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Abstract: Let A be a unital C*-algebra with a faithful state φ. We study the geometry of the unit sphere Sφ =
{x ∈ A : φ(x*x) = 1} and the projective space Pφ = Sφ/T. These spaces are shown to be smooth manifolds
and homogeneous spaces of the group Uφ(A) of isomorphisms acting inAwhich preserve the inner product
induced by φ, which is a smooth Banach-Lie group. An important role is played by the theory of operators in
Banach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric in Pφ, and prove
the existence of minimal geodesics, both with given initial data, and given endpoints.
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1 Introduction
LetA be a unital C*-algebrawith a faithful state φ. There are natural geometric objects associated to this pair:
the unit sphere

Sφ := {x ∈ A : φ(x*x) = 1},

and the projective space
Pφ := Sφ/T,

where T = {z ∈ C : |z| = 1}, i.e., x, x′ ∈ Sφ define the same element in Pφ if x′ = zx for some z ∈ T.
The purpose of this paper is the study of these spaces using the tools of differential geometry. As in the

classical setting in finite dimension (the spacesSφ andPφ are infinite dimensional), a key feature in this study
is the transitive action of a group of movements. In this case, the group Uφ(A) of invertible linear operators
acting inA, which preserve the inner product ⟨ , ⟩φ induced by φ (⟨x, y⟩φ = φ(y*x), x, y ∈ A) , i.e.,

Uφ(A) = {G ∈ B(A) : G is invertible and ⟨Gx, Gy⟩φ = ⟨x, y⟩φ}.

HereB(A) denotes the Banach space of bounded linear operators acting inA.
The sphere Sφ is a dense subset of a sphere in a Hilbert space: denote by L = L2(A, φ) the GNS Hilbert

space of the pair (A, φ), i.e. the completion of the pre-Hilbert space (A, ⟨ , ⟩φ). Then clearly Sφ is dense in
the sphere of L. Also it is clear that an element G ∈ Uφ(A) extends uniquely to a unitary operator UG in L.
ThereforeUφ(A) canbe regardedas a subgroupof theunitary groupofL, consistingof all unitariesU acting in
Lwhich leaveA fixed: U(A) = A. To perform our geometric study, we shall need to introduce topologies in Sφ
andPφ (the ambient topology ofA, and its quotient topology, respectively), and also inUφ(A). Clearly,Uφ(A)
is not a Banach-Lie group in the topology that it inherits from the whole unitary group of L: the condition of
leaving A ⊂ L fixed is not closed (A is dense in L). To obtain a regular structure for Uφ(A) we shall use the
theory of operators in spaces with two norms, developed independently by M.G. Krein [1] and P. Lax [2]. Two
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norms appear naturally in our context, the usual norm ‖ · ‖ ofA and the norm ‖ · ‖φ induced by the φ-inner
product.

The projective space Pφ is homeomorphic to a set of projections, the space P1(A, φ) of rank one projec-
tions acting in A, which are orthogonal for the φ-inner product. We introduce a natural metric in Pφ, and
study its geodesics. Though the metric is not complete (and the space is infinite dimensional), using facts
from the infinite dimensional Grassmann manifold [3, 4], we obtain the existence of minimal geodesics with

1. fixed initial position and initial velocity (Theorem 6.2);
2. fixed endpoints (Theorem 6.3).

The contents of the paper are the following. In Sections 2 and 3 we introduce preliminary facts; Section 3
focuses on basic facts concerning operators in spaces with two norms (our references here are [1] and [2], and
also the paper by I. C. Gohberg andM. K. Zambickii [5]), and the local structure of the groupUφ(A). In Section
3 we study the actions ofUφ(A) on Sφ and Pφ. Our main result is that both actions are transitive, and that the
sphere and projective space are connected. In Section 4 we examine the local regular structure of Sφ and Pφ:
the first space is a complemented submanifold ofA, the second is a differentiable manifold, both spaces are
homogeneous spaces of the group Uφ(A). In Section 5 we introduce a pre-Riemann-Hilbert metric in Pφ. We
do this in two ways, that turn out to coincide: as a quotient metric, and as a trace induced metric. In Section
6 we prove the existence of minimal geodesics for this metric, both in the initial value problem (given initial
position and velocity) and in the boundary value problem (given initial and final position).

2 Preliminaries and notation
We shall considerA represented in the Hilbert spaceL = L2(A, φ), via the GNS representation induced by φ.
Elements x ∈ Awill also be regarded as elements ofLwith norm ‖x‖φ = φ(x*x)1/2. As usual, if x, y ∈ A, x⊗y
will denote the rank one operator acting inL: x⊗y(ξ ) = ⟨ξ , y⟩x, and in particular if a ∈ A, x⊗y(a) = φ(y*a)x.
Denote by P(L) the space of selfadjoint projections ofL, and by P1(L) the subset of rank one projections. Let
the map

π : Sφ → P1(L) , π(x) = x ⊗ x

whose range is P1(A, φ) the set of rank one projections onto lines generated by elements inA ⊂ L. This map
induces a bijection

Pφ → P1(A, φ) , [x]→ x ⊗ x.

We shall identify these spaces (we shall see that the bijection above is a homeomorphism between the
quotient topology and the norm topology of bounded operators acting inA). Therefore themap π can also be
regarded as the quotient map from Sφ onto Pφ.

Part of the material in this section is either well known or follows from well known facts. It falls in the
context of the theory of symmetrizable and proper linear operators in spaces with two norms, developed by
I. Gohberg and M.K. Zambickii [5], M.G. Krein [1] and P. Lax [2]. In the space A we can consider two norms,
the usual norm ‖ · ‖∞ and the norm ‖ · ‖φ induced by φ. These norms are comparable: ‖a‖φ ≤ ‖a‖∞ for all
a ∈ A, and only the second norm is complete.

A bounded linear operator T ∈ B(A) is adjointable if there exists S ∈ B(A) such that

φ(y*T(x)) = φ(S(y)*x).

In this case we denote S = T♯. For example, if La denotes the left multiplication operator (a ∈ A) then
L♯a = La* . Let us denote by

Ba(A) = {T ∈ B(A) : T is adjointable}.

Note thatBa(A) is a (non closed) subalgebra ofB(A). We shall consider a subset ofBa(A)

Bs(A) = {T ∈ Ba(A) : T♯ = T}.
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the adjointable operators which are symmetric with respect to φ. These operators are called usually sym-
metrizable. M.G. Krein [1] and P. Lax [2] studied this class, in the context of a Banach algebra B (here equal
to A) endowed with a positive definite inner product (here, the one induced by the state φ). For instance,
they showed that these operators extend to selfadjoint operators inL (we state below a result independently
obtained by both authors). Adjointable operators also extend to L. If T is adjointable, T1 = 1

2 (T + T♯) and
T2 = −i

2 (T − T
♯) are symmetrizable, and therefore extend to L, thus T = T1 + iT2 extends to L, as well as T♯,

and clearly the extension of T♯ is the adjoint in L of the extension of T. This latter result was obtained by I.
Gohberg andM.K. Zambickii [5] in themuch broader context of Banach spaces with two norms (none of them
given by inner products).

LetF(A) be the linear span of a⊗b, a, b ∈ A inB(A), which can be regarded also as finite rank operators
acting in L, with symbols inA. These operators are adjointable, (x ⊗ y)♯ = y ⊗ x. Put

F(A)s = {T ∈ F(A) : φ(x*Ty) = φ((Tx)*y)},

the subset of operators in F(A)which are symmetric for the φ-inner product. Namely, F(A)s = F(A)∩Bs(A).
We introduce a norm inBa(A):

‖T‖a = max{‖T‖, ‖T♯‖}.

This norm was introduced by Gohberg and Zambickii in [5]. It is easy to verify that Ba(A) is complete with
this norm. Also that

‖TS‖a ≤ ‖T‖a‖S‖a,

i.e. Ba(A) is a Banach algebra, with involution ♯. Also it is clear that ‖T♯‖a = ‖T‖a. Though Ba(A) is not a
C*-algebra. For instance, pick a ∈ A with ‖a‖ = 1 and a*a ≠ 1. Elementary computations show that

‖(1⊗ a)♯(1⊗ a)‖a = φ(a*a) and ‖1⊗ a‖a ≥ ‖a‖ = 1,

where φ(a*a) < 1. Indeed, since a*a ≤ 1 and φ is faithful, φ(a*a) = 1 would imply a*a = 1.
Let us denote by Gla(A) the group of invertible operators in Ba(A). Note that G ∈ Gla(A) if only if G and

G♯ are invertible inA. Further, we have σBa(A)(T) = σA(T♯) ∪ σA(T) forBa(A).
Consider the closed subgroup

Uφ(A) = {G ∈ Gla(A) : φ((Gx)*Gy) = φ(x*y)}.

That is, Uφ(A) consists of the invertible operators acting in A which preserve the inner product given by the
state φ. Namely, if G ∈ Uφ(A) then G−1 = G♯.

Elements G inUφ(A)need not be isometric, and it is clear that ‖G‖a ≥ 1. Clearly, for a ∈ A, ‖La‖a = ‖a‖∞.
Let Qa the set of idempotents inBa(A),

Qa = {Q ∈ Ba(A) : Q2 = Q}.

In particular, Qa is an analytic submanifold ofBa(A) (see [6]). We shall consider a subset of Qa:

Pa = {P ∈ Qa : P♯ = P},

the idempotents which are orthogonal with respect to φ (and extend to selfadjoint projections in L). Recall
that P1(A, φ) denotes the subset of rank one projections onto lines generated by elements inA ⊂ L.

Note that Uφ(A) acts in Pa:

G · P = GPG−1 ∈ Pa, for G ∈ Uφ(A) and P ∈ Pa.

Before we finish this section, let us state the following elementary result. Note that P1(A, φ) is
considered with the ‖ ‖a-topology.

Lemma 2.1. The bijection
Pφ ←→ P1(A, φ) , [x]→ x ⊗ x , (x ∈ Sφ)

is a homeomorphism.
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Proof. First note that an element x ∈ A defines a projection x ⊗ x in A if and only if φ(x*x) = 1. Therefore,
it is clear that the map above is a bijection. It is continuous: if [xn] → [x] in Pφ, then there exist zn ∈ T such
that znxn → x in A. Then clearly xn ⊗ xn = znxn ⊗ znxn → x ⊗ x in Ba(A). Suppose now that xn , x ∈ Pφ
satisfy xn ⊗ xn → x ⊗ x inBa(A). Then

xn ⊗ xn(x) = φ(x*nx)xn → x ⊗ x(x) = x,

and
⟨xn ⊗ xn(x), x⟩φ = |φ(x*nx)|2 → ⟨x ⊗ x(x), x⟩φ = |φ(x*x)|2 = 1,

i.e. |φ(x*nx)| → 1. Then putting zn = φ(x*nx)
|φ(x*nx)|

∈ T, one has that znxn → x inA.

In order to study the structure of Pa, we shall need the following elementary facts, which are consequences
of the holomorphic functional calculus in the Banach algebra Ba(A). These facts hold in the broader frame
of Banach algebras with involution.

First we consider a local polar decomposition in Gla(A). In what follow, we denote by

log(A) :=
∑︁
n≥1

1
n (1 − A)

n ,

defined for A ∈ Ba(A) such that ‖A − 1‖a < 1.

Lemma 2.2. Let G ∈ Gla(A) be close to 1 so that ‖G♯G − 1‖a < 1. Then there exist H ∈ Gla(A), H♯ = H,
H2 = G♯G, and U ∈ Uφ(A), which are C∞ functions in terms of G, such that

G = UH.

Proof. Since ‖G♯G − 1‖a < 1, the log series ∑︁
n≥1

1
n (1 − G

♯G)n = L

converges inBa(A). Put H = e 1
2 L. Then it is clear that H♯ = H ∈ Gla(A) and H2 = G♯G. Also H is a C∞ function

of G, and commutes with G♯G.
Put U = GH−1. Since G, H ∈ Gla(A), then U ∈ Gla(A) and

U♯U = (GH−1)♯GH−1 = H−1G♯GH−1 = 1,

i.e. U ∈ Uφ(A).

Lemma 2.3. There exists 0 < r < 1 such that if U ∈ Uφ(A) with ‖U − 1‖a < r, then there exists Z ∈ Ba(A) with
Z♯ = −Z, Z a C∞ function of U, such that

U = eZ .

Proof. Put
Z = log(U) =

∑︁
n≥1

1
n (1 − U)

n ,

which converges inBa(A). Clearly eZ = U. Also, since ‖U♯ − 1‖a = ‖U − 1‖a < 1,

Z♯ =
∑︁
n≥1

1
n (1 − U

♯)n =
∑︁
n≥1

1
n (1 − U

−1)n = log(U−1).

Then eZ
♯

= U−1 = e−Z, i.e., since Z and Z♯ commute, eZ
♯+Z = 1. It follows that

Z♯ + Z =
m∑︁
k=1

2kπiQk , (1)
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over a finite set of integers k, for Qk ∈ Qa, with QkQk′ = 0 if k ≠ k′. Note that

‖Z‖a ≤
∑︁
n≥1

1
n ‖1 − U‖

n
a <
∑︁
n≥1

1
n r

n = − log(1 − r).

Pick 0 < r < 1 such that − log(1 − r) < π, i.e 0 < r < 1 − e−π. Then

‖Z♯ + Z‖a ≤ ‖Z♯‖a + ‖Z‖a = 2‖Z‖a < 2π.

If there exists an integer k0 = ̸ 0 in the sum (1) such that Qk0 = ̸ 0, then

‖Z♯ + Z‖a ≥ 2k0π.

Indeed, pick x0 ∈ R(Qk0 ) with ‖x0‖∞ = 1. Then

‖
∑︁
k≥1

2kπiQkx0‖∞ = ‖2k0πiQk0x0‖∞ = 2k0π.

It follows that Z♯ = −Z.

In particular, this fact above enables one to obtain a local chart near 1 forUφ(A), defined on a neighbourhood
of the origin in

Bas(A) = {Z ∈ Ba(A) : Z♯ = −Z},

via the exponential map, in a standard fashion, as with the usual unitary group of a C*-algebra.

Corollary 2.4. The group Uφ(A) is a Banach-Lie C∞-group, and a complemented submanifold of Ba(A). Its
Banach-Lie algebra isBas(A).

Note that, as any smooth Banach Lie group, Uφ(A) turns out to be a real analytic Banach Lie group (see e.g.
[7]).

We can use these facts and notations to prove that the symmetric part Pa of Qa is a complemented sub-
manifold ofBa(A):

Proposition 2.5. Pa is a C∞ submanifold of Ba(A). The action of Uφ(A) on Pa is locally transitive and has C∞

local cross sections. In particular, for any fixed P0 ∈ Pa, the map

πP0 : Uφ(A)→ Uφ(A) · P0 , πP0 (U) = UP0U
♯

is a C∞ submersion and Uφ(A) · P0 coincides with the connected component of P0 in Pa.

We abbreviate these facts in the statement, by saying that thePa is a C∞-homogeneous space ofUφ(A). Along
this line, Porta and Recht [6] proved that Qa is a homogeneous space of Gla(A). To prove this Proposition, we
shall need the following result from [8]:

Lemma 2.6. Let G be a Banach-Lie group acting smoothly on a Banach space X. For a fixed x0 ∈ X, denote by
πx0 : G → X the smooth map πx0 (g) = g · x0. Suppose that

1. πx0 is an open mapping, regarded as a map from G onto the orbit {g · x0 : g ∈ G} of x0 (with the relative
topology of X).

2. The differential d(πx0 )1 : (TG)1 → X splits: its nullspace and range are closed complemented subspaces.

Then the orbit {g · x0 : g ∈ G} is a smooth submanifold of X, and the map

πx0 : G → {g · x0 : g ∈ G}

is a smooth submersion.

Proof. (of Proposition 2.5) In our case, G = Uφ(A), X = Ba(A), x0 = P0 and the action
πP0 : Uφ(A)→ Ba(A) is given by conjugation πP0 (U) = UP0U

−1. Put

OP0 = {UP0U
♯ : U ∈ Uφ(A)}
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the orbit of P0. To prove that the action is locally transitive and that πP0 is an openmapping,we shall construct
continuous local cross sections for πP0 defined on a neighbourhood of P0 in Pa. Consider

VP0 = {P ∈ Pa : G := PP0 + (1 − P)(1 − P0) ∈ Gla(A) and ‖G♯G − 1‖a < 1}.

It is clear that VP0 is open in Pa: ifP = P0 then G = 1, thus G is invertible if P is close to P0. Put

sP0 : VP0 → Uφ(A), sP0 (P) = U,

where U ∈ Uφ(A) is given by the decomposition G = UH done in Lemma 2.2. Note that sP0 is continuous (the
map G ↦→ U is C∞). Also

GP0 = PP0 = PG.

Thus G♯P0 = P0G♯ and G♯GP0 = P0G♯G. The operator H is a power series of G♯G, thus HP0 = P0H. Then

UP0 = GH−1P0 = GP0H−1 = PGH−1 = PU,

i.e. sP0 is a cross section for the action. Cross sections on neighbourhoods around other points in Pa are
obtained by translation with the group action.

Let us check condition 2. of Lemma 2.6. These computations are very similar to the case of the Grassmann
manifold ofB(H) (see [3]), we include them.We differentiate themap πP0 at 1 ∈ Uφ(A), regarding it as amap
toBs(A). It is clear that

d(πP0 )1 : Bas(A)→ Bs(A), d(πP0 )1(Z) = ZP0 − P0Z.

Thus the nullspace of d(πP0 )1 consists of Z in Bas(A) which commute with P0. Written as 2 × 2 matrices in
terms of P0, they are the anti-symmetric P0-diagonal matrices:

DP0 ,as =
{︃
A ∈ Bas(A) : A =

(︃
a 0
0 d

)︃
, where a = −a♯ , d = −d♯

}︃
.

A natural supplement for this nullspace is the space of P0-co-diagonal anti-symmetric matrices, i.e, P0YP0 =
0 = (1 − P0)Y(1 − P0):

CP0 ,as =
{︃
Y ∈ Bas(A) : Y =

(︃
0 −y
y♯ 0

)︃}︃
The range of d(πP0 )1 is {ZP0 − P0Z : Z ∈ Bas(A)}. This subspace ofBs(A) coincides with

CP0 ,s =
{︃
Y ∈ Bs(A) : Y =

(︃
0 y
y♯ 0

)︃}︃
,

the subspace of P0-co-diagonal symmetric matrices. Indeed, it is clear that the range of d(πP0 )1 is contained
in this subspace. Conversely, pick Y ∈ CP0 ,s and note that

YP0 + P0Y =
(︃

0 y
y♯ 0

)︃
·
(︃

1 0
0 0

)︃
+
(︃

1 0
0 0

)︃
·
(︃

0 y
y♯ 0

)︃
=
(︃

0 0
y♯ 0

)︃
+
(︃

0 y
0 0

)︃
= Y

Put Z = YP0 − P0Y =
(︃

0 −y
y♯ 0

)︃
. It is clear that Z♯ = −Z. Note that d(πP0 )1(Z) = Y. Indeed, put

𝛾(t) = etZP0e−tZ . Then

d(πP0 )1(Z) = �̇�(0) = d
dt e

tZP0e−tZ |t=0 = ZP0 − P0Z = YP0 − P0YP0 − P0YP0 + P0Y

= YP0 + P0Y = Y .

Therefore the range of d(πP0 )1 is complemented in Bs(A): a natural supplement is the space of P0-diagonal
symmetric matrices.

Then, by the Lemma 2.6, the orbit OP0 is a smooth submanifold of Ba(A), the map πP0 is a smooth sub-
mersion, and Pa is a discrete union of orbits OP, P ∈ Pa.
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3 Group actions in Sφ and Pφ

In this section, we shall define natural C∞ homogeneous structures, induced on Sφ and Pφ by the group
action of Uφ(A). Let x ∈ Sφ, and G ∈ Uφ(A), then the action is given by G · x = Gx. Indeed,

Gx ∈ Sφ and [Gx] ∈ Pφ .

Operators inUφ(A) extend to unitary operators inL. Thus one can also regard this subgroup as consisting
of unitary operators U acting in L which satisfy U(A) = A.

Clearly, Uφ(A) contains UA, the unitary group of A, acting by left multiplication on A: Lu(x) = ux (u ∈
UA, a ∈ A). Also Uφ(A) contains the group of φ-invariant *-automorphisms of A: θ ∈ Aut(A) such that
φ(θ(x)) = φ(x), x ∈ A. For many computations (for instance, to show that the above action is transitive), it
will suffice to consider special elements in Uφ(A). For instance, if X ∈ F(A)s, we have

eiX ∈ Uφ(A).

Remark 3.1. Let z ∈ A with φ(z) = 0. Put X = z ⊗ 1 + 1⊗ z. Then x ∈ F(A)s and

eiX(1) = ei(z⊗1+1⊗z)(1) = cos(φ(z*z)1/2) · 1 + i sin(φ(z
*z)1/2)

φ(z*z)1/2
· z.

Indeed, using that 1⊗ z(1) = 0 = z ⊗ 1(z), straightforward computations show that

X2n(1) = (z ⊗ 1 + 1⊗ z)2n(1) = φ(z*z)n · 1

and
X2n+1(1) = (z ⊗ 1 + 1⊗ z)2n+1(1) = φ(z*z)n · z.

Additionally, in matrix form (in term of P0 = 1⊗ 1), since

X =
(︃

0 1⊗ z
z ⊗ 1 0

)︃

then, one has that

eiX =
(︃

cos(φ(z*z)1/2) i(1⊗ z)sinc(φ(z*z)1/2)
i(z ⊗ 1)sinc(φ(z*z)1/2) cos(φ(z*z)1/2)

)︃
∈ Uφ(A).

where sinc(t) = sin(t)
t is the cardinal sine, defined for t ≥ 0.

Lemma 3.2. Let y ∈ Sφ, y /∈ C.1 and φ(y) ≠ 0. Then |φ(y)| < 1 and

z = −ie−iθ cos−1(|φ(y)|)
(1 − |φ(y)|2)1/2

· (y − φ(y))

satisfies
ei(z⊗1+1⊗z)(1) = e−iθy,

where (−π, π) ∋ θ = arg(φ(y)).

Proof. First note that since φ(y*y) = 1, if |φ(y)| = 1 then, in the Cauchy-Schwarz inequality

1 = |φ(y)| ≤ φ(y*y)1/2φ(1)1/2 = 1

onewould have equality, whichwould imply y = λ ·1. Note also thatφ(z) = 0. Therefore, by the above remark,

ei(z⊗1+1⊗z)(1) = cos(φ(z*z)1/2) · 1 + i sin(φ(z
*z)1/2)

φ(z*z)1/2
· z.
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Note that
z*z = (cos−1(|φ(y)|)2

1 − |φ(y)|2 (y* − φ(y))(y − φ(y)),

and that
φ((y* − φ(y))(y − φ(y))) = 1 − |φ(y)|2.

Thus φ(z*z) = (cos−1(|φ(y)|))2 and therefore

ei(z⊗1+1⊗z)(1) = |φ(y)| + e−i arg(φ(y)) sin(cos
−1(|φ(y)|)

(1 − |φ(y)|2)1/2
(y − φ(y)) =

= |φ(y)| · 1 + e−i arg(φ(y))(y − φ(y)) = e−i arg(φ(y)) · y.

Theorem 3.3. The actions of Uφ(A) on Sφ and Pφ are transitive.

Proof. It suffices to prove the first claim. Let y ∈ Sφ. If φ(y) ≠ 0 and y /∈ C · 1, by Lemma 3.2, there exists
z ∈ A such that

ei(z⊗1+1⊗z)(1) = e−iθ · y,

i.e. y = eiθei(z⊗1+1⊗z)(1) = ei(z⊗1+1⊗z+arg(φ(y))I)(1), with

ei(z⊗1+1⊗z+arg(φ(y))I) ∈ Uφ(A).

If φ(y) = 0, by the Remark above,

ei
π
2 (1⊗y+y⊗1)(1) = cos

(︁π
2φ(y

*y)1/2
)︁
· 1 + i

sin( π2φ(y*y)
1/2)

π
2φ(y*y)1/2

· π2 y = iy,

and the proof follows as above. Finally, the case φ(y) = ̸ 0 and y = λ · 1 is trivial.

Note that Pφ = exp(F(A)).
In the above result it was shown that the invertibles in Uφ(A) linking 1 to y are exponentials. Thus

Corollary 3.4. The sphere Sφ and the projective space Pφ are connected.

4 Differentiable structure of Sφ and Pφ

We shall see that Sφ is a C∞ complemented submanifold of A, and that Pφ is a C∞ differentiable manifold,
presenting both spaces as homogeneous spaces of Uφ(A).

To prove the assertion on Sφ, we shall use again Lemma 2.6:

Proposition 4.1. The sphere Sφ is a C∞ complemented submanifold ofA, and a homogeneous space ofUφ(A).
For any fixed x0 ∈ Sφ, the map

πx0 : Uφ(A)→ Sφ , πx0 (U) = U(x0)

is a C∞-submersion.

Proof. First, recall from Corollary 3.4 that πx0 is onto. In the frame of Lemma 2.6, consider Sφ ⊂ A with the
relative topology, and fix x0 ∈ Sφ. To prove that πx0 is open, we exhibit a continuous local cross section near
x0 (local cross sections near other points of Sφ are obtained by translating this one with the group action).
By Proposition 2.5, there exists rx0 such that if P ∈ Pa satisfies

‖P − x0 ⊗ x0‖a < rx0 ,

then there exists VP ∈ Uφ(A), which is a smooth function of P, such that

VP(x0 ⊗ x0)V♯
P = VP(x0)⊗ VP(x0) = P
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and Vx0⊗x0 = 1. Note that if a, b ∈ A, then (by the Cauchy-Schwarz inequality)

‖a ⊗ b‖ = sup
‖x‖∞≤1

‖φ(b*x)a‖∞ = ‖a‖∞ sup
‖x‖∞≤1

|φ(b*x)| ≤ ‖a‖∞φ(b*b)1/2 sup
‖x‖∞≤1

φ(x*x)1/2

= ‖a‖∞‖b‖φ‖φ‖ = ‖a‖∞‖b‖φ ≤ ‖a‖∞‖b‖∞.

Thus in particular

‖a ⊗ b‖a = max{‖a ⊗ b‖, ‖(a ⊗ b)♯‖} = max{‖a ⊗ b‖, ‖b ⊗ a‖} ≤ ‖a‖∞‖b‖∞.

(More precisely: ‖a ⊗ b‖a ≤ max{‖a‖∞‖b‖φ , ‖a‖φ‖b‖∞})
If y ∈ Sφ satisfies that ‖y − x0‖ <

rx0
2‖x0‖∞+1 , then

‖y ⊗ y − x0 ⊗ x0‖a ≤ ‖y ⊗ y − y ⊗ x0‖a + ‖y ⊗ x0 − x0 ⊗ x0‖a = ‖y ⊗ (y − x0)‖a + ‖(y − x0)⊗ x0‖a

≤ ‖y‖∞‖y − x0‖∞ + ‖y − x0‖∞‖x0‖∞.

Note that since rx0
2‖x0‖∞+1 ≤ 1, one has that for such y

‖y‖∞ < ‖y − x0‖∞ + ‖x0‖∞ ≤ 1 + ‖x0‖∞.

Then
‖y ⊗ y − x0 ⊗ x0‖a < ‖y − x0‖∞(1 + 2‖x0‖∞) < rx0 .

Then by Proposition 2.5, there exists Vy ∈ Uφ(A), depending continuously on y⊗ y (and therefore on y) such
that

V♯
y(y)⊗ V♯

y(y) = V♯
y(y ⊗ y)Vy = x0 ⊗ x0,

i.e. y′ = V♯
y(y) satisfies y′ ⊗ y′ = x0 ⊗ x0. Put Uy = x0 ⊗ y′ + 1 − x0 ⊗ x0. Note that Uy ∈ Uφ(A). Indeed, since

y′ ⊗ x0(1 − x0 ⊗ x0) = (1 − x0 ⊗ x0)y′ ⊗ x0 = 0,

U♯
yUy = (y′ ⊗ x0 + 1 − x0 ⊗ x0)(x0 ⊗ y′ + 1 − x0 ⊗ x0) = (y′ ⊗ x0)(x0 ⊗ y′) + 1 − x0 ⊗ x0

= x0 ⊗ x0 + 1 − x0 ⊗ x0 = 1.

and similarly UyU♯
y = 1. It is clear that also Uy depends continuously on y. Moreover

U♯
y(x0) = y′ ⊗ x0(x0) = y′.

Then µx0 defined on y such that ‖y − x0‖∞ < rx0
2‖x0‖∞+1 by

µx0 (y) = VyU♯
y ∈ Uφ(A)

satisfies [µx0 (y)](x0) = VyU♯
y(x0) = Vy(y′) = y, i.e. is a continuous local cross section for πx0 defined near x0.

Thus πx0 is open.
The differential of πx0 at 1 ∈ Uφ(A) (regarded as a map with values inA) is

δx0 = d(πx0 )1 : Bas(A)→ A, δx0 (A) = A(x0).

Note that A ∈ Bas(A) satisfies A(x0) = 0 if and only if A(x0) ⊗ x0 = −x0 ⊗ A(x0) = 0, i.e. the matrix of
A in terms of the projection x0 ⊗ x0 has only the 2, 2-entry that is non zero. Thus a supplement for N(δx0 ) in
Bas(A) is the space of matrices in terms of x0⊗ x0 which have trivial 2, 2- entry, i.e. the elements B ofBas(A)
such that (1 − x0 ⊗ x0)B(1 − x0 ⊗ x0) = 0.

The range R(δx0 ) of this linear map is

R(δx0 ) = {y ∈ A : Re(φ(x*0y)) = 0}.

Indeed, if y = A(x0) (with A♯ = −A), then

φ(x*0y) = φ(x*0A(x0)) = −φ(A(x0)*x0) = −φ(y*x0) = −φ(x*0y).
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Conversely, if Re(φ(x*0y)) = 0, consider A = y ⊗ x0 − x0 ⊗ y − φ(x*0y)x0 ⊗ x0. Clearly A ∈ Bas(A), and

A(x0) = y − φ(x*0y)x0 − φ(y*x0)x0 = y.

In particular, R(δx0 ) is the nullspace of a bounded real functional in A, thus it is a (real) complemented
subspace ofA. Thus Lemma 2.6 applies and the proof follows.

Remark 4.2. In the above proof, one obtains that the tangent space at a given x0 ∈ Sφ is

(TSφ)x0 = {y ∈ A : Re φ(x*0y) = 0}.

Indeed, suppose that x(t), t ∈ (−r, r) is a smooth curve in Sφ with x(0) = x0 and ẋ(0) = y. Since φ(x*(t)x(t)) =
1, then

0 = φ(ẋ*(t)x(t)) + φ(x*(t)ẋ(t)),

and at t = 0,
0 = φ(y*x0) + φ(x*0y) = 2Re φ(x*0y).

Conversely, if y ∈ A satisfies Re φ(x*0y) = 0, then there exists A ∈ Bas(A) such that A(x0) = y. In term matrix
(based on x0 ⊗ x0):

A =
(︃

λix0 −(x0 ⊗ z)
z ⊗ x0 0

)︃
,

where z = y − φ(x*0y)x0 and λi = φ(x*0y) with λ ∈ R. Thus

x(t) = etA(x0) ∈ Sφ

satisfies x(0) = x0 and ẋ(0) = A(x0) = y, i.e. y ∈ (TSφ)x0 .

Remark 4.3. The facts that Pφ is a differentiable manifold with the quotient topology, and that the map π[x0]
is a submersion for any [x0] ∈ Pφ are easier to prove. Note that here we do not claim that Pφ is a submanifold
(it does not lie in a Banach space). Indeed, in the quotient topology, Pφ identifies (is homeomorphic) with
P1(A, φ), the manifold of rank one projections ofBa(A), which coincides with the Uφ(A)-orbit of x0 ⊗ x0, as
seen before. By the results earlier in this section, this space is a differentiable manifold and the projection
map a submersion.

4.1 The selfadjoint part of Sφ

By Remark 4.2, the tangent space of Sφ at 1 is {x ∈ A : Re(φ(x)) = 0}.

Lemma 4.4. The tangent space of Sφ at 1 naturally decomposes as the (real linear) direct sum

(TSφ)1 = Aah ⊕ N(φ)s ,

where Aah denotes the space of antihermitian elements of A and N(φ)s = N(φ) ∩ As the selfadjoint elements
in the nullspace of φ.

Proof. Clearly if x ∈ (TSφ)1, then also x* ∈ (TSφ)1. Thus (TSφ)1 = ((TSφ)1 ∩ Aah)⊕ ((TSφ)1 ∩As).
If y ∈ Aah, then 0 = φ(y*) + φ(y) = 2Re(φ(y)) and thus (TSφ)1 ∩ Aah = Aah.
On the other hand, if y ∈ (TSφ)1 ∩As, then φ(y) = φ(y*) = φ(y) and thus φ(y) = 0. Hence (TSφ)1 ∩As =

N(φ)s.

Consider the map
µ : (TSφ)1 = Aah ⊕ N(φ)s → Sφ , µ(a, b) = ea(eb⊗1−1⊗b(1)).

Note that b ⊗ 1 − 1⊗ b belongs to Fas(A) and thus eb⊗1−1⊗b ∈ Uφ(A) and xb = eb⊗1−1⊗b(1) ∈ Sφ. Then

φ(µ*(a, b)µ(a, b)) = φ(x*bxb) = 1.
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It is clear that µ is C∞. By elementary computations similar to that of Remark 3.1, if b ≠ 0 one has

xb = cos(φ(b2)1/2)1 + 1
φ(b2)1/2

sin(φ(b2)1/2)b = cos(φ(b2)1/2)1 + sinc(φ(b2)1/2)b ,

which makes sense even if b = 0. Note that ea ∈ UA and that xb is a selfadjoint element (in Sφ).
Let a(t), b(t) be smooth curves in Aah and N(φ)s with a(0) = b(0) = 0, ȧ(0) = z and ḃ(0) = y, where

x = z + y is an arbitrary element of (TSφ)1. Then it is clear that (using that the differential of the exponential
map at the origin is the identity map)

dµ0(x) =
d
dt µ(a(t), b(t))|t=0 = ȧ(0) + (ḃ(0)⊗ 1 − 1⊗ ḃ(0))(1) = z + y = x

because (ḃ(0) ⊗ 1)(1) = φ(y)1 = 0. Therefore, using the inverse function theorem, one has the following
result.

Proposition 4.5. There exist balls Bras and Brs of radius ras and rs around the origin inAah and N(φ)s respec-
tively, and an open set V in Sφ containing 1 such that

µ : Bras ⊕ Brs → V

is a C∞ diffeomorphism. In particular, any element x in V factorizes

x = uxb

with u unitary and xb a selfadjoint element in Sφ. The factorization is unique if one requires that u and xb belong
to the exponential of Bras and Brs .

Remark 4.6. Let x ∈ Sφ. Then |x| ∈ Sφ. Indeed,

φ(|x|*|x|) = φ(|x|2) = φ(x*x) = 1.

However, if x = v|x| is the polar decomposition of x (supposing that this decomposition done inB(L) remains
in A, i.e. v ∈ A), then v ∈ Sφ if and only if v is an isometry: since ‖v‖ = 1 (and φ is faithful), φ(v*v) = 1 is
equivalent to v*v = 1. This in turn means that N(x) is trivial in L. For instance, if x ∈ Sφ is invertible, then
v ∈ A and thus v ∈ Sφ. The polar decomposition differs from the local factorization above: xb above may not
be positive.

The unitary group UA clearly is a submanifold of Sφ. The same holds for the selfadjoint part Sφ,s of Sφ,

Sφ,s = {x ∈ As : φ(x2) = 1} = Sφ ∩As .

Proposition 4.7. Sφ,s is a submanifold ofA, and therefore also of Sφ.

Proof. Consider the C∞ map
q : As → R>0, q(a) = φ(a2).

It is clearly a retraction: s : R>0 → As, s(t) = t1/2 · 1 is a smooth cross section for q. In particular, q is a
submersion. Then

Sφ,s = q−1({1})

is a submanifold ofAs.

Let us examine the properties of the restriction µs of the map µ above,

µs : N(φ)s → Sφ,s , µs(a) = ea⊗1−1⊗a(1) = cos(φ(a2)1/2) · 1 + sin(φ(a2)1/2)
φ(a2)1/2

· a
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Let x ∈ Sφ,s and a ∈ N(φ) so that µ(a) = x. Since φ(µ(a)) = cos(φ(a2)1/2) = φ(x) ∈ [−1, 1], then φ(a2)1/2 =
cos−1(φ(x)) + 2nπ or − cos−1(φ(x)) + 2nπ. By elementary computations,

µs(a) = φ(x) · 1 +
sin(φ(a2)1/2)
φ(a2)1/2

· a = x

sin(φ(a2)1/2)
φ(a2)1/2

· a = x − φ(x)

It follows that if |φ(x)| = ̸ 1,

µ−1s (x) =
{︃
a ∈ N(φ) : a = (x − φ(x)) cos

−1(φ(x)) + 2nπ(︀
1 − φ(x)2

)︀1/2 , n ∈ Z

}︃

and, since |φ(x)| = 1 implies x = 1 or x = −1, so

µ−1s (1) =
{︁
a ∈ N(φ) : φ(a2)1/2 = 2nπ

}︁
µ−1s (−1) =

{︁
a ∈ N(φ) : φ(a2)1/2 = (2n + 1)π

}︁
.

These are the fibers of the map µs over each x ∈ Sφ,s.

Proposition 4.8. The map µs is onto. It has a smooth right inverse defined on Sφ,s \ {1, −1}. Moreover it is a
covering space.

Proof. The right inverse is given by

θ(x) = cos−1(φ(x))
(1 − φ(x)2)1/2

.(x − φ(x)).

Note that since φ(x2) = 1, |φ(x)| ≤ 1. Moreover φ(x)2 = 1 only if x = 1, −1: in the Cauchy-Schwarz inequality

1 = |φ(x)| ≤ φ(x2)1/2φ(1)1/2 = 1

one has equality, thus x = λ1, with λ2 = 1. Thus θ is well defined and smooth in Sφ,s \ {1, −1}. The fact that
µ(θ(x)) = x is an elementary computation.

In order to prove that µs is onto, it suffices to find selfadjoint elements a1, a2 with φ(ai) = 0 such that
µ(a1) = 1 and µ(a2) = −1. Put a1 = 0. Take b* = b such that b ≠ λ1 and φ(b) = ̸ 0. Let b′ = b − φ(b) · 1 and
then φ(b′) = 0. Suppose that φ(b′2) = ̸ 0. Thus a2 = π

φ(b′2)1/2 b
′ verifies µ(a2) = −1.

Let us prove that µs : N(φ)s → Sφ,s is a covering space. We have to show that every point in Sφ,s has a
neighborhood V such that µ−1(V) =

⋃︀
Uα where Uα are disjoint open subsets of N(φ)s and µ|Uα is a homeo-

morphism of Uα onto V. It is clearly that this is verified in x = ̸ 1 or x ≠ −1.
Suppose that a(t), t ∈ (−r, r) is a smooth curves in N(φ)s with a(0) = 0 and ȧ(0) = v, where v ∈ N(φ)s.

Then
Dµs(v) = µ̇s(a(t))|t=0 = (ȧ(0)⊗ 1 − 1⊗ ȧ(0))(1) = v.

Using the inverse function theorem, there exist a ball Br of radius r around the origin in N(φ) and an open
set V in Sφ,s containing 1 such that

µs : Br → V

is a C∞ diffeomorphism. Note that this result is a particular case of proposition 4.5.
Analogously, if a(t), t ∈ (−r, r) is a smooth curve in N(φ)s with a(0) = a2 and ȧ(0) = v, where v ∈

(TN(φ)s)a2 and a2 verifies µ(a2) = −1. By elementary computations similar as Remark 3.1, one has (in terms
of 1⊗ 1)

ea2⊗1−1⊗a2 =
(︃

cos(φ(a22)1/2) −(1⊗ a2)sinc(φ(a22)1/2)
−(a2 ⊗ 1)sinc(φ(a22)1/2) cos(φ(a22)1/2)

)︃
= −IdT(N(φ)s)a2
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and then
Dµs(v) = µ̇s(a(t))|t=0 = −(ȧ(0)⊗ 1 − 1⊗ ȧ(0))(1) = −v

Therefore, using the inverse function theorem, there exists a ball Br of radius r around the a2 in N(φ)s and
an open set V′ in Sφ,s containing −1 such that

µs : Br′ → V′

is a C∞ diffeomorphism.
In both cases, there exists a ball V in Sφ,s such that

Br = µ−1s (V) =
⋃︁
n∈Z

{︁
a ∈ N(φ) : φ(a2)1/2 = cos−1(φ(x)) + 2nπ, x ∈ V

}︁
.

5 A pre-Hilbert-Riemann metric for Pφ

As written in Remark 4.3, we shall identify Pφ ≃ P1(A, φ). Therefore the tangent space of Pφ at [x] identifies
with

(TPφ)[x] ≃ {a ⊗ x + x ⊗ a : Reφ(x*a) = 0} = (TP1(A, φ))x⊗x .

Also P1(A, φ) ⊂ P1(L), and this last manifold has a well behaved Hilbert-Riemann structure induced by
the Frobenius norm (it shall be recalled in Section 5).

We have pointed out though that P1(A, φ) is not a submanifold of P1(L), the differentiable structure of
both spaces is quite different (the inclusion is dense in the topology of B(L)). Nevertheless this inclusion
has the remarkable property to be locally geodesically complete: if two elements in P1(A, φ) lie close, the
minimal geodesic of P1(L) which joins them lies inside P1(A, φ). This property would suggest to consider
in P1(A, φ) the metric induced by this inclusion. We shall present below an intrinsic metric in Pφ, and will
show thereafter that it is (a multiple) of the metric induced by P1(L).

Let us first characterize the tangent spaces of Pφ as quotient spaces.

Lemma 5.1. Let [x0] ∈ Pφ. Then (TPφ)[x0] is naturally isomorphic to

{a ∈ A : φ(x*0a) ∈ iR}/iR · x0, (2)

i.e. a, b define the same tangent vector at [x0] if φ(a*x0), φ(b*x0) ∈ iR and a − b = irx0 for some r ∈ R.
By naturally isomorphic we mean the following: if one chooses another representative x′0 for [x0], i.e. x′0 =

wx0 for some w ∈ T, then the mapping
a′ ↦→ w̄a′

sends {a′ ∈ A : φ(x′*0 a′) ∈ iR} onto {a ∈ A : φ(x*0a) ∈ iR} and iR · x′0 onto iR · x0, and thus defines an
isomorphism between the quotients.

Proof. Suppose that x(t), t ∈ (−r, r) is a smooth curve in Sφ with x(0) = x0 and ẋ(0) = a. By Remark 4.2, we
know that Re φ(x*0a) = 0. Let y(t) = w(t)x(t) be another smooth curve in Sφ equivalent to x(t), i.e w(t) ∈ T
(we may suppose w(0) = 1 without loss of generality). Put b = ẏ(0). Then differentiating at t = 0 one obtains

b = ẇ(0)x0 + a.

Note that ẇ(0) ∈ iR. Then it is clear that b − a ∈ iR · x0. It follows that the tangent space is contained in the
quotient (2).

Let us prove that any element in this quotient can be realized as a velocity vector. Pick a ∈ A with
φ(x*0a) ∈ iR. Note that a − φ(x0a*) ∈ (TSφ)x0 and [a − φ(x0a*)] is the same as the class of a in the quo-
tient (2). Again, using Remark 4.2, if A = a ⊗ x0 − x0 ⊗ a inBas(A) then A(x0) = a − φ(x0a*) and

et(a⊗x0−x0⊗a) ∈ Uφ(A)
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is a smooth curve. Thus 𝛾(t) = [et(a⊗x0−x0⊗a)(x0)] is a smooth curve in Pφ with

�̇�(0) = [A(x0)] = [a].

Let us define a Riemannian metric in Pφ:

Definition 5.2. For [x0] ∈ Pφ and [a] a tangent vector at [x0], put

|[a]|[x0] = inf{‖a − ir · x0‖φ : r ∈ R},

i.e. the quotient norm in the quotient (2) induced by the norm ‖ · ‖φ inA.

Clearly the metric is well defined (it does not depend on the representative of [x0]).
Note that since A is not complete with the norm ‖ · ‖φ, this quotient norm is non complete in (TPφ)[x0].

Also note that the orthogonal projection

P : {a ∈ A : φ(x*0a) ∈ iR} → iR · x0

is given by the state φ: P(a) = φ(x*0a)x0. Therefore the infimum at the quotient norm is in fact a minimum,
given by

|[a]|[x0] = ‖a − φ(x
*
0a)x0‖φ = {φ(a*a) − |φ(x*0a)|2}1/2.

This quantity is positive: φ(a*a) = |φ(x*0a)|2 means equality in the Cauchy-Schwarz inequality

|φ(x*0a)| ≤ φ(a*a)1/2φ(x*0x0)1/2 = φ(a*a)1/2,

and therefore a = λx0, then φ(x*0a) = λ ∈ iR, and thus [a] = 0.
From these observations, it follows that this metric coincides with (a multiple of) the Frobenius norm in

P1(A, φ):

Proposition 5.3. Let [x] ∈ Pφ and [a] ∈ (TPφ)[x]. Then

|[a]|[x] =
1√
2
Tr((a ⊗ x + x ⊗ a)2)1/2 = 1√

2
‖a ⊗ x + x ⊗ a‖HS ,

where Tr denotes the usual trace inB(L) and ‖ · ‖HS denotes the Hilbert-Schmidt norm.

Proof. Straightforward computations show that

(a ⊗ x + x ⊗ a)2 = (φ(a*x)x)⊗ a + (φ(a*a)x)⊗ x + (φ(x*x)a)⊗ a + (φ(x*a)a)⊗ x.

Thus (using that Tr(b ⊗ c) = φ(c*b))

Tr((a ⊗ x + x ⊗ a)2) = 2φ(a*a) + φ(a*x)2 + φ(x*a)2.

Note that φ(a*x) = φ(x*a) ∈ iR, and thus

φ(a*x)2 = φ(x*a)2 = −|φ(x*a)|2.

Therefore
Tr((a ⊗ x + x ⊗ a)2)1/2 =

√
2{φ(a*a) − |φ(x*a)|2}1/2 =

√
2|[a]|[x].
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6 Minimality of geodesics in Pφ

The results in this section refer to minimal curves in Pφ, i.e. curves δ(t) = [α(t)], α(t) ∈ Sφ, with minimal
length joining fixed endpoints. The length of the curve δ(t), 0 ≤ t ≤ 1, is given by

ℓ(δ) =
1∫︁

0

|[δ̇(t)]|δ(t)dt

where |[v]|[δ(t)] denotes the quotient norm as in the Definition 5.2.
Note that if P0 ∈ Pa and Z ∈ Bas(A), then the geodesic δ(t) = etZP0e−tZ remains inside Pa. We shall call

these curves geodesics in Pa, though we have not defined a linear connection in Pa. In the case when n (the
rank of P0) equals 1, we shall call them geodesics of Pφ. Note also that if δ(t) = etZP0e−tZ is a geodesic of Pa
and U ∈ Uφ(A), then Uδ(t)U♯ is also a geodesic, with exponent UZU♯. If n = 1, this means that [UetZ(x)] is a
geodesic of Pφ.

Elements P in Pa extend to orthogonal projections P̄ in L. Conversely, any orthogonal projection E in
L which leaves A ⊂ L invariant, i.e. E(A) ⊂ A, induces an element E|A in Pa. Also, P1(L) ⊂ Gr(L) the
Grassmann manifold of L which is just the set of orthogonal projections of L. In [3, 4] a reductive structure
was introduced in the Grassmann manifold of a Hilbert space (parametrized by selfadjoint projections). In
[9] the geometry of the restricted or Sato Grassmannian was studied. Later in [10] it was characterised when
there are unique geodesics between projections. Let us summarize this information, in the case of L, in the
following remark.

Remark 6.1.
1. The spaceP(L) is a homogeneous space under the action of the unitary groupU(L) by inner conjugation.

The orbits of the action coincide with the connected components of P(L). In particular, the projections
of rank one form a connected component and coincide the space P1(L).

2. There is a natural linear connection in P(L). If dim(L) < ∞, it is the Levi-Civita connection of the Rie-
mannian metric which consists of considering the Frobenius inner product at every tangent space. It is
based on the diagonal - codiagonal decomposition of B(L). To be more specific, given P0 ∈ P(L), the
tangent space of P(L) at P0 consists of all selfadjoint codiagonal matrices (in terms of P0). The linear
connection in P(L) is induced by a reductive structure, where the horizontal elements at P0 (in the Lie
algebra of U(L): the space of antihermitian elements of B(L)) are the codiagonal antihermitian opera-
tors. The geodesics of P(L) which start at P0 are curves of the form

δ(t) = etZP0e−tZ , (3)

with Z* = −Z, codiagonal with respect to P0.
3. It was proved in [4] that if P0, P1 ∈ P(L) satisfy ‖P0 − P1‖ < 1, then there exists a unique geodesic (up

to reparametrization) joining P0 and P1. This condition is not necessary for the existence of a unique
geodesic.

4. In [10] anecessary and sufficient conditionwas found, in order that there exists auniquegeodesic joining
two projections P and Q. This is the case if and only if

R(P) ∩ N(Q) = N(P) ∩ R(Q) = {0}.

5. If dim(L) = ∞, and one endows each tangent space of P(L) with the usual norm of B(L), one obtains
a continuous (non regular) Finsler metric. In [4] it was shown that the geodesics (3) remain minimal
among their endpoints for all t such that

|t| ≤ π
2‖Z‖ .

If dim(L) < ∞, the Frobenius metric is available to measure lengths of curves. In [9] it was shown that
the geodesics remain minimal in the Frobenius norm as long as |t| ≤ π

2‖Z‖ , which is a condition on the
usual operator norm.
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6. It is sometimes useful to parametrize projections using symmetries S (S* = S, S2 = 1), via the affine map

P ←→ SP = 2P − 1.

Somealgebraic computations are simplerwith symmetries. For instance, the condition that the exponent
Z (of the geodesic) is P0-codiagonalmeans that Z anti-commuteswith SP0 . Thus the geodesic (3), in terms
of symmetries, can be expressed

Sδ(t) = eitZSP0e
−itZ = e2itZSP0 = SP0e

−2itZ .

Let us apply the results of the above Remark to the projective space. Note that the Riemannian metric we
introduced in Pφ is ( 1√

2
-times) the metric of P1(L). Therefore

Theorem 6.2. Let [x] ∈ Pφ and [v] ∈ (TPφ)[x]. The unique geodesic δ : [0, 1] → Pφ which satisfies δ(0) = [x]
and δ̇(0) = [v] is given by

δ(t) = [etv(x0)]

which is minimal for |[v]|[x] ≤ π
2
√
2
.

Proof. Let P0 = x ⊗ x ∈ P1(L). Since [v] ∈ (TPφ)[x], if one chooses v ∈ TSφ (representative for [v]) then
V = v ⊗ x + x ⊗ v ∈ (TP1(L))P0 and in matrix terms (based on P0)

V =
(︃

0 b*

b 0

)︃

where b = v ⊗ x − φ(x*v)x ⊗ x. Consider

Z =
(︃

0 −b*

b 0

)︃
.

Clearly, Z* = −Z and Z(x) = v − φ(x*y)x. Then, by Remark 6.1, the curve

δ(t) = etZx ⊗ xe−tZ = (etZx)⊗ (etZx), (4)

is a geodesic of P1(L) and it satisfies δ(0) = x ⊗ x and δ̇(0) = V. Moreover, if ‖Z‖ ≤ π
2 , the curve is minimal

along its path in Gr(L). Note that Z ∈ F(A) and Z♯ = Z* = −Z. Thus etZ ∈ Uφ(A) and therefore

(etZx)⊗ (etZx) ⊂ P1(A).

Then δ(t) is a geodesic of Pφ. Since
√
2|[v]|[x] = ‖V‖ ≤ π

2 , this geodesic is a minimal curve for
t ∈ [0, 1].

Theorem 6.3. Let [x], [y] ∈ Pφ.

1. If φ(y*x) ≠ 0, then there exists a unique geodesic δ(t) = [eit(z⊗1+1⊗z)(1)] in Pφ which joins δ(0) = [x] and
δ(1) = [y], which is minimal for t ∈ [0, 1]. The element z is given by

z = −ie−iθ cos−1(|φ(x*y)|)
(2 − 2|φ(x*y)|2)1/2

(y − φ(x*y)x).

The geodesic distance between [x] and [y] is given by

d([x], [y]) = 1√
2
cos−1(|φ(x*y)|).

2. If φ(x*y) = 0, then there exist infinitely many minimal geodesics of Pφ joining [x] and [y]. Among them

δ(t) = [eit
π
2 (x⊗y+y⊗x)(x)],

whose length is d([x], [y]) = π
2
√
2
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Proof. First note that the conditionφ(y*x) ≠ 0does not depend on the representatives x, y. Next, since ‖x‖φ =
‖y‖φ = 1, this condition implies that |φ(y*x)| < 1. Suppose first x = 1 (and thus 0 < |φ(y)| < 1). As in Lemma
3.2, the element z satisfies

[ei(z⊗1+1⊗z)(1)] = [y],

or equivalently
ei(z⊗1+1⊗z)(1)⊗ e−i(z⊗1+1⊗z)(1) = y ⊗ y.

We claim further that the curve

δ(t) = eit(z⊗1+1⊗z)(1)⊗ e−it(z⊗1+1⊗z)(1)

is a geodesic of Pa, i.e. that the exponent z ⊗ 1 + 1⊗ z is co-diagonal with respect to the projection 1⊗ 1. If
x = 1, z above is given by

z = −ie−iθ cos−1(|φ(y)|)
(1 − |φ(y)|2)1/2

· (y − φ(y)) = λ(y − φ(y))

where θ = arg(φ(y)). Note that φ(z) = 0. Then

(z ⊗ 1 + 1⊗ z)1⊗ 1 = z ⊗ 1 and 1⊗ 1(z ⊗ 1 + 1⊗ z) = 1⊗ z,

thus
z ⊗ 1 + 1⊗ z = (z ⊗ 1 + 1⊗ z)1⊗ 1 + 1⊗ 1(z ⊗ 1 + 1⊗ z),

which implies that

1⊗ 1(z ⊗ 1 + 1⊗ z)1⊗ 1 = 0 = (1 − 1⊗ 1)(z ⊗ 1 + 1⊗ z)(1 − 1⊗ 1).

In the general case, for arbitrary [x], [y] ∈ Pφ, since the action of Uφ(A) is transitive in Pφ, there exists U ∈
Uφ(A) such that x = U(1) and y = U(y′). Then

φ(y′) = φ(y′1*)φ(U(y)U(x)*) = φ(yx*) = ̸ 0.

The element z′ which gives the exponent of the geodesic joining [1] and [y′] is

z′ = −ie−iθ
′ cos−1(|φ(y′)|)
(1 − |φ(y′)|2)1/2

· (y′ − φ(y′))

with θ′ = arg(φ(y′)) = arg(φ(x*y)). Note that U(y′ − φ(y′)1) = y − φ(x*y)x. Thus

U(z′) = −ie−iθ cos−1(|φ(x*y)|)
(2 − 2|φ(x*y)|2)1/2

(y − φ(x*y)x) = z.

Therefore
[U(eit(z

′⊗1+1⊗z′)(1)] = [U(eit(z
′⊗1+1⊗z′)U♯U(1)] = [eitU(z

′⊗1+1⊗z′)U♯

x]

= [eit(U(z
′)⊗U(1)+U(1)⊗U(z′))(x)] = [eit(z⊗x+x⊗z)(x)]

is a geodesic joining x and y.
Let us show that δ is minimal. It suffices to consider the case x = 1. To prove that δ is minimal in the

interval [0, 1], according to Remark 6.1, one needs to show that the usual operator norm ‖z⊗1+1⊗ z‖ of the
exponent is less or equal than π/2. Since z ⊗ 1 + 1⊗ z is 1⊗ 1 co-diagonal. Then

‖z ⊗ 1 + 1⊗ z‖ = ‖z ⊗ 1‖ = ‖z‖φ = cos−1(|φ(y)|) ‖y − φ(y)‖φ
(1 − |φ(y)|2)1/2

= cos−1(|φ(y)|) < π/2.

Lets us compute the geodesic distance d([x], [y]), i.e. the length of the geodesic δ. The length is the norm
√
2|[z]|[x] = ‖z − φ(z)‖φ = ‖z‖φ = cos−1(|φ(x*y)|) < π/2.
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In order to see that it is unique, consider the projections x⊗x and y⊗y. Denote byLx andLy the complex
one dimensional spaces which ranges of the extensions of these projections to orthogonal projections in L.
It is clear that

Lx ∩ L⊥
y = {0} and L⊥

x ∩ Ly = {0}

because < x, y >= φ(y*x) = ̸ 0. It follows that there exists a unique geodesic in P(L) joining x ⊗ x and y ⊗ y.
The geodesic δ of Pa extends to a geodesic of P(L) (and so would any geodesic of Pa). Thus it is unique.

Supposenow thatφ(x*y) = 0. Againwemay suppose x = 1. As inTheorem3.3, onehas that ei π2 (y⊗y+y⊗1)(1) =
iy and thus

[ei
π
2 (y⊗1+1⊗y)(1)] = [y].

As above, the fact that φ(y) = 0 implies that y⊗1+1⊗ y is 1⊗1 co-diagonal. Thus δ is a geodesic. Its length
is

π
2 ‖y‖φ = π/2.

Let Lx and Ly the complex lines generated by x and y in L. Since Lx ⊥ Ly,

Lx ∩ L⊥
y = Lx and L⊥

x ∩ Ly = Ly ,

and therefore there exist infinitely many geodesics joining [x] and [y].
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