
Journal of Functional Analysis 275 (2018) 329–355
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Geometric significance of Toeplitz kernels

E. Andruchow a,d, E. Chiumiento b,d, G. Larotonda c,d,∗

a Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, 
J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina
b Departamento de Matemática, Facultad de Ciencias Exactas, 
Universidad de La Plata, Calles 50 y 115, (1900) La Plata, Argentina
c Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, 
Universidad de Buenos Aires, Ciudad Universitaria (1428) CABA, Argentina
d Instituto Argentino de Matemática, ‘Alberto P. Calderón’, CONICET, 
Saavedra 15 3er. piso, (1083) Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2017
Accepted 22 February 2018
Available online 27 February 2018
Communicated by K. Seip

MSC:
primary 58B20, 47B35
secondary 47A63, 53C22

Keywords:
Toeplitz operator
Geodesic
Schatten ideal
Sato Grassmannian

Let L2 be the Lebesgue space of square-integrable functions 
on the unit circle. We show that the injectivity problem for 
Toeplitz operators is linked to the existence of geodesics in 
the Grassmann manifold of L2. We also investigate this con-
nection in the context of restricted Grassmann manifolds as-
sociated to p-Schatten ideals and essentially commuting pro-
jections.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author at: Instituto Argentino de Matemática, ‘Alberto P. Calderón’, CONICET, 
Saavedra 15 3er. piso, (1083) Buenos Aires, Argentina.

E-mail addresses: eandruch @ungs .edu .ar (E. Andruchow), eduardo @mate .unlp .edu .ar
(E. Chiumiento), glaroton @dm .uba .ar (G. Larotonda).
https://doi.org/10.1016/j.jfa.2018.02.015
0022-1236/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2018.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:eandruch@ungs.edu.ar
mailto:eduardo@mate.unlp.edu.ar
mailto:glaroton@dm.uba.ar
https://doi.org/10.1016/j.jfa.2018.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2018.02.015&domain=pdf


330 E. Andruchow et al. / Journal of Functional Analysis 275 (2018) 329–355
1. Introduction

Let Lp be the usual Lebesgue spaces of complex-valued functions on the unit circle T. 
The Grassmann manifold of L2 is the set of all closed subspaces of L2. This paper studies 
the relation between geodesics on the Grassmann manifold of L2 and the injectivity 
problem for Toeplitz operators.

To explain this relation, let H2 be the Hardy space of the unit circle. Recall that the 
injectivity problem for Toeplitz operators consists in looking for those symbols ϕ ∈ L∞

such that the Toeplitz operator Tϕ is injective. We relate it to the problem of finding a 
geodesic on the Grassmann manifold of L2 which joins two subspaces of the form ϕH2

and ψH2, where ϕ, ψ are invertible functions in L∞. More precisely, we will prove that 
such a geodesic exists if and only if the Toeplitz operator Tϕψ−1 and its adjoint both 
have trivial kernel. Furthermore, we will see that these statements are also equivalent to 
the existence of a minimizing geodesic joining the given subspaces.

The Grassmann manifold of an abstract Hilbert space (i.e. the set consisting of all the 
closed subspaces) may be identified with the bounded self-adjoint projections. It is an 
infinite dimensional homogeneous space which can be endowed with a Finsler metric by 
using the operator norm on each tangent space. Although it is complete with the corre-
sponding rectifiable distance, there are subspaces in the same connected component that 
cannot be joined by a geodesic (see e.g. [1]). This means that the Hopf–Rinow theorem 
fails for this manifold. Nevertheless, much information of its geodesics and their minimiz-
ing properties are known. The first results date back to the works [21,13,29]; all in the 
more general framework of self-adjoint projections in C∗-algebras. More recently, there 
has been progress about the structure of the geodesics in several Grassmann manifolds 
defined by imposing additional conditions on the subspaces; see for instance [5,3,6] for 
restricted Grassmann manifolds and [4] for the Lagrangian Grassmann manifold.

In this paper, we turn to a more concrete setting by taking the Hilbert space L2. 
This allows us to study the interplay between geodesics, functional spaces and operator 
theory. In contrast to the invertibility problem for Toeplitz operators, little attention has 
been paid in the literature to the injectivity problem until recent years. Except for the 
works of [12,22], the problem remained untreated until the recent works [23–25] (see also 
the survey [19]). Apart from being an interesting problem in operator theory, in these 
latter articles there are relevant applications to harmonic analysis, complex analysis and 
mathematical physics.

The structure of this paper is as follows. In Section 2 we give classical results on Hardy 
spaces, Toeplitz and Hankel operators to make the article reasonably self-contained. In 
Section 3 we prove the aforementioned relation between geodesics of the Grassmann 
manifold of L2 and the injectivity problem (Theorem 3.4). Then, this result is used to 
derive an inequality involving the reduced minimum modulus of Toeplitz operators and 
the norm of a commutator (Theorem 3.8).

In Section 4 we deal with the compact restricted Grassmannian (or Sato Grassman-
nian). This is a well-known Banach manifold related to KdV equations and loop groups 
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(see [32,33]). We need to consider the following two uniform sub-algebras of L∞: the 
continuous functions C and the usual Hardy space H∞. We show that a subspace ϕH2

belongs to the compact restricted Grassmannian if and only if ϕ is an invertible function 
in the Sarason algebra H∞ + C. This is the least nontrivial closed sub-algebra lying 
between H∞ and L∞; it has also been extensively studied [8,16,31]. The existence of 
geodesics in the restricted Grassmannian between two subspaces ϕH2 and ψH2, ϕ, ψ
invertible functions in H∞ + C, depends only on the index of these functions (Theo-
rem 4.2). We also examine when a subspace ϕH2 can be written as ϕH2 = gH2, where g
is a continuous unimodular function. These results can be carried out also in the setting 
of restricted Grassmannians associated to p-Schatten ideals by using the notion of Krein 
algebras defined in [9].

Section 5 focuses on shift-invariant subspaces of H2. Each shift-invariant subspace 
can be expressed as ϕH2, where ϕ is an inner function. We prove that the canonical 
factorization of ϕ determines the class where the subspace ϕH2 belongs (Theorem 5.1). 
Based on the results on the injectivity problem mentioned above, we provide examples 
showing the existence or non-existence of geodesics between shift-invariant subspaces.

2. Background

For 1 ≤ p ≤ ∞, Lp = Lp(T) denotes the usual Lebesgue space of complex valued 
functions defined on the unit circle T. The Hardy space Hp (1 ≤ p < ∞) is the space of 
all analytic functions f on the disk D = { z ∈ C : |z| < 1 } for which

‖f‖Hp :=

⎛
⎝ sup

0<r<1

1
2π

2π∫
0

|f(reit)|p dt

⎞
⎠

1/p

< ∞.

The space of all bounded analytic functions on D with the norm ‖f‖∞ = supz∈D
|f(z)| is 

the Hardy space H∞. Functions in Hardy spaces have non-tangential limits a.e., a fact 
which is used to isometrically identify these spaces with

Hp = { f ∈ Lp :
2π∫
0

f(eit)χn(eit) dt = 0, n < 0 }.

Here (χk)k∈Z denotes the orthonormal basis of L2 given by χk(eit) = eikt. We shall 
mostly use this representation of Hardy spaces as functions defined on T and deal with 
the values p = 2, ∞. In particular, H2 is a closed subspace of the Hilbert space L2 and 
H∞ is a closed sub-algebra of L∞. For background and notational purposes, our main 
references for this paper are the books by Douglas, Nikol’skǐı and Pavlović [26,27,16,28].

A function f ∈ H2 is called inner if |f(eit)| = 1 a.e. on T. A function f ∈ H2 is outer
if span{ fχn : n ≥ 0 } = H2. For each f ∈ H2, f �= 0, there exist an inner function finn
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and an outer function fout ∈ H2 such that f = finnfout. This is called the inner-outer 
factorization, and it is unique up to a multiplicative constant.

The inner function can be further factorized. For each a ∈ D \ { 0 }, a Blaschke factor 
is given by

ba(z) = a

|a|
a− z

1 − az
, z ∈ D.

When a = 0, set b0(z) = z. A Blaschke product is a function of the form

b(z) =
n∏

j=1
baj

(z), z ∈ D,

where 1 ≤ n ≤ ∞. In the case where n = ∞, the infinite Blaschke product is convergent 
on compact subsets of D if the sequence { aj } ⊆ D satisfies the Blaschke condition, that 
is, 

∑
j(1 −|aj |) < ∞. A finite or infinite Blaschke product is an inner function with zeros 

given by { aj }. We remark that the zero set of a holomorphic function in D satisfies the 
Blaschke condition.

Let μ be a positive finite measure on T. Suppose in addition that μ is singular with 
respect to the Lebesgue measure, and set

sμ(z) = exp

⎛
⎝−

∫
T

ψ + z

ψ − z
dμ(ψ)

⎞
⎠ , z ∈ D.

It turns out that sμ is an inner function and sμ(z) �= 0 on D. A function of this form is 
known as a singular inner function.

The canonical factorization of a function f ∈ Hp states that there exists a unique 
factorization f = λbsμfout, where λ ∈ C, |λ| = 1, b is a Blaschke product associated 
with the zero set of f , sμ is a singular inner function and fout is the outer part of f .

Let C denote the algebra of continuous functions on T. The Sarason algebra is the 
following algebraic sum

H∞ + C = { f + g : f ∈ H∞, g ∈ C }.

It is proved that this is indeed a closed sub-algebra of L∞. The harmonic extension ϕ̂
to D of a function ϕ ∈ H∞ + C is well-defined, and it plays a fundamental role in the 
characterization of invertible functions in this algebra. For ϕ ∈ H∞ + C and 0 < r < 1, 
set ϕr(eit) = ϕ̂(reit). Then ϕ is invertible in H∞ + C if and only if there exist δ, ε > 0
such that |ϕr(eit)| ≥ ε for 1 − δ < r < 1 and eit ∈ T.

This criterion allows to define the index of an invertible function in H∞ + C. For a 
non-vanishing function ϕ ∈ C, let ind(ϕ) ∈ Z be the index (or winding number) of ϕ
around z = 0, which for differentiable ϕ can be computed as
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ind(ϕ) = 1
2πi

∮
ϕ′

ϕ
= 1

2π

2π∫
0

ϕ′(eit)
ϕ(eit) eitdt.

For ϕ is invertible in H∞+C, set ind(ϕ) = limr→1− ind(ϕr). This index is stable by small 
perturbations and it is an homomorphism of the invertible functions in H∞ + C onto 
the group of integers. The key property to prove these facts as well as the criterion for 
invertibility is that the harmonic extension is asymptotically multiplicative in H∞ +C.

The largest C∗-algebra of H∞ + C is the set of quasicontinuous functions

QC = (H∞ + C) ∩ (H∞ + C)

Every unimodular θ ∈ QC is invertible in H∞ + C. In [31] Sarason proved that each 
unimodular function θ ∈ QC of index n ∈ Z can be expressed as θ = χne

i(u+ṽ), where 
u, v are real functions in C and ṽ stands for the harmonic conjugate of v on T.

Remark 2.1. In the case where ϕ is a rational function without zeros and poles on T, it is 
well known that ind(ϕ) = z − p, being z and p the number of zeros and poles of ϕ in D, 
respectively. More interesting, when ϕ is a unimodular function sufficiently regular (for 
instance if ϕ is of bounded variation), the index of ϕ can be computed using its Fourier 
coefficients (ϕk)k∈Z as

ind(ϕ) =
∑
k∈Z

k |ϕk|2;

see [10] and the references therein.

Fredholm index. The space of bounded linear operators on a Hilbert space H to a Hilbert 
space L is denoted by B(H, L) or B(H) if H = L. Let K(H, L) ⊂ B(H, L) be the subspace 
of compact operators. Recall that an operator A ∈ B(H, L) is Fredholm if it has closed 
range and both its kernel and its cokernel cokerA = L/ Ran(A) have finite dimension. 
In that case the Fredholm index of A is

ind(A) = dim kerA− dim cokerA.

Operators on Hardy spaces. Let H2
− = χ−1H2 be the orthogonal complement of the 

Hardy space H2, and consider the orthogonal projections P+ and P− onto H2 and H2
−, 

respectively. Three special classes of bounded operators will be used in the sequel. For 
ϕ ∈ L∞, the multiplication operator Mϕ ∈ B(L2), Mϕf = ϕf , where f ∈ L2; the 
Toeplitz operator Tϕ ∈ B(H2), Tϕf = P+(ϕf), where f ∈ H2; and the Hankel operator
Hϕ ∈ B(H2, H2

−), Hϕf = P−(ϕf), where f ∈ H2.

Recall that the (unilateral) shift operator is given by Mχ1 . It will be useful to state 
some well-known results on invariant subspaces of the shift operator.
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Theorem 2.2. Suppose that E is a closed subspace of L2 and Mχ1E ⊆ E.

i) (Wiener) If E is doubly invariant (i.e. Mχ1(E) = E), then E = χRL
2 for a unique 

measurable subset R ⊆ T, where χR is the characteristic of R.
ii) (Beurling–Helson) If E is singly invariant (i.e. Mχ1(E) �= E), then E = θH2 for a 

unique up to a constant θ ∈ L∞ with |θ| = 1 a.e.
iii) (Beurling) If 0 �= E ⊂ H2, then E = θH2 for some inner function θ.

We will frequently use several properties of Toeplitz operators. Among the basic prop-
erties we recall that ‖Tϕ‖ = ‖ϕ‖∞, T ∗

ϕ = Tϕ and Tϕψ = TϕTψ whenever ψ ∈ H∞. The 
following results will be useful.

Theorem 2.3. (Coburn’s lemma) If ϕ ∈ L∞, then either ker(Tϕ) = {0} or ker(T ∗
ϕ) = {0}, 

unless ϕ ≡ 0.

Theorem 2.4. Let ϕ be a function in L∞. The following hold.

i) Tϕ is invertible if and only if it is Fredholm and has index zero.
ii) If ϕ ∈ H∞ + C, then Tϕ is Fredholm if and only if ϕ is invertible in H∞ + C. 

Furthermore, the Fredholm index of Tϕ satisfies ind(Tϕ) = −ind(ϕ).

3. The Grassmann manifold of L2

Let Gr be the Grassmann manifold of L2, i.e. the set of all closed subspaces of L2. 
Let PW denote the orthogonal projection onto a closed subspace W ⊂ L2. In particular, 
we write Pϕ = PϕH2 , when ϕ ∈ L∞ and ϕH2 is closed. If we identify each subspace with 
its orthogonal projection, then

Gr = {PW : W is a closed subspace of L2 }.

Now we determine when ϕH2 belongs to Gr.

Lemma 3.1. Let ϕ be a nonzero function in L∞. Then ϕH2 is closed in L2 if and only 
if ϕ is invertible in L∞.

Proof. Clearly, if the function ϕ is invertible in L∞, then the subspace ϕH2 is closed. 
Conversely, assume that the function ϕ is not invertible in L∞. We first suppose that 
ϕ �= 0 a.e. For n ≥ 1, k = 0, . . . , 2n − 1, we define the following subsets of T

En,k =
{
e2πit : t ∈

[
k

2n ,
k + 1
2n

)
, 1/

√
2
n ≤ |ϕ(e2πit)| ≤ 1/

√
2
n−1

}
.

Since ϕ is not invertible, there are infinitely many integers n1 < n2 < . . . and (kj) such 
that m(Enj ,kj

) > 0. Set A = ∪∞
j=1Enj ,kj

, we define a function ϕ0 as ϕ on A and as 1
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on Ac. Note that ϕ0 ∈ L∞ is not invertible and ϕ0 �= 0 a.e. We now take another function 
f ∈ L2 such that |f | ≥ c > 0 and f/ϕ0 ∈ L1 \ L2. For instance, the function

f = ϕ0

⎛
⎝ ∞∑

j=1

1√
m(Enj ,kj

)
χEnj,kj

+ χAc

⎞
⎠

satisfies these conditions. At this point, we remark that we had to introduce the function 
ϕ0 to construct f : a function f satisfying the above properties with the given ϕ in place 
of ϕ0 does not always exist (for instance if 1/ϕ /∈ L1). Next define gn as f/ϕ0 on the 
set where |ϕ0| > 1/n and as 1 elsewhere. Denote by Gn the outer function satisfying 
|Gn| = |gn| (see e.g. [27, Thm. 3.9.1]). Note that the sequence (Gn)n converges in L1 to 
a function F ∈ H1 \H2 such that |F | = |f/ϕ0|. The sequence (ϕ0Gn)n of functions in 
ϕ0H

2 converges in L2 to ϕ0F , because it converges in L1 and the sequence (|ϕ0Gn|)n
is majorated by |f | + 1 ∈ L2. It is left to notice ϕ0F �∈ ϕ0H

2 because F �∈ H2. Hence 
we have shown that ϕ0H

2 is not closed. Note that the function s defined as 1 on A and 
ϕ on Ac is bounded and sϕ0 = ϕ. Then we can use the same sequence (Gn)n in H2 to 
deduce that ϕH2 is not closed.

Now suppose that ϕ = 0 in a subset S ⊆ T with positive measure. Assume that S
is maximal with this property. We can reduce this case to the previous one. Take ψ a 
bounded function in S, which is not invertible and ψ �= 0 a.e. Then define ϕ1 as ϕ in 
Sc and as ψ on S. Since ϕ1 �= 0 a.e., we have a sequence (Gn)n in H2 such that ϕ1Gn

converges to ϕ1F in L2, F �∈ H2. To finish the proof, note that ϕ1χS = ϕ, and thus, the 
same sequence (Gn)n can be used to show that ϕH2 is not closed. �

We discuss briefly the geometry in the setting of an abstract C∗-algebra A. Denote by 
Gr(A) the Grassmann manifold of A, i.e. the set of all self-adjoint projections in A. In 
[29,13], Corach, Porta and Recht described the differential geometry of Gr(A) in terms 
of projections and symmetries: one passes from projections to symmetries via the affine 
map

P ←→ εP = 2P − 1.

In [13] a natural reductive structure was introduced in Gr(A). In particular, geodesics 
were characterized. In [29] it was proved that these geodesics have minimal length, if one 
measures the length of curves by

L(α) =
1∫

0

‖α̇(t)‖ dt,

where α : [0, 1] → Gr(A) is a piecewise C1-curve and ‖ · ‖ is the norm of A. This 
means that the operator norm induces a Finsler metric on Gr(A); however, note that 
this metric is neither smooth, nor convex.
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Let us summarize these facts in the following remark.

Remark 3.2. The Grassmann manifold Gr(A) is a complemented submanifold of A. Its 
tangent space (TGr(A))P at P is given by

(TGr(A))P = {Y = iXP − iPX : X ∈ A, X∗ = X },

which consists of self-adjoint operators which are co-diagonal with respect to P (i.e. 
PY P = (I − P )Y (I − P ) = 0). Denote by Ah the space of self-adjoint elements of A. 
A natural projection EP : A → (TGr(A))P is given by

EP (X) = co-diagonal part of X = PX(I − P ) + (I − P )XP.

This map induces a linear connection in Gr(A): if X(t) is a tangent field along a curve 
α(t) ∈ Gr(A),

DX

dt
= Eα(Ẋ).

The geodesic of Gr(A) starting at P with velocity Y has the form δ(t) = etỸ Pe−tỸ , 
where Ỹ = [Y, P ] is antihermitian and co-diagonal with respect to P .

Let P , Q be two orthogonal projections such that ‖P −Q‖ < 1. Then there exists a 
unique operator X ∈ Ah, with ‖X‖ < π/2, which is co-diagonal with respect to P , such 
that Q = eiXPe−iX . The curve

δ(t) = eitXPe−itX (1)

is the unique geodesic of Gr(A) joining P and Q (up to reparametrization). Moreover, 
this geodesic has minimal length. The exponent X is an analytic function of P and Q:

X = − i

2 log(εpεQ),

which is an analytic logarithm because ‖εP εQ − 1‖ = ‖εP − εQ‖ = 2‖P −Q‖ < 2.

More recently, necessary and sufficient conditions were given for the existence of a 
geodesic joining two given orthogonal projections in the Grassmann manifold Gr(H) of 
a Hilbert space H. This includes the case in which ‖P − Q‖ = 1. To briefly describe 
this result, let us recall that Halmos [18] (see also [14,15]) proposed to understand the 
geometric properties of two orthogonal projections P and Q by considering the decom-
position

(Ran(P )∩ker(Q)) ⊕ (Ran(Q)∩ker(P )) ⊕ (Ran(P )∩Ran(Q)) ⊕ (ker(P )∩ker(Q)) ⊕ H0,
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where H0 is the orthogonal complement of the first four subspaces. The projections are 
said to be in generic position when the first four subspaces are trivial. The first two 
subspaces may be interpreted as an obstruction to find a geodesic between P and Q.

Remark 3.3. It was proved in [1] (see also [2]) that there is a geodesic (equivalently a 
minimal geodesic) in Gr(H) joining P and Q if and only if

dim Ran(P ) ∩ ker(Q) = dim Ran(Q) ∩ ker(P ).

If both dimensions are equal to zero, then there exists a unique geodesic of minimal length 
in Gr(H) joining P and Q. This geodesic has the same form as in (1) for a (unique) 
self-adjoint operator X satisfying ‖X‖ ≤ π/2. In particular, note that there can be a 
unique minimizing geodesic even if ‖P − Q‖ = 1. If the above dimensions coincide but 
are nonzero, then there are infinitely many geodesics.

Returning to the study of subspaces of the form ϕH2, we recall a well-known argument 
to reduce the injectivity problem of a Toeplitz operator with a general symbol to another 
one with unimodular symbol.

Suppose that ϕ is an invertible function in L∞. Then there exists a function θ ∈ L∞, 
|θ| = 1 a.e., such that ϕH2 = θH2. This gives a function f ∈ H2 satisfying ϕ = θf . 
Note that f is invertible in L∞. Since θfH2 = ϕH2 = θH2, it follows that fH2 = H2, 
and then, f is an outer function. Invertible functions in H∞ are characterized as outer 
functions which are invertible in L∞ (see e.g. [16, Prop. 7.34]). Then, f is an invertible 
function in H∞, which clearly implies that the Toeplitz operator Tf is invertible. Since 
f ∈ H∞, it follows that Tϕ = TθTf . Hence the kernel of Tϕ is trivial if and only if 
the kernel of Tθ is trivial. Hence, if ϕ, ψ are invertible in L∞, and ϕ = θ1f , ψ = θ2g

with θi inner and f, g outer, then ϕ−1ψ = θ1θ2h where h = f−1g ∈ H∞ is outer and 
invertible in L∞ (invertible in H∞). Therefore Tϕ−1ψ = Tθ1 θ2

Th with Th invertible, and 
ker(Tϕ−1ψ) = ker(Tθ1 θ2

).
As a direct consequence of the above results, we can now relate the injectivity problem 

for Toeplitz operators with the problem of finding a geodesic between two given subspaces 
ϕH2 and ψH2.

Theorem 3.4. Let ϕ, ψ be invertible functions in L∞. The following are equivalent.

i) ker(Tϕψ−1) = ker(Tϕ−1ψ) = {0}.
ii) There is a geodesic in Gr joining Pϕ and Pψ.
iii) There is unique geodesic of minimal length in Gr joining Pϕ and Pψ given by

δ(t) = eitXPϕe
−itX , t ∈ [0, 1],

where X = Xϕ,ψ is a uniquely determined self-adjoint operator such that ‖X‖ ≤ π/2, 
eiXPϕe

−iX = Pψ, which is co-diagonal with respect to both Pϕ and Pψ.
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Proof. We can assume without loss of generality that ϕ, ψ are unimodular functions by 
the argument before the statement of this theorem. Then, note that the restriction of 
the multiplication operator

Mψ|ker(Tϕψ) : ker(Tϕψ) → (ϕH2)⊥ ∩ ψH2,

is an isomorphism. Similarly, ker(Tϕψ) � ϕH2 ∩ (ψH2)⊥. If the kernels of both Tϕψ and 
Tϕψ are trivial, then by Remark 3.3 there is a geodesic joining Pϕ and Pψ. Conversely, if 
such a geodesic exists, then ϕH2∩(ψH2)⊥ and (ϕH2)⊥∩ψH2 have the same dimension. 
By Coburn’s lemma, this dimension must be zero. Thus, we have shown that the first 
and second item are equivalent. The equivalence between the second and third item is 
explained in Remark 3.3. �
Remark 3.5. There are unimodular functions ϕ, ψ such that ker(Tϕψ) = ker(Tϕψ) = {0}
and Tϕψ is not invertible. We exhibit a special class of such functions in Example 5.6.

3.1. On the operator Xϕ,ψ

Let us study in more detail the self-adjoint operator X = Xϕ,ψ linking the subspaces 
ϕH2 and ψH2 in Theorem 3.4. To this effect, we recall the following facts concerning 
Halmos’ model for two orthogonal projections P0 and Q0 in generic position acting in a 
Hilbert space H. Under this assumption, there exists an isometric isomorphism between 
H and a product space K × K and a positive operator Z in K with ‖Z‖ ≤ π/2 and 
ker(Z) = {0}. This isomorphism transforms the projections Q0 and P0 into

Q0 =
(

1 0
0 0

)
and P0 =

(
C2 CS

CS S2

)
,

where C = cos(Z) and S = sin(Z) [18]. The unique self-adjoint operator X linking these 
projections is (see [1])

X =
(

0 iZ

−iZ 0

)
.

Note that ‖X‖ = ‖Z‖.
Let σ(A) denote the spectrum of an operator A. Recall the definition of reduced 

minimum modulus γ(A) of an operator A �= 0:

γ(A) = inf{ ‖Af‖ : ‖f‖ = 1, f ∈ ker(A)⊥ }

= inf σ(|A|) \ {0}.
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Proposition 3.6. Let ϕ, ψ be unimodular functions in L∞ such that

ker(Tϕψ) = ker(Tϕψ) = {0}.

Then

Z = Mϕ cos−1
(
|Tϕψ|

)
Mϕ

and in particular

‖Xϕ,ψ‖ = cos−1(γ(Tϕψ)).

Proof. On the non-generic part of Pϕ and Pψ, the operator X = Xϕ,ψ is trivial. Thus in 
order to compute its norm we restrict to the generic part, and thus X can be described 
by Halmos’ model,

X =
(

0 iZ

−iZ 0

)
.

It is elementary that, if Q0, P0 denote the reductions of Pϕ, Pψ to the generic parts, 
then

Q0P0Q0 =
(
C2 0
0 0

)
.

Now

C2 = PϕPψPϕ = MϕP+MϕMψP+MψMϕP+Mϕ = MϕT
∗
ϕψ

TϕψMϕ = Mϕ|Tϕψ|2Mϕ.

Therefore 0 ≤ C = cos(Z) = Mϕ|Tϕψ|Mϕ, and thus, Z = Mϕ cos−1
(
|Tϕψ|

)
Mϕ. From 

this formula, it follows that

‖Xϕ,ψ‖ = ‖ cos−1(|Tϕψ|)‖ = cos−1(λ0),

where

λ0 = inf σ(|Tϕψ|) = inf σ(|Tϕψ|) \ {0} = γ(Tϕψ).

The second equality can be deduced from the assumption that Tϕψ is injective, which 
implies that 0 cannot be an isolated point of σ(|Tϕψ|). �
Example 3.7. Consider ϕ = χ1, where χ1(z) = z, and the Blaschke factor

ψ(eit) = ba(eit) = a a− eit

it
,
|a| 1 − ae
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for 0 < |a| < 1. Then by direct computation,

ϕH2 ∩ (ψH2)⊥ = (ϕH2)⊥ ∩ ψH2 = {0} , (ϕH2)⊥ ∩ (ψH2)⊥ = H2
−

and

ϕH2 ∩ ψH2 = χ1baH
2 = χ1(χ1 − a)H2.

Then the generic part H0 of ϕH2 and ψH2 is the two dimensional space H2 � χ1(χ1 −
a)H2. The reduced projections Q0 = Pϕ|H0 and P0 = Pψ|H0 are one dimensional,

Ran(Q0) = H0 ∩ χ1H
2 =

〈
χ1

1 − aχ1

〉
, Ran(P0) = H0 ∩ (χ1 − a)H2 =

〈
χ1 − a

1 − aχ1

〉
.

According to Halmos’ formulas,

Q0P0Q0 =
(
C2 0
0 0

)
.

Denote by f and g the normalizations of χ1
1−aχ1

and χ1−a
1−aχ1

, respectively. As usual, let 
f1 ⊗ f2 be the rank one operator defined by f1 ⊗ f2(h) = < h, f2 > f1. Then

Q0P0Q0 = (f ⊗ f)(g ⊗ g)(f ⊗ f) = | < f, g > |2f ⊗ f.

Therefore,

(
C 0
0 0

)
= | < f, g > |f ⊗ f.

In this case C = cos(Z) is a positive real number, and thus Z = cos−1(| < f, g > |). 
Simple computations show that | < f, g > | = (1 − |a|2)1/2, which gives

Z = cos−1((1 − |a|2)1/2) = sin−1(|a|).

Then, the part of Xϕ,ψ acting on H0 is

Xϕ,ψ|H0 =
(

0 −i sin−1(|a|)
i sin−1(|a|) 0

)
.

The restriction of Xϕ,ψ to H⊥
0 is trivial. Thus, Xϕ,ψ has rank two, and

‖Xϕ,ψ‖ = sin−1(|a|).
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3.2. Norm inequalities

The minimality property of the geodesics in the Grassmann manifold may be used to 
obtain operator inequalities.

Theorem 3.8. Let ϕ, ψ be unimodular functions in L∞ such that ker(Tϕψ) =
ker(Tϕψ) = {0}. Then

‖MθP+ − P+Mθ‖ ≥ cos−1(γ(Tϕψ)),

for every real argument θ ∈ L∞ of the function ϕψ.

Proof. Let θ be a real function in L∞ such that eiθ = ϕψ. Consider the curve

α(t) = MeitθPϕMe−itθ .

Apparently, α(t) is a smooth curve in Gr with α(0) = Pϕ and α(1) = MϕψPϕMϕψ = Pψ. 
Then α(t) is longer than the (unique) minimal geodesic which joins ϕH2 and ψH2, whose 
length is ‖Xϕ,ψ‖. Note that

α̇(t) = iMeitθMθPϕ − iPϕMθMe−itθ = iMeitθMϕ(MθP+ − P+Mθ)MϕMe−itθ .

Thus, we find that ‖α̇(t)‖ = ‖MθP+ − P+Mθ‖, and using Proposition 3.6, we obtain

cos−1(γ(Tϕψ)) = ‖Xϕ,ψ‖ ≤ L(α) =
1∫

0

‖α̇(t)‖dt = ‖MθP+ − P+Mθ‖. �

Remark 3.9. With the same hypothesis and notations as in the above theorem, note that 
the operator Mθ is self-adjoint. Therefore the commutator [Mθ, P+] = MθP+ −P+Mθ is 
antihermitian. Also elementary computations show that

P+[Mθ, P+]P+ = P−[Mθ, P+]P− = 0,

i.e. [Mθ, P+] is co-diagonal with respect to P+. Thus, its norm can be related to the 
norm of the Hankel operator Hθ by

‖[Mθ, P+]‖ = ‖P−MθP+‖ = ‖Hθ‖.

Then, by Nehari’s theorem (see for instance [26]),

‖[Mθ, P+]‖ = inf{‖θ − f‖∞ : f ∈ H∞}.

Hence,

‖Xϕ,ψ‖ ≤ inf{‖θ − f‖∞ : f ∈ H∞}.
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Special cases of the above inequality can be rephrased without any mention to complex 
unimodular functions.

Corollary 3.10. Let θ be a real valued continuous function, then

‖MθP+ − P+Mθ‖ ≥ cos−1(γ(Teiθ)).

Proof. Put ϕ = eiθ and ψ = 1 in Theorem 3.8. Then, note that ϕ is an invertible 
continuous function with zero index. Hence the operator Tϕ is Fredholm and has index 
zero, which implies that it is invertible. �

Let θt, t ∈ [0, 1], be a piecewise differentiable path of real valued functions in C. 
Then the curve α(t) = MeiθtP+Me−iθt is piecewise differentiable. Similarly as above, its 
velocity is

‖α̇(t)‖ = ‖Meiθt [Miθ̇t
, P+]M−eiθt ‖ = ‖Hθ̇t

‖ = inf{‖θ̇t − f‖∞ : f ∈ H∞}.

The last quantity can be regarded as the norm of [θ̇t], the class of θ̇t in the quotient 
L∞/H∞ (which is also the velocity of the curve [θt] in the quotient). Therefore,

L(α) = LL∞/H∞([θt]).

Note that the curve θt is arbitrary between θ0 and θ1. In particular, when θt is a straight 
line, we have the following:

Corollary 3.11. Let θ0, θ1 be real valued continuous functions, then

‖θ0 − θ1‖L∞/H∞ ≥ ‖Xeiθ0 ,eiθ1‖ = cos−1(γ(Tei(θ1−θo))).

4. The action of H∞ + C on Grres

The space L2 has the orthogonal decomposition L2 = H2 ⊕H2
−, which we now use to 

give the following definition. The compact restricted Grassmannian Grres is the manifold 
of closed linear subspaces W ⊂ L2 such that

• P+|W : W → H2 ∈ B(W, H2) is a Fredholm operator, and
• P−|W : W → H2

− ∈ B(W, H2
−) is a compact operator.

The components of the restricted Grassmannian are parametrized by k ∈ Z, where k is 
the index of the operator P+|W : W → H2 ∈ B(W, H2),

Grkres = {W ∈ Grres : ind(P+|W : W → H2) = k}.

In particular, since P+ is the identity restricted to H2, H2 = Ran(P+) ∈ Gr0
res.
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Lemma 4.1. Let ϕ be an invertible function in L∞. Then the following are equivalent.

i) ϕH2 ∈ Grres.
ii) ϕ is an invertible function in H∞ + C.
iii) ϕH2 = θH2 for some θ ∈ QC, |θ| = 1 a.e.

In this case, ϕH2 ∈ Grkres, where k = −ind(ϕ) = −ind(θ).

Proof. We first prove i) ⇒ ii). We claim that the Hankel operator Hϕ : H2 → H2
−, 

Hϕf = P−(ϕf), is compact if and only if P−|ϕH2 : ϕH2 → H− is compact. In fact, note 
that Hϕf = P−|ϕH2(ϕf) = P−|ϕH2Mϕf , for all f ∈ H2. Since ϕ is invertible in L∞, 
Mϕ : H2 → ϕH2 is an invertible operator. Thus,

Hϕ = (P−|ϕH2)(Mϕ|H2), Hϕ(Mϕ|H2)−1 = P−|ϕH2 ,

which clearly implies our claim.
Suppose that ϕH2 ∈ Grres. Then, the operator P−|ϕH2 : ϕH2 → H2

− is compact, 
so we get that Hϕ is compact. Hartman’s theorem asserts that a Hankel operator Hϕ

is compact if and only if ϕ ∈ H∞ + C (see e.g. [27, Thm. 2.2.5]). Thus, it follows that 
ϕ ∈ H∞ +C. Since ϕH2 ∈ Grres, we also have that P+|ϕH2 : ϕH2 → H2 is a Fredholm 
operator. Note that Ran(P+|ϕH2) = Ran(Tϕ) and ker(P+|ϕH2) = Mϕ ker(Tϕ), where 
Tϕ is the Toeplitz operator with symbol ϕ. Therefore Tϕ is Fredholm, and thus, ϕ is 
invertible in H∞ + C.

Now we prove ii) ⇒ i). Assume that ϕ is an invertible function in H∞ + C. Then, 
we have that Tϕ is a Fredholm operator. By the same arguments as in the previous 
paragraph, we see that P+|ϕH2 : ϕH2 → H2 is also a Fredholm operator. On the other 
hand, ϕ ∈ H∞+C is equivalent to Hϕ compact. Hence P−|ϕH2 : ϕH2 → H− is compact, 
and consequently, ϕH2 ∈ Grres.

The implication ii) ⇒ iii) is given by Theorem 2.2: if ϕ ∈ H∞+C, then ϕH2 is singly 
invariant. Therefore exists a (unique up to a multiplicative constant) unimodular function 
θ such that ϕH2 = θH2. Now θ = ϕf for some f ∈ H2. Since ϕ is invertible in L∞, then 
f ∈ H∞. Hence, θ ∈ H∞+C. Further, by the invertibility of ϕ, it clearly follows that f is 
invertible in L∞. Using that ϕH2 = θH2 = ϕfH2, we get fH2 = H2, and consequently, 
f is an outer function. Recall that a function in H∞ is invertible if and only if it is outer 
and invertible in L∞. This gives f−1 ∈ H∞. Now θ = θ−1 = ϕ−1 f−1 ∈ H∞ +C, which 
proves that θ ∈ QC.

To prove the implication iii) ⇒ ii), we observe that every unimodular θ ∈ QC is 
invertible in H∞+C. By the equivalence between i) and ii), we get ϕH2 = θH2 ∈ Grres, 
and hence ϕ is invertible in H∞ + C.

Suppose that ϕH2 ∈ Grkres. To prove our claim on the index, we have pointed out 
that Ran(P+|ϕH2) = Ran(Tϕ) and ker(P+|ϕH2) = Mϕ ker(Tϕ), where Mϕ is invertible. 
It follows that k = ind(P+|ϕH2) = ind(Tϕ) = −ind(ϕ). Moreover, θ = ϕf , and f is 
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invertible in H∞. Every invertible function in H∞ has index zero. Hence, ind(ϕ) =
ind(θ). �

Under the identification of each closed subspace W ⊆ L2 with the orthogonal projec-
tion PW , the compact restricted Grassmannian is given by

Grres = {P ∈ B(L2) : P − P+ is compact, P = P 2 = P ∗ }. (2)

Applying the results mentioned in Remark 3.2 for the algebra of compact operators, it 
follows that the tangent space (TGrres)P at some point P ∈ Grres is given by

(TGrres)P = { iXP − iPX : X∗ = X is compact }.

Then, using the usual operator norm, we have a Finsler metric to measure the length of 
curves.

On the other hand, the above presentation of Grres by means of operators is related 
to the orthogonal projections of the C∗-algebra

Bcc = {T ∈ B(L2) : [T, P+] is compact }. (3)

Indeed, this algebra consists of operators with compact co-diagonal entries. Recall that 
the Calkin algebra is the C∗-algebra obtained by taking the quotient of the algebra of 
bounded operators by the ideal of compact operators. Denoting by π the projection onto 
the Calkin algebra, the restricted Grassmannian coincides with the class of orthogonal 
projections P ∈ Bcc such that

π(P ) =
(

1 0
0 0

)
,

where this is a matrix decomposition with respect to π(P+) and π(P−). Metric aspects of 
the projections in Bcc for a general Hilbert space H were studied in [5]. In particular, it 
was proved that any pair of projections in the same connected component of Grres can be 
joined by a geodesic of minimal length. Combining these facts and the characterization 
in Lemma 4.1, we have the following result.

Theorem 4.2. Let ϕ, ψ be invertible functions in H∞ + C. The following are equivalent.

i) ind(ϕ) = ind(ψ).
ii) There is a geodesic in Grres joining Pϕ and Pψ.
iii) There is unique geodesic of minimal length in Grres joining Pϕ and Pψ given by

δ(t) = eitXPϕe
−itX , t ∈ [0, 1],

where X = Xϕ,ψ is a uniquely determined compact self-adjoint operator such that 
‖X‖ < π/2, eiXPϕe

−iX = Pψ, and it is co-diagonal with respect to both Pϕ and Pψ.
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Proof. We first show the equivalence between i) and ii). Suppose that ind(ϕ) = ind(ψ), 
so we have that Pϕ and Pψ belong to the same connected component of Grres. According 
to [5, Thm. 6.6] there is a (minimal) geodesic joining these projections. The converse is 
obvious by the characterization of the connected components of Grres in terms of the 
index of the functions.

Similarly, to prove the equivalence between i) and iii), the only nontrivial part is 
that i) implies iii). If ind(ϕ) = ind(ψ), then ind(ϕψ−1) = 0, and consequently, as we 
state in Theorem 2.4, Tϕψ−1 is an invertible operator. Following the same argument 
as in the proof of Theorem 3.4, but now using Lemma 4.1, we can assume that ϕ, ψ
are unimodular functions in QC. Therefore, ϕH2 ∩ (ψH2)⊥ � ker(Tϕψ) = {0} and 
ψH2 ∩ (ϕH2)⊥ � ker(Tψϕ) = {0}. Under these conditions, there is a unique geodesic of 
minimal length joining Pϕ and Pψ of the desired form (see [5, Prop. 6.5, Thm. 6.6]). �
Remark 4.3. As we have seen in the proof, the above conditions are now equivalent 
to the invertibility of Tϕψ−1 . The invertibility problem for Toeplitz operators has been 
well studied, see for instance the Widom–Devinatz theorem in [8, Thm. 2.23], and [20, 
Section 2, Thm. 5] for more related results.

4.1. Representation by continuous unimodular functions

Now we address the following question: when can we take the quasicontinuous function 
θ in Lemma 4.1 to be continuous? Note that this function is unique up to a multiplicative 
constant.

The conditions in Lemma 4.1 are also equivalent to have ϕH2 = gH2, where g ∈ C is 
non-vanishing. Indeed, this is easily seen from [26, Corollary 165.50.1], which asserts that 
the invertibility of a function ϕ in the algebra H∞ +C is equivalent to the factorization 
ϕ = fg, where f, f−1 ∈ H∞ and g, g−1 ∈ C. In addition, note that ind(g) = ind(ϕ). 
However, the function g is not necessary unimodular.

Assuming that the function ϕ is continuous, we establish below a relation between θ
and ϕ. Given a real valued function u ∈ L2, ũ is the harmonic conjugate on T. Denote by 
Lipα the Banach space of complex-valued functions on T satisfying a Lipschitz condition 
of order α (0 < α ≤ 1). We write A = H∞ ∩ C for the disk algebra.

Proposition 4.4. Let ϕ ∈ C be non-vanishing, θ denote the quasicontinuous function of 
Lemma 4.1, and set u = − log |ϕ|, then

θ = ϕ

|ϕ|e
iũ.

In particular, θ ∈ C, whenever ũ ∈ C. In addition, the following assertions hold.

i) If ϕ ∈ Lipα for 0 < α < 1, then θ ∈ Lipα.
ii) If ϕ ∈ A, then θ ∈ A.
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Proof. Recalling that θH2 = ϕH2, and by the proof of ii) ⇒ iii) in Lemma 4.1, one can 
find an invertible function f in H∞ such that θ = fϕ. Since f is an outer function, its 
harmonic extension admits a representation:

f̂(z) = λ exp

⎛
⎝ 1

2π

2π∫
0

eit + z

eit − z
log |f(eit)|dt

⎞
⎠ , z ∈ D,

for some λ ∈ T; see [26, Thm 3.9.6]. We may assume that λ = 1. Note that f̂ = exp(a +ib)
where

a(z) = 1
2π

2π∫
0

Re

{
eit + z

eit − z

}
log |f(eit)|dt = log |f̂(z)|,

since the real part of (eit + z)(eit − z)−1 is the Poisson kernel. Since |f | = 1/|ϕ| on T, 
and f ∈ H∞, the following radial limit limr→1− a(reit) = log |f(eit)| = u(eit) exists a.e. 
On the other hand,

b(z) = 1
2π

2π∫
0

Im

{
eit + z

eit − z

}
log |f(eit)|dt

is the harmonic conjugate of a on D (up to a constant). By the Privalov–Plessner theorem 
[28, Thm. 6.1.1], limr→1− b(reit) = ũ(eit) a.e. Since θ = ϕf and f = eueiũ = 1

|ϕ|e
iũ, we 

obtain θ = ϕ
|ϕ|e

iũ.

i) Now we assume that ϕ ∈ Lipα. Since ϕ is a non-vanishing continuous function, then 
u = − log |ϕ| ∈ Lipα. By Privalov’s theorem, ũ ∈ Lipα for α < 1 (see [28, Thm. 10.1.3]). 
Clearly, ϕ, |ϕ|−1 ∈ Lipα, which yields θ ∈ Lipα.

ii) According to [27, Section 4.3.8], the outer part ϕout of ϕ belongs to A. Since θ = ϕf , 
it follows that |f−1| = |ϕout|. Therefore, ϕout = λf−1 for some λ ∈ T. Thus, the inner 
part of ϕ satisfies θ = λϕinn, and thus we obtain θ ∈ A. �
Example 4.5. In contrast to what happens with functions in Lipα or A, we now show that 
the class of absolutely continuous functions is not preserved in the above proposition. 
Let

u(eit) = −
∑
n≥2

sin(nt)
n log(n)

then u ∈ C; moreover u is absolutely continuous on T [36, p. 241]. Let ϕ = e−u, clearly 
ϕ ∈ C is non-vanishing and absolutely continuous on T. Since u(T) ⊂ R, we have ϕ > 0
on T, therefore − log |ϕ| = u. Let
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v(eit) =
∑
n≥2

cos(nt)
n log(n) ,

and note that

f(z) =
∑
n≥2

i

n log(n)z
n = iv + u

is analytic, therefore v is the harmonic conjugate of u. But v is not continuous on T, not 
even bounded since 

∑
n≥2

1
n log(n) = +∞, therefore θ = eiv is not continuous on T.

4.2. p-Norms

Given an operator T ∈ K(H, L), we denote by (sn(T ))n≥1 the sequence of its singular 
values. The p-Schatten class (1 ≤ p < ∞) is defined by

Bp(H,L) =

⎧⎨
⎩T ∈ K(H,L) : ‖T‖p =

( ∞∑
n=1

sn(T )p
)1/p

< ∞

⎫⎬
⎭ .

These are Banach spaces endowed with the norm ‖ · ‖p. As usual, when p = ∞, we set 
B∞(H, L) = K(H, L). In particular, Bp(H, H) = Bp(H) is a bilateral ideal of B(H). Using 
the orthogonal decomposition L2 = H2 ⊕ H2

−, and the p-Schatten class (1 ≤ p < ∞), 
one can introduce the p-restricted Grassmannian Grres,p as the manifold of closed linear 
subspaces W ⊂ L2 such that

• P+|W : W → H2 ∈ B(W, H2) is a Fredholm operator, and
• P−|W : W → H2

− ∈ Bp(W, H2
−).

Its connected components Grkres,p, k ∈ Z, are also described by the index of the projection 
P+|W : W → H2. The case p = 2 was studied in connection with loop groups [30]; 
it is an infinite dimensional manifold with remarkable geometric properties [7,17,35]. 
Other values of 1 ≤ p ≤ ∞, or more generally restricted Grassmannians associated with 
symmetrically-normed ideals, were treated in [6,11].

We now introduce Besov spaces. For more details on the following definitions and 
results we refer to Böttcher, Karlovich and Silbermann [9]. The moduli of continuity of 
a function f ∈ Lp are defined as follows: for s > 0,

ω1(f, s) = sup
|h|≤s

‖f(ei( · +h)) − f(ei · )‖Lp ;

ω2(f, s) = sup ‖f(ei( · +h)) − 2f(ei · ) + f(ei( · −h))‖Lp .

|h|≤s
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For 1 ≤ p < ∞ and 0 < α ≤ 1, put

|f |Bα
p

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 2π∫

0

(s−αω1(f, s))p ds

s

⎞
⎠

1/p

if 0 < α < 1;

⎛
⎝ 2π∫

0

(s−αω2(f, s))p ds

s

⎞
⎠

1/p

if α = 1.

The Besov space Bα
p is defined as

Bα
p := { f ∈ Lp : |f |Bα

p
< ∞} .

It is a Banach space endowed with the norm ‖f‖Bα
p

:= ‖f‖Lp + |f |Bα
p
. We denote by Bα

p

the Besov space, where 1 ≤ p < ∞ and 0 < α ≤ 1.
For another description of Besov spaces in terms of special kernels, see for instance 

[26, Appendix 5].
Among various generalizations of the classical Krein algebra, in [9] it was introduced 

the following algebra defined by means of Hankel operators:

K
1/p,0
p,0 = {ϕ ∈ L∞ : Hϕ ∈ Bp(H2, H2

−) },

where 1 ≤ p ≤ ∞. It turns out to be a Banach algebra under the norm

‖ϕ‖
K

1/p,0
p,0

= ‖ϕ‖L∞ + ‖Hϕ‖p .

In the case p = ∞, it simply has the usual operator norm of a compact operator. By 
Hartman’s theorem, K1/∞,0

∞,0 = H∞ +C, and for 1 ≤ p < ∞, one has K1/p,0
p,0 ⊆ H∞ +C. 

Given a function ϕ ∈ L∞ and 1 ≤ p < ∞, Peller’s theorem states that the Hankel 
operator Hϕ ∈ Bp(H2, H2

−) if and only if P−ϕ ∈ B
1/p
p (see [26, Thm. 1.1, Appendix 5]). 

Then there is an equivalent definition of K1/p,0
p,0 in terms of functions instead of operators. 

When 1 ≤ p < ∞, it holds

K
1/p,0
p,0 = {ϕ ∈ L∞ : P−ϕ ∈ B1/p

p } = L∞ ∩ (H∞ + B1/p
p ).

Moreover, when p > 1, a function ϕ is invertible in K1/p,0
p,0 if and only if is invertible in 

H∞ + C.
Using the above stated results and the same arguments of Lemma 4.1, the following 

characterization can be obtained.

Corollary 4.6. Let ϕ be an invertible function in L∞ and 1 ≤ p < ∞. The following 
assertions are equivalent:
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i) ϕH2 ∈ Grres,p.
ii) ϕ ∈ K

1/p,0
p,0 and ϕ is invertible in H∞ + C.

iii) ϕH2 = θH2 for some θ ∈ QC ∩K
1/p,0
p,0 , |θ| = 1 a.e.

In this case, ϕH2 ∈ Grkres, where k = −ind(ϕ) = −ind(θ).

Remark 4.7. For p > 1, condition ii) can be replaced by

ii′) ϕ is an invertible function in K1/p,0
p,0 .

The description for the compact restricted Grassmannian given in (2) has an analogue 
for the p-restricted Grassmannian

Grres,p = {P ∈ B(L2) : P − P+ ∈ Bp(L2), P = P 2 = P ∗ }.

The tangent space at P ∈ Grres,p can be identified with

(TGrres,p)P = { iXP − iPX : X∗ = X ∈ Bp(L2) } ⊆ Bp(L2).

Then, a natural Finsler metric is defined by using the p-norm, which gives the following 
length functional: for α : [0, 1] → Grres,p is a piecewise C1-curve,

Lp(α) =
1∫

0

‖α̇(t)‖p dt.

The geodesics defined in (1) are also minimal for the p-norm (see [6, Cor. 27]). Thus, we 
can use the same ideas of Theorem 4.2 to prove the following (note that ind(ϕ) = ind(ψ)
forces ‖Pϕ − Pψ‖ < 1 by previous remarks):

Corollary 4.8. Let 1 ≤ p < ∞, and let ϕ, ψ be functions in K1/p,0
p,0 which are invertible 

in H∞ + C. The following are equivalent:

i) ind(ϕ) = ind(ψ).
ii) There is a geodesic in Grres,p joining Pϕ and Pψ.
iii) There is unique geodesic of minimal length in Grres,p joining Pϕ and Pψ given by

δ(t) = eitXPϕe
−itX , t ∈ [0, 1],

where X = Xϕ,ψ is a uniquely determined self-adjoint operator such that ‖X‖ < π/2, 
eiXPϕe

−iX = Pψ, and it is co-diagonal with respect to both Pϕ and Pψ.

Moreover, arguing as in the proof of Theorem 3.8 we also obtain
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Corollary 4.9. Let 1 ≤ p < ∞, and let ϕ, ψ be functions in K1/p,0
p,0 which are invertible 

in H∞ + C, such that ind(ϕ) = ind(ψ). Then if θ ∈ K
1/p,0
p,0 is such that eiθ = ϕψ,

‖MθP+ − P+Mθ‖p ≥ 21/p‖ cos−1(|Tϕψ|)‖p = distp(Pϕ, Pψ).

For instance, if ϕ and ψ are C1 functions (with equal index) such an argument θ exists, 
which is continuous and piecewise smooth.

Proof. Recall from Proposition 3.6 that

Xϕ,ψ =
(

0 iZ

−iZ 0

)

and thus (Z ≥ 0)

|Xϕ,ψ| =
(
Z 0
0 Z

)
.

Also Z = Mϕ cos−1(|Tϕψ|)Mϕ. Then

‖Xϕ,ψ‖p = 21/p‖Z‖p = 21/p‖ cos−1(|Tϕψ|)‖p �
5. Shift-invariant subspaces of H2

The orthogonal projections of the C∗-algebra Bcc defined in (3) may be classified using 
their image in the Calkin algebra. In addition to the restricted Grassmannian, we shall 
need to consider the essential class E1 consisting of all the orthogonal projections which 
have the form (in terms of π(P+) and π(P−))

π(P ) =
(
p 0
0 0

)
,

where p �= 0, 1 is a projection in the Calkin algebra. It was shown that the class E1 is 
connected, and in contrast to the restricted Grassmannian, there are projections which 
cannot be joined by a geodesic in E1.

Let E be a closed subspace of L2 such that Mχ1(E) ⊂ E. If 0 �= E ⊆ H2, then 
E = ϕH2 for some inner function ϕ. We prove below that these subspaces belong to 
either the restricted Grassmannian or the essential class E1.

Theorem 5.1. Let ϕ be an inner function. Then the following assertions hold:

i) ϕ is a finite Blaschke product if and only if Pϕ ∈ Grkres, where k is the number of 
zeros of ϕ.

ii) ϕ is not a finite Blaschke product if and only if Pϕ ∈ E1.
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Proof. i) The only inner functions which are invertible in H∞+C are the finite Blaschke 
products (see e.g. [34, Thm. 5]). Therefore, the result follows from Lemma 4.1. The index 
of a Blaschke factor is equal to its number of zeros (see Remark 2.1), and as we have 
already showed, it determines the connected component of Grres where Pϕ lies.

ii) First recall that an orthogonal projection

P =
(
x a

a∗ y

)
,

belongs to Gres if and only if a, y are compact operators and x is Fredholm (see [5, 
Lemma 3.3]). Now suppose that ϕ is not a finite Blaschke product. As we remarked in 
the preceding item, this means that ϕ is not invertible in H∞+C. Therefore, Pϕ /∈ Grres
by Lemma 4.1. On the other hand, note that a∗ = P−Pϕ|H2 = 0 and y = P−Pϕ|H2

−
= 0. 

Using that Pϕ /∈ Grres, we obtain that x = P+Pϕ|H2 is not Fredholm. In order to prove 
that Pϕ ∈ E1, it only remains to verify that x is not compact. To this end, it suffices to 
show that dim ker(x −1) = ∞. But since ϕ ∈ H∞, we have ker(x −1) = H2∩ϕH2 = ϕH2, 
which has infinite dimension. The converse is an immediate consequence of Lemma 4.1
and the characterization of invertible inner functions in H∞ + C. �
Remark 5.2. Every geodesic in E1 is a geodesic in Gr. This follows by the explicit form of 
geodesics in a general C∗-algebra described in Remark 3.2. However, the converse does 
not hold: geodesics in Gr joining two projections of E1 may lie outside of E1. Suppose 
that P, Q ∈ E1, and there is a geodesic δ(t) = eitXPe−itX in Gr joining these projections. 
Then δ(t) belongs to E1 if and only if X ∈ Bcc (see [5, Prop 6.11] for other equivalent 
conditions).

5.1. Examples

We shall give examples of shift-invariant subspaces which can or cannot be joined by a 
(minimal) geodesic in the Grassmann manifold Gr. The simplest case is a consequence of 
the following result proved in [23, Lemma 3.2] for Hardy spaces of the upper half-plane. 
It is an elementary but important step to understand Toeplitz kernels. We shall state it 
for the Hardy space of the circle.

Lemma 5.3. Let ϕ, ψ be two inner functions. Then ker(Tϕψ) �= {0} if and only if there 
exist an inner function θ and an outer function g such that ϕ θ g = ψg on T.

Example 5.4. Suppose that ϕ divides ψ. This means that there is an inner function θ such 
that ϕθ = ψ. Thus, the equation in Lemma 5.3 is satisfied with g = 1, and consequently, 
ker(Tϕψ) �= { 0 }. Hence there is no geodesic in Gr joining ϕH2 and ψH2. Note that 
ker(Tϕψ) = { 0 }. In this case, it is not difficult to construct concrete examples using 
the following well-known description of divisors in H∞. Suppose that {aj} and {a′j} are 
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the zero sets of ϕ and ψ, respectively. If ϕ = λbsμ and ψ = λ′b′sμ′ are the canonical 
factorizations, then ϕ divides ψ if and only if {aj} ⊆ {a′j} and μ ≤ μ′.

The canonical factorization also turns out to be relevant to give an affirmative answer 
to the existence of a geodesic in many concrete cases. Let ϕ be an inner function. A point 
on T belongs to the support of ϕ if it is a limit point of zeros of ϕ or if it belongs to 
the support of the singular measure associated with the singular factor of ϕ. We write 
supp(ϕ) for the support of ϕ. Sarason and Lee proved the following [22, Thm. 1–2].

Theorem 5.5. Let ϕ, ψ be inner functions.

i) If supp(ϕ) �= supp(ψ), then the spectrum of Tϕψ is the closed unit disk.
ii) If there is a point z0 ∈ supp(ψ) \ supp(ϕ), then Tϕψ − λ has dense range for all λ.

From the above result and Theorem 3.4 we obtain this example.

Example 5.6. Let ϕ, ψ be inner functions. Suppose that there are two points z0 and z1

such that z0 ∈ supp(ψ) \ supp(ϕ) and z1 ∈ supp(ϕ) \ supp(ψ). Then there is unique 
minimal geodesic in Gr joining Pϕ and Pψ of the form stated in Theorem 3.4.

Now we consider the case of two inner functions with support z = 1. As a direct 
consequence of the results on Toeplitz kernels obtained by Makarov, Mitkovski and 
Poltoratski [23,25] (see also the survey [19]), one can show examples of the two inner 
functions of the aforementioned type such that their corresponding subspaces can or 
cannot be joined by a geodesic in Gr. These remarkable results were proved for Toeplitz 
operators in Hardy spaces of the upper-half plane (and other classes of functions). For 
this reason, we shall change to the half-plane; however by the isometry exhibited below 
all can be translated to the disk.

A function F holomorphic on the upper half-plane C+ = { z : Im z > 0 } belongs to 
the Hardy space H2

+ = H2(C+) if

‖F‖H2
+

:=

⎛
⎝sup

y>0

∞∫
−∞

|F (x + iy)|2dx

⎞
⎠

1/2

< ∞.

As in Hardy spaces of the disk, one may consider H2
+ as a Hilbert subspace of L2(R)

since non-tangential limits exist a.e. No confusion will arise if we also denote by P+ the 
orthogonal projection of L2(R) onto H2

+. The Toeplitz operator with symbol U ∈ L∞(R)
is defined by

TU : H2
+ → H2

+, TU (F ) := P+(UF ).
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We write H∞
+ = H∞(C+) for the bounded holomorphic functions on C+. Notice that 

w = z−i
z+i is a conformal map from C+ onto D. Set f(w) = F (z). Then, it follows that 

F (z) ∈ H∞
+ if and only if f(w) ∈ H∞. However, H2

+ is not obtained from H2 by 

conformal mapping. It can be shown that f(w) ∈ H2 if and only if π−1/2

(z+i) F (z) ∈ H2
+. 

Taking boundary values, one sees that

W : H2 → H2
+, Wf(x) = π−1/2

(x + i) f
(
x− i

x + i

)
, x ∈ R,

is an isometry from H2 onto H2
+. Set γ(x) = x−i

x+i and fix θ ∈ L∞. Then, Toeplitz 
operators in the Hardy spaces of the disk and the upper half-plane are related by

WTθ = Tθ◦γW .

The canonical factorization of functions in H2 can be also derived in H2
+ using the 

isometry W .
By an inner function Θ in C+ we mean that Θ ∈ H∞

+ and |Θ| = 1 on R. An inner 
function Θ(z) in C+ is a meromorphic inner function if it has a meromorphic extension 
to C. In this case, the meromorphic extension to the lower half-plane is given by Θ(z) =

1
Θ(z) . Each meromorphic inner function Θ admits a canonical factorization Θ = BΛS

a, 
where a ≥ 0 and Λ is a discrete set in C+ without accumulation points on R such that 
the following Blaschke condition holds

∑
λ∈Λ

Imλ

1 + |λ|2 < ∞.

The function BΛ is the corresponding Blaschke product in C+, i.e.

BΛ(z) =
∏
λ∈Λ

ελ
z − λ

z − λ
; |ελ| = 1.

The other function in the factorization is given by the singular inner function Sa(z) =
eiaz. Meromorphic inner functions correspond to inner functions in H2 such that z = 1
is the only possible accumulation point of their zeros and also the only possible singular 
point mass.

Example 5.7. The point spectrum of a meromorphic inner function Θ = BΛS
a is the 

set σ(Θ) = { Θ = 1 } or { Θ = 1 } ∪ {∞}. The point ∞ belongs to the spectrum if ∑
λ∈Λ Im λ < ∞ and Sa ≡ 1 (see [23] for other equivalent conditions). Two meromor-

phic inner functions are said to be twins if they have the same point spectrum, possibly 
including infinity. The twin inner function theorem asserts that if Θ, J are twins, then 
ker(TΘJ) = {0} [23, Thm. 3.20]. Thus, there is always a geodesic joining the correspond-
ing subspaces defined by twin functions.
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Example 5.8. Recall that a sequence of real numbers is separated if |λn − λm| ≥ δ > 0
(n �= m). A separated sequence (λn)n∈Z is a called a Pólya sequence if every zero-type 
entire function bounded on (λn)n∈Z is constant (see also [25] for a new characterization). 
Among several conditions, it was proved in [25, Thm. A] that (λn)n∈Z is a Pólya sequence 
if and only if there exists a meromorphic inner function Θ with { Θ = 1 } = (λn)n∈Z

such that ker(TΘS2c) �= {0} for some c > 0. Hence there is no geodesic joining the 
corresponding subspaces defined by Θ and S2c.
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