behave superdiffusively, exploring their possible scaling functions and characteristic
exponents.
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I. INTRODUCTION

Anomalous transport has been observed in a wide variety
of systems revealing that this phenomenon is ubiquitous in
nature. Its emergence can be found in processes taking place
in plasmas, glassy materials, porous media, polymers, and
flexible filaments in viscoelastic media, biological cells, heat
conduction, chemical reaction-diffusion, epidemic spreading,
just to mention some [1–3].

Low-dimensional systems, such as polymers, nanowires,
and nanoribbons generally present anomalous thermal trans-
port properties, in other words Fourier’s law is not fulfilled.
This anomalous behavior have been studied theoretically,
numerically, and also experimentally [4,5].

Among different theoretical approaches to study thermal
transport, it was shown that standard (linear) fluctuating hy-
drodynamics is a successful theory for systems where fluctua-
tions are small and short ranged on a mesoscopic scale. How-
ever, phenomena such as anomalous heat transport or light
scattering by a fluid can present long tails in their correlations,
which arise from nonlinearities in the conservation equations.
To deal with these anomalous regimes, nonlinear extensions
of fluctuating hydrodynamics have been proposed [6,7]. It is a
solid scheme that can be applied to general dynamics as long
as the interactions are local and translationally invariant, and
there are locally conserved fields. Under these conditions it is
possible to compute correlations and currents as functions of
the conserved fields.

Models for a chain of atoms with anharmonic interactions
have been considered to study thermal transport under this
approach. However, in these models the atoms were usu-
ally allowed to vibrate only in one dimension and periodic
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boundary conditions were considered [7–11]. In more realistic
systems the interaction depends on the relative position be-
tween atoms, so vibrations in different directions are coupled.
Moreover, experimental conditions usually require setups that
are suspended or clamped by their ends and subject to external
stresses.

In this context, we extend recent works on anomalous
thermal transport in low-dimensional systems [12,13] in the
framework of the nonlinear fluctuating hydrodynamic theory
(NLFHT) to the case of stressed anharmonic chains with
three-dimensional (3D) motion. The theoretical results are
checked by molecular dynamics simulations.

In Sec. II, we present the model and the equations of
motion, calculating average values in the canonical ensemble.
In Sec. III, we apply NLFHT to our model transforming the
elongation, momentum, and energy (fields) of the particles
to a normal mode basis, characterizing their correlations.
We also discuss the scaling functions in the framework of
mode-coupling theory (MCT). In Sec. IV we compute through
molecular dynamics simulations the evolution and spatiotem-
poral correlations of the fields, comparing with the theoretical
predictions. Finally, in Sec. V we present some brief conclu-
sions.

II. MODEL AND GLOBAL EQUILIBRIUM

The model consists of a chain of N + 1 identical particles
of mass m, labeled with index 0 � n � N . The first particle
(n = 0) is fixed in the coordinate origin. The other N particles
can move in the three x-y-z directions and are subjected to
a nearest-neighbor potential V (r) that depends only on the
distance between them. At this point, we consider a general
potential with the condition to have one minimum at a finite
equilibrium distance r0. Moreover, the last particle n = N is
subjected to an external constant force F, which provides a
tension along the chain (see Fig. 1).
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FIG. 1. Sketch of the chain system. The blue particle (n = 0) is
fixed. The other particles can move in the three directions.

In terms of positions Rn and momenta Pn of the particles,
the Hamiltonian is

H({Rn, Pn}) = 1

2m

N∑
n=1

|Pn|2

+
N∑

n=1

V (|Rn − Rn−1|) − F · RN . (1)

Due to the nearest-neighbor interactions, the equations of
motion given by this Hamiltonian can be rewritten in a simpler
way in terms of the interparticle coordinates rn = Rn − Rn−1,
and the force that particle (n − 1) does on particle n

fn = −V ′(rn)
rn

rn
, (2)

with rn = |rn|, finally giving

drn

dt
= Pn

m
− Pn−1

m
, (3)

dPn

dt
= fn − fn+1. (4)

These equations are valid for 1 � n � N , reminding that P0 =
0, and defining fN+1 = −F.

The energy per site is defined as

εn = 1

2m
|Pn|2 + V (rn). (5)

This is the kinetic energy of particle n plus the potential
energy between particle (n − 1) and n. We stress that this is
an arbitrary definition, because the potential energy of a bond
is shared by two particles. The derivative with respect to time
of this site energy is

dεn

dt
= 1

m
fn · Pn−1 − 1

m
fn+1 · Pn, (6)

which corresponds to a local conservation of energy. In the
limit N → ∞, equilibrium statistics of the system tend to
the same results both in the microcanonical and canoni-
cal ensembles. In the canonical ensemble, the probability
density to find the system in a particular configuration is
P ({Rn, Pn})d� = Z−1 exp(−βH)d�, with β = 1/(kBT ) the
inverse temperature, Z the canonical partition function, and
d� = ∏

n dRndPn the differential of phase space. The average
value of any quantity is computed integrating it over the phase
space with this probability density. Although the canonical
variables are Rn and Pn, we can again take advantage of the
structure of the Hamiltonian, and change the space coordi-
nates from Rn to the rn. This transformation has a Jacobian
equals to one. Moreover, RN = ∑N

n=1 rn, and the probability

density factorizes completely to

P ({rn, Pn})d� = 1

Z

N∏
n=1

exp

(
− β

2m
|Pn|2

)
dPn exp(−βV (rn)

+ βF · rn)drn. (7)

We see explicitly that each component of momentum is a
random Gaussian variable. The elongations rn for different
bonds are also decorrelated, although the three Cartesian
components of each one are correlated through the term V (rn).
Integrating this probability density we obtain the partition
function

Z (β, F) =
(

2πm

β

)3N/2

ζ (β, F)N , (8)

with ζ (β, F) = ∫
exp {−β[V (r) − F · r]}dr. To compute this

function and other mean values on the canonical ensemble, it
is useful to change to spherical coordinates, putting the polar
axis in the direction of the external force. In this case the
integrals in the angular coordinates are easily performed. To
simplify the explicit expressions it is also useful to define the
following radial integrals:

Sk (β, F ) =
∫ ∞

0
dr rk sinh(βFr) exp [−βV (r)], (9)

Ck (β, F ) =
∫ ∞

0
dr rk cosh(βFr) exp [−βV (r)]. (10)

These integrals converge only for potentials growing faster
than linear, i.e., V (r)/r → ∞ for r → ∞. This condition
corresponds to interparticle forces at large elongations being
stronger than the applied external force. In terms of these
radial integrals, the partition function, the mean values of the
elongation, and the energy are expressed as

ζ = 4π

βF
S1, (11)

〈x〉 = C2

S1
− 1

βF
= �(β, F ), (12)

〈ε〉 = 3

2β
+ 〈V 〉 = e(β, F ). (13)

The functions � and e are of relevance for the following theo-
retical calculations. To pass to the microcanonical ensemble,
in the limit N → ∞, one can invert the relations to obtain
β(�, e) and F (�, e).

The mean values of momentum and force are 〈Px〉 =
〈Py〉 = 〈Pz〉 = 0, 〈 fx〉 = −F , and 〈 fy〉 = 〈 fz〉 = 0. It is also
possible to compute the second moments, obtaining

〈x2〉 = S3

S1
− 2

βF

C2

S1
+ 2

(βF )2
, (14)

〈y2〉 = 〈z2〉 = 1

βF

C2

S1
− 1

(βF )2
= �

βF
, (15)

〈
P2

x

〉 = 〈
P2

y

〉 = 〈
P2

z

〉 = m

β
, (16)

〈ε2〉 = 15

4β2
+ 3

β
〈V 〉 + 〈V 2〉. (17)

We can generalize this ensemble to a situation where there
is a center of mass velocity V0 (it corresponds to a constant
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velocity of the first particle n = 0 originally fixed), and an
arbitrary direction of the force. With these changes, the mean
values become

〈x〉 = �(β, F )
Fx

F
, 〈y〉 = �(β, F )

Fy

F
, 〈z〉 = �(β, F )

Fz

F
,

〈Px〉 = mV0x, 〈Py〉 = mV0y, 〈Pz〉 = mV0z,

〈ε〉 = 1

2
m|V0|2 + e(β, F ), (18)

where � and e are the same previously defined functions.

III. NONLINEAR FLUCTUATING
HYDRODYNAMIC THEORY

A. Mesoscopic fields and currents

Following the theoretical developments in Ref. [7] applied
to anharmonic chains, we extend it to our model for a stressed
chain vibrating in three dimensions. We first define seven
microscopic fields

g1(n, t ) = xn(t ), g2(n, t ) = yn(t ), g3(n, t ) = zn(t ),

g4(n, t ) = Px,n(t ), g5(n, t ) = Py,n(t ), g6(n, t ) = Pz,n(t ),

g7(n, t ) = εn(t ),

and their corresponding microscopic currents

J1(n, t ) = − 1

m
Px,n(t ), J2(n, t ) = − 1

m
Py,n(t ),

J3(n, t ) = − 1

m
Pz,n(t ), J4(n, t ) = fx,n+1(t ),

J5(n, t ) = fy,n+1(t ), J6(n, t ) = fz,n+1(t ),

J7(n, t ) = 1

m
fn+1(t ) · Pn(t ). (19)

By these definitions, the equations of motion (3) and (4) and
conservation of energy (6) can be written in the compact form

d

dt
gα (n, t ) + Jα (n, t ) − Jα (n − 1, t ) = 0, (20)

which are the Euler equations. The index n is discrete, and
the equations are valid for n = 1 up to n = (N − 1), being
the first particle (n = 0) fixed, and the last particle (n = N) is
subjected to the external force F.

To connect these fields to the results of the generalized
canonical ensemble, we define for any arbitrary microscopic
quantity hn(t ) a coarse-graining or mesoscopic average

〈h〉(n, t ) =
N∑

n′=1

hn	(n′ − n), (21)

with 	(x) a smoothing function with the following properties:
positive 	(x) � 0 ∀x, normalized

∫
	(x)dx = 1, and with

a finite variance σ 2 = ∫
x2	(x)dx such that 1 � σ � N ,

typically a Gaussian function. Now n becomes a continuous
variable along the chain, instead of a discrete index. This
mesoscopic average is valid far from the ends of the chain
(3σ � n � N − 3σ ).

This coarse graining, in a statistical sense, is related to a
local thermal equilibrium of the chain around n. The averaged
fields and currents become smooth functions, not varying

too much in the scale of few sites, finally providing the
(continuous) Euler equations

∂

∂t
Gα (n, t ) + ∂

∂n
Jα (n, t ) = 0, (22)

where Gα = 〈gα〉 and Jα = 〈Jα〉 are the smoothed fields and
currents, respectively. A local microcanonical equilibrium can
be mapped to the general canonical ensemble defined by the
seven parameters V0, F and β (local center of mass velocity,
local tension, and local temperature), which can smoothly
vary over the chain, not far from the global equilibrium, giving
for the smooth fields

G1 = �
Fx

F
, G2 = �

Fy

F
, G3 = �

Fz

F
,

G4 = mV0x, G5 = mV0y, G6 = mV0z,

G7 = 1

2
m|V0|2 + e. (23)

One can invert these relations to obtain the seven parameters
of the ensemble in terms of the fields

Fx = F

�
G1, Fy = F

�
G2, Fz = F

�
G3,

V0x = 1

m
G4, V0y = 1

m
G5, V0z = 1

m
G6,

e = G7 − 1

2m

(
G2

4 + G2
5 + G2

6

)
, (24)

where now � =
√
G2

1 + G2
2 + G2

3 is also a function of the
smooth fields. Temperature β and force modulus F are defined
implicitly in terms of � and e. This inversion allows us to
express the local mesoscopic currents in terms of the averaged
fields:

J1 = − 1

m
G4, J2 = − 1

m
G5, J3 = − 1

m
G6,

J4 = −F

�
G1, J5 = −F

�
G2, J6 = −F

�
G3,

J7 = − 1

m

F

�
(G1G4 + G2G5 + G3G6). (25)

For the last current J7, we have used that the microscopic
force, which only depends on spatial coordinates, is decor-
related from the microscopic momentum, as in the general
canonical ensemble.

We see explicitly that the currents are nonlinear functions
of the fields (except for the first three components). Con-
sidering that the local equilibrium is not far from a global
equilibrium, the currents can be expanded up to second order.

The global equilibrium is a uniform state over the chain,
where the fields are

	G0 = (�0, 0, 0, 0, 0, 0, e0). (26)

This state can be defined by a global temperature β0 and
external tension F0 in the x direction, therefore �0 = �(β0, F0)
and e0 = e(β0, F0). On the other hand, we can constrain the
last particle to move in a plane y-z at distance L0 from the
first particle, with a fixed total energy of the chain E0, then
�0 = L0/N and e0 = E0/N . In the thermodynamic limit N →
∞ both conditions would give the same results.

022118-3



BARRETO, CARUSELA, AND MONASTRA PHYSICAL REVIEW E 100, 022118 (2019)

Around this global equilibrium, we expand the currents up
to second order

Jα ( 	G) = Jα ( 	G0) +
7∑

β=1

Aαβuβ

+ 1

2

7∑
β=1

7∑
γ=1

Hα
βγ uβuγ + O(u3),

with the Jacobian and Hessians matrices

Aαβ = ∂Jα

∂Gβ

( 	G0), (27)

Hα
βγ = ∂2Jα

∂Gβ∂Gγ

( 	G0), (28)

and uα (n, t ) = Gα (n, t ) − G0α , the fluctuations of the fields
around the global equilibrium, which are typically small.

The matrix A can be computed explicitly from Eqs. (25), in
terms of the derivatives F� = ∂F/∂�, and Fe = ∂F/∂e, giving

Aαβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 1
m 0 0 0

0 0 0 0 − 1
m 0 0

0 0 0 0 0 − 1
m 0

−F� 0 0 0 0 0 −Fe

0 −F
�

0 0 0 0 0
0 0 −F

�
0 0 0 0

0 0 0 −F
m 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)
Although the force F is an implicit function of � and e, its
derivatives can be computed in terms of derivatives of � and
e with respect to β and F [7], which in turn can be expressed
in terms of the second moments of the fields. In the same
way, the Hessian matrices Hα are written in terms of first and
second derivatives of the external force, needing up to third
moments of the fields. Their full explicit expressions are in
the Appendix.

We are interested in the spatiotemporal correlations be-
tween the fluctuation of the fields

Cα,β (n, t ) = 〈uα (n0, t0)uβ (n0 + n, t0 + t )〉. (30)

This average is done over different reference sites n0 far from
the borders, and for different reference times t0. For n = 0
and t = 0, this autocorrelation matrix can be computed ex-
plicitly from the second moments computed in the canonical
ensemble:

Cαβ (0, 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 0 0 0 0 0 C17

0 �
βF 0 0 0 0 0

0 0 �
βF 0 0 0 0

0 0 0 m
β

0 0 0
0 0 0 0 m

β
0 0

0 0 0 0 0 m
β

0
C17 0 0 0 0 0 C77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

with

C11 = 〈x2〉 − 〈x〉2 = 〈δx2〉, (32)

C17 = 〈xε〉 − 〈x〉〈ε〉 = 〈δx δV 〉, (33)

C77 = 〈ε2〉 − 〈ε〉2 = 3

2β2
+ 〈δV 2〉, (34)

where for simplicity δx = x − 〈x〉, and δV = V − 〈V 〉.
With the previous expansion of the currents, the Euler

equations up to second order in the fields are

∂uα

∂t
+ ∂

∂n

⎛
⎝ 7∑

β=1

Aαβuβ + 1

2

7∑
β=1

7∑
γ=1

Hα
βγ uβuγ

⎞
⎠ = 0. (35)

In these equations all fields are coupled. Nevertheless, up to
linear order, the equations can be decoupled by diagonalizing
the matrix A, which is guaranteed by the property CA = CAT,
being C = Cαβ (0, 0), which was checked explicitly in our
model. This provides seven normal modes with eigenvalues

ci = {0,+cx,−cx,+cy,−cy,+cz,−cz}, (36)

where

cx = 1√
m

√
F� + FFe, (37)

and

cy = cz = c⊥ =
√

F

m�
. (38)

The solutions of the Euler equations up to linear order are
traveling waves with velocities ci. The mode with eigenvalue
zero is called the heat mode. There are two longitudinal
sound modes (each traveling in opposite directions along the
chain), and four transverse sound modes, with degenerate
sound velocities c⊥. Explicit expressions of the eigenvectors
are in the Appendix. In this mode representation, the original
uα fields are transformed to

φα (n, t ) =
7∑

β=1

Rαβuβ (n, t ), (39)

where R is the basis change matrix composed by the left eigen-
vectors of A as rows. We order the modes in the following
way: In this new basis the spatiotemporal correlations are

Sα,β (n, t ) = 〈φα (n0, t0)φβ (n0 + n, t0 + t )〉, (40)

where the average is computed in the same way as it was
explained for the original uα fields.

φ1 Heat mode
φ2 Longitudinal mode x+
φ3 Longitudinal mode x−
φ4 Transverse mode y+
φ5 Transverse mode y−
φ6 Transverse mode z+
φ7 Transverse mode z−

B. Noise, diffusion, and spatiotemporal correlations

After considering the coarse-graining smoothing of the
elongation, momentum and energy fields, and their corre-
sponding currents, it is necessary to analyze the short-range
fluctuations to characterize the broadening of correlations in
time. On top of the smooth fluctuations along the chain, there
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are short-range fluctuations that can be considered random.
One can model these fluctuations adding diffusion and noise
to Eq. (35)

∂uα

∂t
+ ∂

∂n

⎛
⎝ 7∑

β=1

Aαβuβ + 1

2

7∑
β=1

7∑
γ=1

Hα
βγ uβuγ

− ∂

∂n

7∑
β=1

Dαβuβ +
7∑

β=1

Bαβξβ

⎞
⎠ = 0, (41)

with uα indicating the fields subjected to the stochastic fluc-
tuations ξβ (n, t ), which are random white noise components
whose correlations are

〈ξα (n, t )ξβ (n′, t ′)〉 = δαβδ(n − n′)δ(t − t ′). (42)

Bαβ is the noise strength matrix, which is diagonal [8]. The
noise does not affect the first three elongation components,
and due to the symmetry of the model in the transverse
directions the matrix B has the following structure

Bαβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 σpx 0 0 0
0 0 0 0 σp⊥ 0 0
0 0 0 0 0 σp⊥ 0
0 0 0 0 0 0 σe

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

The symmetric diffusion matrix Dαβ is related to the noise
matrix and the correlations by the generalized fluctuation-
dissipation theorem

DC + CDT = BBT. (44)

From this relation we obtain the diffusion matrix explicit and
uniquely (see Appendix for its full expression).

In the mode basis, Eq. (41) transforms to:

∂φα

∂t
+ ∂

∂n

⎛
⎝cαφα +

7∑
β=1

7∑
γ=1

Gα
βγ φβφγ

− ∂

∂n

7∑
β=1

D̃αβφβ +
7∑

β=1

B̃αβξβ

⎞
⎠ = 0, (45)

where D̃ = RDR−1 and B̃ = RB. In the new basis the relation
Eq. (44) transforms to D̃ + D̃T = B̃B̃T. The matrices Gα are
obtained form the Hα matrices as:

Gα = 1

2

7∑
β=1

Rαβ (R−1)THβR−1. (46)

As the modes travel with their own sound velocities, the
crossed terms for the correlations Sα,β (n, t ) for α �= β tends
to zero for long times. In our model the only exceptions could
be S4,6 and S5,7, because the sound velocities in the directions
y and z are degenerated.

Given also the symmetry between modes φ2, φ4, and φ6

(traveling along the chain in positive direction) with modes
φ3, φ5, and φ7 (traveling in the negative direction), the rele-
vant correlations to study are S1,1, S2,2, and S4,4.

For long time it is expected the following general scalings
for the correlations:

S1,1(n, t ) = t−δ1 f1(nt−δ1 ), (47)

S2,2(n, t ) = t−δ2 f2[(n − cxt )t−δ2 ], (48)

S4,4(n, t ) = t−δ4 f4[(n − c⊥t )t−δ4 ]. (49)

The longitudinal sound mode has a self-coupling quadratic
term G2

22 that does not vanish. Therefore, the corresponding
Eq. (41) has the structure of a noisy Burgers equation whose
solution is the scaling Kardar-Parisi-Zhang (KPZ) function,
with a characteristic exponent δ2 = 2/3.

For the heat and transverse sound modes, the self-coupling
terms G1

11 and G4
44 vanish. Therefore, to compute their auto-

correlations S1,1 and S4,4, respectively, it is necessary to take
into account subleading corrections. This can be done within
the mode-coupling theory. In this approach the dynamical
evolution of the correlations is given by integrodifferential
equations involving the following memory kernel [7]:

Mαα (n, t ) = 2
∑
βγ

(
Gα

βγ

)2Sββ (n, t )Sγ γ (n, t ). (50)

For long times, due to the spread of the correlations at dif-
ferent velocities, the leading contributions to this kernel come
from the diagonal terms, plus eventual contributions from the
degenerate transverse modes.

For the transverse sound mode, due to the symmetries
of the G4 matrix, the kernel in Eq. (50) vanishes. Under
these conditions the equation for this mode reduces to a
normal diffusion equation, with a Gaussian solution with a
characteristic exponent δ4 = 1/2.

For the heat mode, due to the structure of the matrix G1, the
kernel has contributions from all the other six sound modes.
If one considers only the coupling with the two longitudinal
sound modes, whose correlation function approaches to a KPZ
with exponent 2/3, one expects for the heat mode correlation
a Levy function with exponent δ1 = 3/5. On the other hand,
considering only a coupling with the four transverse sound
modes, whose correlations are Gaussian functions, one would
expect a Levy function with exponent δ1 = 2/3 for the heat
mode correlation [11].

Our model is more complex because it mixes both situa-
tions, so the exponent δ1 depends on the particular parameters,
through the G1 matrix elements. Nevertheless, the previous
analysis indicates a superdiffusive behavior δ1 > 1/2.

IV. MOLECULAR DYNAMICS SIMULATIONS

We apply the previous theoretical results to the case of a
Fermi-Pasta-Ulam potential

V (r) = 1
2 k2(r − r0)2 + 1

3 k3(r − r0)3 + 1
4 k4(r − r0)4, (51)

which can be considered as a general expansion of an arbitrary
potential around its minimum. The quartic term k4 should be
bigger than zero, to guarantee the convergence of all integrals
needed for the canonical averages. We consider k2 = 1, k3 =
−5, and k4 = 16. These values guarantee the existence of
only one minimum at r = r0. On the other hand, k3 tunes the
asymmetry of the potential, which is negative in our case, to
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FIG. 2. Autocorrelation functions at different times: Left panels (a) and (d) S1,1 (heat mode); center panels (b) and (e) S2,2 (longitudinal
sound mode); right panels (c) and (f) S4,4 (transverse sound mode). Vertical arrows indicate theoretical position for sounds peaks at ct .
Temperature T = 1; top panels (a), (b), and (c) correspond to elongation � = 1; bottom panels (d), (e), and (f) correspond to � = 1.1.

model a repulsive force at short distances. We take r0 as unit
of length and k2r2

0 as unit of energy and temperature.
Depending on temperature and on the applied tension the

chain presents two different configurations. When the mean
elongation � is less than one, the chain is soft and the system
has a huge number of available configurations, making it
difficult to explore numerically the full phase space. On the
other hand, if � > 1, the chain is more tight and the available
phase space for the system is drastically reduced.

We consider four sets of parameters that are representative
of regimes for low and high temperatures with and without
strain:

A: T = 0.1 and � = 1,
B: T = 0.1 and � = 1.1,
C: T = 1 and � = 1,
D: T = 1 and � = 1.1.
For each set we compute analytically the R matrix required

to transform the seven fields uα to the corresponding φα fields
given by Eq. (39).

To compute numerically the spatiotemporal correlations of
these fields it is necessary to do a statistical average starting
from a thermal equilibrated initial condition. For this purpose,
we first integrate numerically the stochastic extension of
Eqs. (3) and (4) at the desired temperature, using a Runge-
Kutta algorithm. This allows an equilibration in a reasonable
computational time. After this stage the equations are inte-
grated in the microcanonical ensemble using a Velocity-Verlet
algorithm.

The last stage of the numerical integration allows us
to calculate the normal mode fields. Doing statistical av-
erage in time, we obtain the corresponding spatiotemporal

correlations. As the sound modes come in pairs traveling in
opposite directions along the chain, and there is a degenera-
tion in the transverse directions, we only show the correlations
for the heat mode φ1, the longitudinal sound mode φ2, and the
transverse sound mode φ4.

In Fig. 2 we plot the mode correlations S1,1, S2,2, and S4,4

for the set of parameters C and D as a function of the site
and for different times. We observe that in all cases the peaks
broaden and flatten for increasing times. The sound modes
propagates along the chain with constant velocities while the
heat mode remains at its initial position.

Also, for the heat peak, we observe the presence of two
small lateral peaks, which corresponds to the coupling with
the transverse sound mode due to the nonlinear terms in the
hydrodynamic expansion. It is expected that at longer times
these modes are decoupled. From the position of the peaks,
we compute numerically the velocities of the sound modes
(see Table I), observing a good agreement with the theoretical
predictions for all sets of parameters.

We obtain numerically the characteristic exponents δ1, δ2,
and δ4 in Eqs. (49), from the broadening rate for each peak,

TABLE I. Theoretical and numerical velocities of longitudinal
and transverse sound mode correlations.

Set cx Theo cx Num c⊥ Theo c⊥ Num

A 1.12923 1.17 ± 0.01 0.608417 0.61 ± 0.01
B 1.24087 1.37 ± 0.01 0.661516 0.66 ± 0.01
C 2.05064 2.07 ± 0.02 1.40817 1.41 ± 0.01
D 2.25594 2.30 ± 0.02 1.45634 1.46 ± 0.01
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TABLE II. Scaling exponents for the heat, longitudinal and
transverse sound modes.

Set δ1 δ2 δ4

A 0.74 ± 0.02 0.70 ± 0.02 0.46 ± 0.01
B 0.78 ± 0.02 0.70 ± 0.02 0.46 ± 0.01
C 0.60 ± 0.02 0.69 ± 0.02 0.50 ± 0.01
D 0.62 ± 0.02 0.69 ± 0.02 0.50 ± 0.01

which is the same as the flattening rate, within the numerical
errors. The results are presented in Table II.

We find for the heat mode and for the longitudinal sound
mode that their exponents are in all cases larger that 1/2
corresponding to a superdiffusive behavior. On the other hand
for the transverse sound mode the exponent is close to 1/2,
corresponding to a normal diffusion.

For sets C and D, the numerical exponents agree with
the theoretical predictions. At low temperature the system
explores regions around the minimum of the potential, where
the nonlinear terms are negligible and the ergodicity criterion
is difficult to achieve in a tractable computational time. This
can be observed in the deviation of the exponents, especially
for the heat mode, corresponding to sets A and B.

For the transverse sound mode, the normal diffusive be-
havior gives a Gaussian scaling function, with an exponent
δ4 = 1/2. For the longitudinal sound mode, as it was dis-
cussed previously, we expect a KPZ scaling function, with
an exponent δ2 = 2/3, which is near the obtained numerical
value. For the heat mode, we obtain characteristic exponents
δ1 in the expected range between 3/5 and 2/3, but closer to
3/5.

We show in Fig. 3, for different times, the correlations
shifted and rescaled by their theoretical velocities and char-
acteristic exponents. We also superimpose the expected cor-
responding scaling functions. A good agreement is observed
for the transverse and longitudinal sound modes peaks with a
Gaussian and a KPZ function, respectively. For the heat mode
we propose a Levy function with an exponent 5/3, which is
closer to our numerical estimations. The deviations observed
at the tails may indicate that the long time limit was not yet
achieved.

Numerically, we observe for high temperature that the
tension does not modify the characteristic exponents of the
sound modes (within the statistical errors), nor their scaling
functions (see Table II). However, for the sound mode there is
a slight dependence of its exponent with the tension.

V. CONCLUSIONS

In this paper we studied an anharmonic chain vibrating in
three dimensions, with a first neighbors interatomic potential
that depends on the distance, and subjected to an external
tension. This is a more realistic model that can be applied to,
e.g., suspended nanowires and polymers.

The 3D motion and the tension give to our model a com-
plex behavior in comparison with previous 1D anharmonic
chain models. We applied the NLFHT where the new features
of our model result in the emergence of two longitudinal
and four transverse sound modes, added to a single heat
mode. For longitudinal sound modes, the self-coupling term
does not vanish, implying for its spatiotemporal correlation a
superdiffusive behavior with a characteristic exponent of 2/3.

For a transverse sound mode the self-coupling term van-
ishes and it was necessary to apply MCT. Even within this
theory, this mode does not couple to any others, resulting in a
diffusive behavior for its spatiotemporal correlation.

Finally, for the heat mode, the self-coupling term also
vanishes. MCT shows that this mode couples to all the sound
modes, inferring a more complex scaling function with char-
acteristic exponent in between 3/5 and 2/3. At low tempera-
ture, where the particles feels an almost harmonic potential,
the theory can not be checked numerically in reasonable
computational time because ergodicity is difficult to achieve.

For high temperatures, the numerical simulations are in a
reasonable good agreement with the theoretical predictions
for the sound velocities and the exponents. For the heat mode
the exponent is closer to 3/5, but it seems to slightly depend
on the tension, which affects the couplings with the sound
modes. The role of the tension, as well as the boundary
conditions, deserve further investigation. These results for the
correlations of the fields can be applied to obtain the thermal
conductivity of the chain through the Green-Kubo formula,
suggesting an anomalous thermal conduction.

FIG. 3. Rescaled and shifted autocorrelation functions for different times. (a) S1,1 (heat mode). A rescaled Levy 5/3 function is
superimposed. (b) S2,2 (longitudinal sound mode). A rescaled KPZ function is superimposed. (c) S4,4 (transverse sound mode). A normalized
Gaussian function with σ = 0.57 is superimposed. T = 1, � = 1.
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APPENDIX

For a general derivative with respect to the microcanonical
variables � and e of a quantity h, we have

∂h

∂�
= ∂β

∂�

∂h

∂β
+ ∂F

∂�

∂h

∂F
, (A1)

∂h

∂e
= ∂β

∂e

∂h

∂β
+ ∂F

∂e

∂h

∂F
. (A2)

Additionally, if h is an average on the canonical ensemble,
we have the following rules for derivation with respect to β

and F

∂〈h〉
∂β

= F (〈hx〉 − 〈h〉〈x〉) − (〈hV 〉 − 〈h〉〈V 〉)

= F 〈h δx〉 − 〈h δV 〉, (A3)

∂〈h〉
∂F

= β(〈hx〉 − 〈h〉〈x〉) = β〈h δx〉. (A4)

These rules allow to compute the derivatives of the external
force, needed for the A matrix, which are obtained from the
following expressions:

∂�

∂F
= ∂〈x〉

∂F
= βC11,

∂e

∂F
= ∂〈ε〉

∂F
= βC17,

(A5)
∂�

∂β
= ∂〈x〉

∂β
= FC11 − C17,

∂e

∂β
= ∂〈ε〉

∂β
= FC17 − C77.

Using that F = F [�(β, F ), e(β, F )] and β =
β[�(β, F ), e(β, F )] it is possible to determine that

∂F

∂�
= − 1

�

∂e

∂β
,

∂F

∂e
= 1

�

∂�

∂β
,

(A6)
∂β

∂�
= 1

�

∂e

∂F
,

∂β

∂e
= − 1

�

∂�

∂F
,

with

� = ∂e

∂F

∂�

∂β
− ∂e

∂β

∂�

∂F
. (A7)

Replacing Eqs. (A5) we obtain

∂F

∂�
= C77 − FC17

β
(
C11C77 − C2

17

) ,

∂F

∂e
= FC11 − C17

β
(
C11C77 − C2

17

) ,

∂β

∂�
= C17

C11C77 − C2
17

,

∂β

∂e
= −C11

C11C77 − C2
17

. (A8)

We can also compute the derivatives of the correlators of
order two

∂C11

∂β
= F 〈δx3〉 − 〈δx2 δV 〉,

∂C11

∂F
= β〈δx3〉,

∂C17

∂β
= F 〈δx2 δV 〉 − 〈δx δV 2〉,

(A9)
∂C17

∂F
= β〈δx2 δV 〉,

∂C77

∂β
= − 3

β3
+ F 〈δx δV 2〉 − 〈δV 3〉,

∂C77

∂F
= β〈δx δV 2〉,

in terms of correlators of order three. These results allow to
compute the second derivatives of the external force.

For the A matrix, the right eigenvectors are

	vR1 = 1

Z1
(Fe, 0, 0, 0, 0, 0,−F�),

	vR2 = 1

Z2
(1, 0, 0,−mcx, 0, 0, F ),

	vR3 = 1

Z3
(1, 0, 0,+mcx, 0, 0, F ),

	vR4 = 1

Z4
(0, 1, 0, 0,−mc⊥, 0, 0), (A10)

	vR5 = 1

Z5
(0, 1, 0, 0,+mc⊥, 0, 0),

	vR6 = 1

Z6
(0, 0, 1, 0, 0,−mc⊥, 0),

	vR7 = 1

Z7
(0, 0, 1, 0, 0,+mc⊥, 0),

with Zi normalization constants. As columns, they form the
matrix R−1. The left eigenvectors of A are

	vL1 = Z1

mc2
x

(F, 0, 0, 0, 0, 0,−1),

	vL2 = Z2

2mc2
x

(F�, 0, 0,−cx, 0, 0, Fe),

	vL3 = Z3

2mc2
x

(F�, 0, 0,+cx, 0, 0, Fe),

	vL4 = Z4

2

(
0, 1, 0, 0,− 1

mc⊥
, 0, 0

)
,

	vL5 = Z5

2

(
0, 1, 0, 0,+ 1

mc⊥
, 0, 0

)
,
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	vL6 = Z6

2

(
0, 0, 1, 0, 0,− 1

mc⊥
, 0

)
,

	vL7 = Z7

2

(
0, 0, 1, 0, 0,+ 1

mc⊥
, 0

)
, (A11)

which as rows, they form the matrix R. The constants Zi

can be determined uniquely (up to a sign) imposing that
the correlation matrix in the mode basis is the identity
(RCRT = I )

Z2
1 = F 2C11 − 2FC17 + C77

β2
(
C11C77 − C2

17

)2 = mc2
x

�
, (A12)

Z2
2 = Z2

3 = 2(F 2C11 − 2FC17 + C77)

C11C77 − C2
17

(A13)

= 2mβc2
x ,

Z2
4 = Z2

5 = Z2
6 = Z2

7 = 2βF

�
= 2mβc2

⊥. (A14)

The Hessian matrices are explicitly

H1
αβ = H2

αβ = H3
αβ = 0, (A15)

H4
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F�� 0 0 0 0 0 −Fe�

0 F
�2 − F�

�
0 0 0 0 0

0 0 F
�2 − F�

�
0 0 0 0

0 0 0 Fe
m 0 0 0

0 0 0 0 Fe
m 0 0

0 0 0 0 0 Fe
m 0

−Fe� 0 0 0 0 0 −Fee

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A16)

H5
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 F
�2 − F�

�
0 0 0 0 0

F
�2 − F�

�
0 0 0 0 0 −Fe

�

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −Fe

�
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A17)

H6
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 F
�2 − F�

�
0 0 0 0

0 0 0 0 0 0 0
F
�2 − F�

�
0 0 0 0 0 −Fe

�

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −Fe

�
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A18)

H7
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −F�

m 0 0 0
0 0 0 0 − F

ml 0 0
0 0 0 0 0 − F

ml 0
−F�

m 0 0 0 0 0 −Fe
m

0 − F
ml 0 0 0 0 0

0 0 − F
ml 0 0 0 0

0 0 0 −Fe
m 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A19)
The diffusion matrix has the following structure:

Dαβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D11 0 0 0 0 0 D17

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0
βσ 2

px

2m 0 0 0

0 0 0 0
βσ 2

p⊥
2m 0 0

0 0 0 0 0
βσ 2

p⊥
2m 0

D17 0 0 0 0 0 D77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A20)
with

D11 = C2
17σ

2
e

2
(
C11C77 − C2

17

)
(C11 + C77)

, (A21)

D17 = − C11C17σ
2
e

2
(
C11C77 − C2

17

)
(C11 + C77)

, (A22)

D77 =
(
C11C77 − C2

17 + C2
11

)
σ 2

e

2
(
C11C77 − C2

17

)
(C11 + C77)

. (A23)
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