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The set DA0 , of pairs of orthogonal projections (P, Q) in generic position with 
fixed difference P −Q = A0, is shown to be a homogeneous smooth manifold: it is 
the quotient of the unitary group of the commutant {A0}′ divided by the unitary 
subgroup of the commutant {P0, Q0}′, where (P0, Q0) is any fixed pair in DA0 . 
Endowed with a natural reductive structure (a linear connection) and the quotient 
Finsler metric of the operator norm, it behaves as a classic Riemannian space: any 
two pairs in DA0 are joined by a geodesic of minimal length. Given a base pair 
(P0, Q0), pairs in an open dense subset of DA0 can be joined to (P0, Q0) by a 
unique minimal geodesic.
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1. Introduction

Let H be a Hilbert space, denote by B(H) the algebra of bounded linear operators in H, and by P(H)
the set of (orthogonal) projections in H. We study here the class D of operators which are differences of 
projections,

D = {P −Q : P,Q ∈ P(H)},

and for A ∈ D, the set

DA = {(P,Q) ∈ P(H) × P(H) : P −Q = A}.
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Results on differences P − Q appeared since the 1940’s, as part of the two subspaces problem: to find a 
complete set of unitary invariants for a pair of closed subspaces M, N (or equivalently, for a pair of projections 
P, Q). This problem was solved by J. Dixmier [14], who obtained a characterization of D. An operator 
A ∈ B(H) belongs to D if and only if A∗ = A, ‖A‖ ≤ 1 and there exists a symmetry V in H′ = N(A2 − 1)⊥
such that AV = −V A in H′ (a symmetry is a selfadjoint unitary operator). This form of Dixmier’s result 
is due to Ch. Davis [12], who found a nice solution of the two subspaces problem by a geometric study of 
the closeness and separation operators of a pair P, Q: C(P, Q) = PQP + (1 − P )(1 − Q)(1 − P ) is called 
the closeness operator of P, Q, and S(P, Q) = P (1 − Q)P + (1 − P )Q(1 − P ) is the separation operator 
of P, Q. Observe that, if A = P − Q, then C = 1 − A2 and S = A2. In [8] J. Avron, R. Seiler and B. 
Simon defined and studied Fredholm pairs of projections, and an index for them: (P, Q) is a Fredholm pair 
if P |R(Q) : R(Q) → R(P ) is a Fredholm operator, whose index is called the index of the pair. Their methods 
rely on an extensive use of the differences A = P −Q and B = P + Q − 1. For a nice presentation of these 
results, see W. Amrein and K. Sinha [1].

A more recent study of D can be found in [2], where several known facts on the differential geometry of 
P(H) were used to describe, for instance, the interior and boundary of D, its connected components, and 
also some special parts of D (elements in D which are Fredholm, compact, or nuclear).

In [27], W. Shi, G. Ji and H. Du studied several properties of DA, for any A ∈ D. In particular, they 
proved that DA0 ⊂ B(H0) is connected, where H0 = {N(A2 − 1) ⊕N(A)}⊥ and A0 = A|H0 .

The main goal of this paper is to present DA0 as a homogeneous space and a differentiable manifold. As 
such, following ideas of Durán, Mata-Lorenzo and Recht [15], the space DA0 has a natural invariant Finsler 
metric. Also, using a well known characterization by Halmos [19], of pairs of projections in generic position, 
we show that DA0 has a reductive structure, a fact which enables one to introduce a linear connection in 
this space, and to compute its geodesics (given by one-parameter unitary groups acting on a given pair 
(P0, Q0)). We show that with the Finsler metric and the reductive structure, DA0 satisfies a Hopf-Rinow 
theorem: pairs in DA0 are joined by a geodesic of minimal length. Moreover, on a dense open subset of DA0 , 
such geodesic is unique.

In Section 2, we present Davis’ characterization of D by means of the Halmos decomposition of H (in 
the presence of a pair P, Q ∈ P(H)). Using Davis’ and Halmos’ tools, we show that the Friedrich’s angle 
is constant in DA. Recall (see Deutsch [13]) that αF (M, N) ∈ [0, π/2] is the Friedrich’s angle between the 
closed subspaces M, N if

cos(αF (M,N)) = sup{|〈μ, ν〉| : μ ∈ M 
N, ν ∈ N 
M, ‖μ‖ = ‖ν‖ = 1} = ‖PMPN − PM∩N‖.

Moreover, it is shown that cos(αF (M, N)) = ‖P0Q0‖ (= constant) for any P = PM , Q = PN such that 
P −Q = A, where P0, Q0 denote the reductions of P , Q to the common invariant subspace H0 = {N(A) ⊕
N(A2−1)}⊥. Hereafter, P0, Q0, A0 will be called the generic part of P, Q, A, respectively. Also in this section 
we show that, with the usual order of positive definite operators, the set {P0 +Q0 : (P0, Q0) ∈ DA0} cannot 
be ordered: P0 + Q0 ≤ P ′

0 + Q′
0 if and only if P0 = P ′

0 and Q0 = Q′
0. In Section 3 we introduce the action 

of the unitary group UA of

A = {A}′ = {T ∈ B(H) : TA = AT}

on DA. A and UA are also reduced by H0. It is proven that the generic part of UA acts transitively on DA0 , 
and from this follows that DA0 is connected (as proved by Shi, Ji and Du in [27]). Section 4 contains a 
description of A0 in terms of Halmos’ decomposition, which will be used later. In Section 5 we present some 
examples in D. In Section 6 we show that DA0 is a differentiable homogeneous manifold, with a natural 
reductive structure. For instance, the geodesic curves can be computed, and we show that the exponential 
map of the linear connection is surjective. We endow the tangent spaces of DA0 with the quotient norm, 
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as defined by Durán, Mata-Lorenzo and Recht in [15], and show that with this metric, the geodesics of the 
reductive connection are minimal up to the border of DA0 .

2. Davis’ characterization

If T ∈ B(H), denote by R(T ) and N(T ) the range and nullspace of T , respectively. If A ∈ D, the space 
H can be decomposed orthogonally as

H = N(A) ⊕N(A2 − 1) ⊕H0, (1)

where H0 =
(
N(A) ⊕N(A2 − 1)

)⊥. Note that N(A2 − 1) = N(A − 1) ⊕ N(A + 1). For any presentation 
A = P −Q, it is straightforward to verify that

N(A) = R(P ) ∩R(Q) ⊕N(P ) ∩N(Q) , N(A− 1) = R(P ) ∩N(Q) and N(A + 1) = N(P ) ∩R(Q).

So that the decomposition (1) is essentially the decomposition considered by Dixmier [14] and Halmos [19]
to study the equivalence of pair of projections. In particular, the subspace H0 is usually called the generic 
part of P and Q, or more properly, the generic part of A = P −Q. Therefore, the decomposition (1) reduces 
simultaneously any pair P , Q in DA.

Using the decomposition (1), the set DA is factorized as follows:

1. In the subspace N(A2 − 1) = N(A − 1) ⊕N(A + 1), A is given by A = 1N(A−1) ⊕ −1N(A+1). That is, 
any pair (P, Q) ∈ DA coincides with (PN(A−1), PN(A+1)) in this subspace.

2. In the subspace N(A), the pairs (P, Q) ∈ DA reduce to pairs of the form (P ′, P ′), with P ′ ∈ P(N(A)). 
Thus, if N(A) is non trivial, the structure of DA|N(A) is that of P(N(A)).

3. The structure of DA in H0 was characterized by Davis [12]. In Theorem 2.2 below we describe the results 
obtained by Davis [12] on this set.

A symmetry V ∈ B(H) is a selfadjoint unitary operator: V ∗ = V −1 = V . Symmetries are special cases 
of difference of projections: V = P+1 −P−1, where P±1 are the orthogonal projections onto the eigenspaces 
{ξ ∈ H : V ξ = ±ξ}. Also note that V = 2P+1 − 1 and P±1 = 1

2 (1 ± V ).
Let us summarize the information above:

Remark 2.1. In the decomposition H = N(A) ⊕N(A2 − 1) ⊕H0, the set DA is decomposed as

DA = PN(A) ⊕ {A±1} ⊕ DA0 ,

where A±1 = PN(A−1) − PN(A+1) is a symmetry. It follows that DA consists of a single element if and only 
if A is a symmetry.

As announced, let us describe the structure of DA0 :

Theorem 2.2 (Essentially [12]). Let A ∈ D, and let A0 be its generic part. There exist one to one corre-
spondences between

• Pairs (P0, Q0) such that P0 −Q0 = A0.
• Symmetries V in H0 such that V A0 = −A0V .
• Closed subspaces S of H0 such that A0(S) ⊂ S⊥ and A0(S⊥) ⊂ S.
• Projections E ∈ P(H0) such that EA0E = (1 −E)A0(1 −E) = 0.
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Proof. Given a pair (P0, Q0) ∈ DA0 , one obtains a symmetry which anti-commutes with A0 as follows. 
Consider the selfadjoint operator S = P0 + Q0 − 1. Note that S = P0 − (1 − Q0) is also a difference of 
projections. Its nullspace is trivial:

N(S) = R(P0) ∩R(1 −Q0) ⊕N(P0) ∩N(1 −Q0) = R(P0) ∩N(Q0) ⊕N(P0) ∩R(Q0) = {0}.

Therefore, the polar decomposition of S, S = V |S| = |S|V yields a symmetry V (note that V is the sign 
function of S). Clearly, SP0 = P0Q0 = Q0S and SQ0 = Q0P0 = P0S. In particular, this implies that 
S2 commutes with P0 and Q0. Then |S| = (S2)1/2 also commutes with both projections. It follows that 
V P0 = Q0V and V Q0 = P0V . Then

V A0 = V P0 − V Q0 = Q0V − P0V = −A0V.

Given a symmetry V which anti-commutes with A0, put (see [12], p. 181)

PV = 1
2{1 + A0 + (1 −A2

0)1/2V } and QV = 1
2{1 −A0 + (1 −A2

0)1/2V }.

Straightforward computations show that PV , QV ∈ P(H0), PV −QV = A0, and PV +QV −1 = (1 −A2
0)1/2V . 

Then, since V and A2
0 commute,

(PV + QV − 1)2 = 1 −A2
0, i.e., |PV + QV − 1| = (1 −A2

0)1/2,

and PV +QV −1 = |PV +QV −1|V . That is, the correspondence between pairs and symmetries is reciprocal.
Given a symmetry V which anti-commutes with A0, let S = {ξ ∈ H0 : V ξ = ξ}, so that S⊥ = {ξ ∈ H0 :

V ξ = −ξ}. If ξ ∈ S, V A0ξ = −A0V ξ = −A0ξ, i.e., Aξ ∈ S⊥. Similarly, A(S⊥) ⊂ S. The converse holds: if 
A0(S) ⊂ S⊥ and A(S⊥) ⊂ S, then the symmetry V = PS − PS⊥ = 2PS − 1 anti-commutes with A0. In 
fact, if ξ ∈ S,

(2PS − 1)A0ξ = 2PSA0ξ −A0ξ = −A0ξ = −A0(2PS − 1)ξ;

if η ∈ S⊥,

(2PS − 1)A0η = 2PSA0η −A0η = 2A0η −A0η = A0η = −A0(2PS − 1)η.

Given a closed subspace S ⊂ H0 such that A0(S) ⊂ S⊥ and A0(S⊥) ⊂ S, the orthogonal projection 
E = PS satisfies that EA0E = (1 −E)A0(1 −E) = 0, and conversely. �
Remark 2.3. Since A0 is selfadjoint with trivial nullspace, the isometric part J0, in the polar decomposi-
tion A0 = J0|A2

0| = |A0|J0, is a symmetry. Note that if a symmetry V anti-commutes with A0, then it 
anti-commutes with J0. Indeed, V commutes with A2

0 and with |A0|, which has also trivial nullspace:

|A0|J0V = −V |A0|J0 = −|A0|V J0,

which implies that J0V = −V J0.

Remark 2.4. Note that A ∈ D is a selfadjoint contraction. Moreover, the existence of a symmetry intertwining 
A0 with −A0, means that the spectrum of the whole A is symmetric with respect to the origin, except for 
an eventual asymmetry at λ = ±1. For instance, if 0 < λ < 1 is an eigenvalue of A, then ±λ ∈ σ(A0), with 
the same multiplicity. The symmetry may break at λ = 1.



E. Andruchow et al. / Differential Geometry and its Applications 66 (2019) 155–180 159
Remark 2.5. Consider now the following question: among the pairs (P, Q) ∈ DA, does the exist an optimal 
element which minimizes P +Q? We use the decomposition H = N(A) ⊕N(A2 − 1) ⊕H0 which reduces all 
pairs in DA. In the first subspace N(A), all pairs are of the form (E, E), for E a projection onto a subspace 
of N(A). Clearly, there is a minimal pair here, taking E = 0. On N(A2 − 1), there is one pair, and for 
this pair P + Q equals the identity of N(A2 − 1). Let us prove that pairs (P0, Q0) in the generic part H0
are not comparable (unless they are equal). This implies that in the nontrivial case, where the generic part 
H0 �= 0, there are no possible minimizers for P +Q. For (P0, Q0) ∈ DA0 , let V0 be the corresponding Davis 
symmetry: PV0 = P0, QV0 = Q0. Then

P0 + Q0 = 1 + V0(1 −A2
0)1/2.

Thus, comparison of these sums is equivalent to comparison of the operators V0(1 −A2
0)1/2 = (1 −A2

0)1/2V0. 
If V1 is the symmetry corresponding to another pair (P1, Q1), then, since

〈V0(1 −A2
0)1/2ξ, ξ〉 = 〈V0(1 −A2

0)1/4ξ, (1 −A2
0)1/4ξ〉,

it follows that P1 + Q1 ≤ P0 + Q0 if and only if

〈V0(1 −A2
0)1/4ξ, (1 −A2

0)1/4ξ〉 ≤ 〈V1(1 −A2
0)1/4ξ, (1 −A2

0)1/4ξ〉.

Moreover, since 1 − A2
0 has trivial nullspace, (1 − A2

0)1/4 has dense range. Thus, the inequality above is 
equivalent to V1 ≤ V0. This inequality is equivalent, in turn, to the inclusion S+

1 ⊂ S+
0 , where S+

i = {ξ ∈
H0 : Viξ = ξ}. Therefore our assumption P1 + Q1 < P0 + Q0 implies the existence of a nontrivial vector 
ξ0 ∈ S+

0 such that ξ0 ⊥ S+
1 . This leads us to a contradiction. In fact, note that A0V0 = −V0A0 implies that 

A0(S+
i ) ⊂ (S+

i )⊥ and A0((S+
i )⊥) ⊂ S+

i . Then

A0ξ0 ∈ (S+
0 )⊥ and A0ξ0 ∈ A0((S+

1 )⊥) ∈ S+
0 ,

i.e., A0ξ0 = 0, a contradiction, since A0 has trivial nullspace.

2.1. Halmos decomposition

Given two projections P, Q, Halmos proved in [19] that there exists an isometric isomorphism between 
the generic part H0 (of P and Q) and a product space L × L which carries P0 and Q0 to the operator 
matrices

(
1 0
0 0

)
and

(
C2 CS

CS S2

)
,

respectively. Here C = cos(Γ) and S = sin(Γ), where 0 ≤ Γ ≤ π/2 is a positive operator in L with trivial 
nullspace. In particular, CS = SC and S has trivial nullspace. Note that also C has trivial nullspace (i.e., 
π/2 is not an eigenvalue of X). Indeed, if Cξ = 0, then

(
1 0
0 0

)(
ξ

0

)
=

(
ξ

0

)
and

(
C2 CS

CS S2

)(
ξ

0

)
=

(
0
0

)
,

i.e., 
(

ξ

0

)
lies in R(P0) ∩N(Q0), which is trivial.
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2.2. Friedrichs’ angle

Given two closed subspaces M, N ⊂ H, the Friedrichs angle [18] between M and N is the angle whose 
cosine is

c(M,N ) := sup{|〈μ, ν〉| : μ ∈ M
N , ν ∈ N 
M, ‖μ‖ = ‖ν‖ = 1}.

It holds that c(M, N ) = ‖PMPN − PM∩N )‖ (see [13]).
We prove next that if (P, Q) ∈ DA, then c(R(P ), R(Q)) does not depend on the pair, i.e., it is an invariant 

of A.

Proposition 2.6. Friedrichs’ angle c(R(P ), R(Q)) = c(N(P ), N(Q)) is constant for all (P, Q) in DA.

Proof. Pick (P ′, Q′), (P, Q) ∈ DA. Let us reduce P ′Q′ − PR(P ′)∩R(Q′) and PQ − PR(P )∩R(Q) in the three 
space decomposition (1). Note that R(P ) ∩R(Q) and R(P ′) ∩R(Q′) are non trivial only in N(A). In N(A)
and N(A2 − 1) = R(P ) ∩ N(Q) ⊕ N(P ) ∩ R(Q), PQ − PR(P )∩R(Q) is trivial, and similarly for (P ′, Q′). 
In the generic part H0, by Theorem 3.1, there exists a unitary operator U such that UP0U

∗ = P ′
0 and 

UQ0U
∗ = Q′

0. Then U(R(P0)) = R(P ′
0) and U(R(Q0)) = R(Q′

0), so that

U(R(P0) ∩R(Q0)) = R(P ′
0) ∩R(Q′

0) , i.e., UPR(P0)∩R(Q0)U
∗ = PR(P ′

0)∩R(Q′
0).

Then, in the three space decomposition (1)

P ′Q′ − PR(P ′)∩R(Q′) = 0 ⊕ 0 ⊕ U
(
P0Q0 − PR(P0)∩R(Q0)

)
U∗,

and, thus,

‖P ′Q′ − PR(P ′)∩R(Q′)‖ = ‖P0Q0 − PR(P0)∩R(Q0)‖ = ‖PQ− PR(P )∩R(Q)‖,

i.e., c(R(P ′), R(Q′)) = c(R(P ), R(Q)). �
Remark 2.7. Note that c(R(P ), R(Q)) = ‖P0Q0‖. Using Halmos representation

‖P0Q0‖ = ‖P0Q0P0‖1/2 = ‖
(
C2 0
0 0

)
‖1/2 = ‖C‖.

Then, the angle equals cos−1(‖ cos(Γ)‖). If Γ is non invertible, 0 ∈ σ(Γ) and therefore 1 ∈ σ(C), and thus 
the angle is π/2. If Γ is invertible (which is equivalent to A2 − 1 being of closed range), then ‖ cos(Γ)‖ =
cos(‖Γ−1‖−1), and the angle is ‖Γ−1‖−1, or, equivalently, the lowest value in the spectrum of Γ. In any case, 
this quantity is an invariant of A. We shall see below (Remark 3.7), that ‖P0 + Q0‖ is also an invariant 
of A0.

3. A unitary action on DA

Let A := {A}′ = {T ∈ B(H) : TA = AT}. Since A is selfadjoint, A is a von Neumann subalgebra of 
B(H). Let UA be the unitary group of A. Observe that UA is connected. The group UA acts on DA:

U · (P,Q) = (UPU∗, UQU∗) , U ∈ UA , (P,Q) ∈ DA,

because UPU∗ − UQU∗ = UAU∗ = A.
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The algebra A and the action of UA can be factored using the three space decomposition (1) H =
N(A) ⊕N(A2 − 1) ⊕H0. The algebra A splits as

A = B(N(A)) ⊕A1 ⊕A0.

Let us describe the summands. The first summand is clearly B(N(A)): any operator acting on N(A) (and 
trivial in N(A)⊥) commutes with A (= 0 in N(A)). A pair (P, Q) ∈ DA reduces to (P ′, P ′) in N(A), for 
some projection P ′ ∈ B(N(A)). The action of the unitary group of N(A) on these pairs is essentially the 
action of the unitary group of a space on the projections of the space. The orbits are parametrized by the 
dimensions of the range and the nullspace.

The second summand consists of the algebra of operators which commute with A|N(A2−1). In the decom-
position N(A2 − 1) = N(A − 1) ⊕N(A + 1), A|N(A2−1) is the matrix

A|N(A2−1) =
(

1 0
0 −1

)

and the operators in N(A2 − 1) which commute with A are of the form

T =
(
T1 0
0 T2

)
.

The unitary operators of this form leave A|N(A2−1) fixed (a fact consistent with the observation that all 
pairs (P, Q) ∈ DA reduce to a unique element in N(A2 − 1)).

The third summand is A0 := {A|H0 : A ∈ A}. Therefore, it is natural to focus on the action of UA0, the 
unitary group of the part A0.

Theorem 3.1. The action of UA0 on DA0 is transitive.

Proof. Let (P0, Q0), (P ′
0, Q

′
0) ∈ DA0 . Denote by V and V ′ the symmetries (which anti-commute with A0) 

which correspond to these pairs. Consider the decomposition

H0 = N(P0 + Q′
0 − 1) ⊕N(P0 + Q′

0 − 1)⊥.

Note that N(P0 + Q′
0 − 1) reduces simultaneously both pairs (P0, Q0), (P ′

0, Q
′
0). First note that N(P0 +

Q′
0 − 1) = N(P ′

0 + Q0 − 1), because P0 −Q0 = P ′
0 −Q′

0. Also note that

N(P0 + Q′
0 − 1) = N(P0 − (1 −Q′

0)) = R(P0) ∩R(1 −Q′
0) ⊕N(P0) ∩N(1 −Q′

0)

= R(P0) ∩N(Q′
0) ⊕N(P0) ∩R(Q′

0),

which reduces P0 and Q′
0, and similarly for P ′

0 and Q0.
In the second subspace N(P0 +Q′

0−1)⊥, the operator P0 +Q′
0−1 is selfadjoint and has trivial nullspace; 

therefore, in the polar decomposition

P0 + Q′
0 − 1 = Σ|P0 + Q′

0 − 1| = |P0 + Q′
0 − 1|Σ,

the operator Σ is a symmetry which, by the same argument as in the proof of Theorem 2.2, satisfies

ΣP0|N(P +Q′ −1)⊥Σ = Q′
0|N(P +Q′ −1)⊥ and ΣQ′

0|N(P +Q′ −1)⊥Σ = P0|N(P +Q′ −1)⊥ .
0 0 0 0 0 0 0 0
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Then,

ΣA0|N(P0+Q′
0−1)⊥Σ = −A0|N(P0+Q′

0−1)⊥ .

The fact that P0 +Q′
0 − 1 = P ′

0 +Q0 − 1, implies that this operator Σ intertwines also the reductions of P ′
0

and Q0 to N(P0 + Q′
0 − 1)⊥.

The symmetry V , which is obtained (by means of the Borel functional calculus) as the sign function 
of P0 + Q0 − 1, also is reduced by N(P0 + Q′

0 − 1). Clearly, V |N(P0+Q′
0−1)⊥ also anti-commutes with 

A0|N(P0+Q′
0−1)⊥ . Then, the unitary operator U1 in N(P0 + Q′

0 − 1)⊥ defined as

U1 = ΣV |N(P0+Q′
0−1)⊥ ,

commutes with A0|N(P0+Q′
0−1)⊥ . Moreover, it satisfies

U1P0|N(P0+Q′
0−1)⊥U

∗
1 = Σ(V P0V )|N(P0+Q′

0−1)⊥Σ = ΣQ0|N(P0+Q′
0−1)⊥Σ = P ′

0|N(P0+Q′
0−1)⊥

and, similarly,

U1Q0|N(P0+Q′
0−1)⊥U

∗
1 = Q′

0|N(P0+Q′
0−1)⊥ .

Let us find a unitary in the other subspace, N(P0+Q′
0−1). Trivially, P0|N(P0+Q′

0−1) = 1 −Q′
0|N(P0+Q′

0−1), 
and also P ′

0|N(P0+Q′
0−1) = 1 −Q′

0|N(P0+Q′
0−1). Note that

A0P0|N(P0+Q′
0−1) = (1 −Q0)P0|N(P0+Q′

0−1) = P ′
0(1 −Q′

0)|N(P0+Q′
0−1) = P ′

0A0|N(P0+Q′
0−1),

and, similarly,

A0Q0|N(P0+Q′
0−1) = Q′

0A0|N(P0+Q′
0−1).

Then, again by the same argument as above (and as in the proof of Theorem 2.2), the isometric part U2
in the polar decomposition of A0|N(P0+Q′

0−1) (which has trivial nullspace in the whole H0 and, thus also in 
N(P0 + Q′

0 − 1)), is a symmetry (U2 = U∗
2 ) which satisfies

U2P0|N(P0+Q′
0−1)U2 = P ′

0|N(P0+Q′
0−1) and U2Q0|N(P0+Q′

0−1)U2 = Q′
0|N(P0+Q′

0−1)

In particular, this implies that U2 commutes with A0|N(P0+Q′
0−1). Consider, then,

U = U2 ⊕ U1 acting in N(P0 + Q′
0 − 1) ⊕N(P0 + Q′

0 − 1)⊥ = H0.

Clearly, U is a unitary operator which commutes with A0, and satisfies U · (P0, Q0) = (P ′
0, Q

′
0). �

The following result appeared in [27]. It was proved there using a different technique: Shi, Ji and Du 
obtained a parametrization of DA0 , in terms of unitaries in a von Neumann algebra. The result is proved 
here as an easy consequence of the above theorem:

Corollary 3.2. DA0 is connected. The connected components of DA are parametrized by the connected com-
ponents of the space of projections P(N(A)) of the space N(A).

Proof. UA0 is the unitary group of a von Neumann algebra, therefore connected, and the action on DA0 is 
continuous. The assertion on the components of DA follows form the description of DA done in Section 1. �
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Remark 3.3. The unitary U obtained above is, in fact, an explicit formula in terms of P0, Q0, P ′
0 and Q′

0. 
However, if one fixes for instance the pair (P0, Q0), U is not a continuous formula in terms of (P ′

0, Q
′
0)

(a continuous formula would provide a continuous global cross-section for the action). Indeed, the formula 
of U depends on the decomposition H0 = N(P0 +Q′

0 − 1) ⊕N(P0 +Q′
0 − 1)⊥. Or, equivalently, on the map

Q′
0 �→ PN(P0+Q′

0−1) = PN(P0−(1−Q′
0)).

One can find trivial examples (in dimension 2, for instance) where this map is not continuous.

However, in some cases the action does have continuous local cross sections. Let us show one such case.
Given a fixed (P0, Q0) ∈ DA0 , consider the continuous (surjective) map

π(P0,Q0) : UA0 → DA0 , π(P0,Q0)(U) = U · (P0, Q0) = (UP0U
∗, UQ0U

∗).

Lemma 3.4. 1 −A2 has closed range if and only if for any (P0, Q0) ∈ DA0 , P0 + Q0 − 1 is invertible.

Proof. Suppose that 1 −A2 has closed range. Note the formula (see [21] p. 33, or compute directly):

(P −Q)2 + (P + Q− 1)2 = 1,

or, equivalently, 1 − A2 = (P + Q − 1)2. It follows that (P + Q − 1)2 has closed range. In the generic part 
H0, (P + Q − 1)2|H0 = (P0 + Q0 − 1)2 has trivial nullspace. Thus, (P0 + Q0 − 1)2 is invertible, and, thus, 
also P0 + Q0 − 1 is invertible.

Conversely, if P0 + Q0 − 1 is invertible, then (P0 + Q0 − 1)2 is also invertible, and then its extension 
(P + Q − 1)2 = 1 −A2 (which is zero in N(P + Q − 1)) has closed range. �
Remark 3.5. Using Halmos decomposition, a simple computation shows that R(A2 − 1) is closed, which 
means that A2

0 − 1 is invertible if and only if S (or Γ) is invertible in L.

For such A as above, the map π(P0,Q0) has continuous local cross-sections.

Proposition 3.6. Let A ∈ D such that A2 − 1 has closed range. Then the map π(P0,Q0) has continuous local 
cross-sections.

Proof. Consider the set

{(P ′, Q′) ∈ DA0 : P0 + Q′ − 1 is invertible in H0}.

Since the set of invertible operators is open, this set is clearly an open subset of DA0 (considered with the 
relative topology of B(H0) × B(H0)). It is a neighbourhood of (P0, Q0): if (P ′, Q′) = (P0, Q0), P0 + Q0 − 1
is invertible, by the above Lemma. Then the map

s : {(P ′, Q′) ∈ DA0 : P0 + Q′ − 1 is invertible in H0} → UA0 , s(P ′, Q′) = sgn(P0 + Q′ − 1)V

is continuous. Here sgn(P0 + Q′ − 1) denotes the sign of the selfadjoint (invertible) operator P0 + Q′ − 1, 
sgn(P0 + Q′ − 1) = (P0 + Q′ − 1) 

(
(P0 + Q′ − 1)2

)−1/2. Note that the function sgn is continuous on the 
set of invertible operators. As seen above, it is an element of UA0 (called ΣV in the proof of Theorem 3.1). 
Also, it is clear that it is a cross section in a neighbourhood of (P0, Q0). One obtains cross sections around 
other points by translating this map using the transitive action. �
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Remark 3.7. In Remark 2.5, we observed that if (P0, Q0), (P ′
0, Q

′
0) are the generic parts of two pairs 

(P, Q), (P ′, Q′) ∈ DA, the operators P0 + Q0 and P ′
0 + Q′

0 are not comparable (an inequality implies 
equality). The transitivity of the action of UA0 on DA0 implies that the norms of these operators coincide. 
Indeed, since there exists a unitary operator U in A0 such that UP0U

∗ = P ′
0 and UQ0U

∗ = Q′
0, it follows 

that U(P0 + Q0)U∗ = P ′
0 + Q′

0, and therefore ‖P0 + Q0‖ = ‖P ′
0 + Q′

0‖.

4. A presentation of A0 in terms of Halmos decomposition

Proposition 4.1. The algebra A0, represented in B(L ×L), consists of matrices of the form

{
(
X Y

Y Z

)
: X,Y, Z ∈ B(L) commute with Γ, and C(X − Z) + 2SY = 0}.

Proof. In L ×L, A0 is

(
S2 −CS

−CS −S2

)
.

Let 
(

X Y1
Y2 Z

)
be an operator which commutes with A0. Then, in particular, it commutes with A2

0 which 

is given by

(
S2 0
0 S2

)
.

Then X, Y1, Y2, Z commute with S2. Therefore, they commute also with its square root |S| = S, and with 
C. Thus, X, Y1, Y2, Z commute with eiΓ = C+iS, and with its analytic logarithm iΓ (since ‖Γ‖ ≤ π/2 < π). 
Straightforward computations show that an operator lies in the commutant of A0 if and only if

• CSY1 = CSY2, which means that Y1 = Y2, because C, S have trivial nullspaces, and
• S2Y −CSZ = −CSX − S2Y , which, again using that S has trivial nullspace, means that C(X −Z) +

2SY = 0. �
Remark 4.2. Note that since S = sin(Γ) has trivial nullspace, then the (eventually unbounded, densely 
defined) operator τ = tan(Γ) is defined, and the condition C(X − Z) + 2SY = 0 can be replaced by

Z = X + 2τY.

In particular, it implies that τY = Y τ is bounded.

Remark 4.3. It is also easy to characterize the unitaries in A0 which leave (P0, Q0) fixed. They are the 
(unitary) matrices which commute with P0 and Q0. The first relation implies that they must be diagonal 
matrices. Commutation with the second projection implies, after simple computations (using that C has 
trivial nullspace), that they are of the form

{W ∈ UA0 : WP0W
∗ = P0 and WQ0W

∗} = {
(
W ′ 0
0 W ′

)
: W ′ ∈ U(L),W ′Γ = ΓW ′}.
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Using this representation of the generic part, we can further analize the condition that A2 − 1 has closed 
range. Recall from Lemma 3.4, that this is equivalent to the invertibility of P0 + Q0 − 1, for any pair 
(P0, Q0) ∈ DA0 .

Proposition 4.4. The following are equivalent

1. A2 − 1 has closed range.
2. PQP − P has closed range.
3. P0Q0P0 − P0 is invertible in R(P0).
4. Γ is invertible in L.

Proof. Clearly, it suffices to examine the reductions to the generic part H0. Using Halmos representation, 
one gets

A2
0 − 1 =

(
−S2 0

0 −S2

)
,

and P0Q0P0 − P0 = −S2 = − sin(Γ). The equivalence of these conditions becomes apparent. �
5. Examples

We present examples of operators A, which will be the object of further study. The first one has continuous 
spectrum.

Example 5.1. Let H = L2(−1, 1) and A = Mt (multiplication by the variable): Af(t) = tf(t). Note that 
A anti-commutes with the symmetry V , V f(t) = f(−t). Therefore A = PV − QV , following the notation 
of Davis’ characterization in Section 1, and both projections can be computed explicitly. Since A has no 
eigenvalues, it follows that H0 = H (i.e., PV , QV or any pair of projections with difference A are in generic 
position). Also note that the algebra A is L∞(−1, 1), represented as multiplication operators in H. Therefore, 
if one chooses to parametrize elements in DA by means of isometries, DA consists of all symmetries Vϕ of 
the form

Vϕ = MϕVMϕ̄,

for ϕ ∈ L∞(−1, 1), with |ϕ(t)| = 1 a.e., modulo the commutant of V , i.e., the unimodular functions of 
L∞(−1, 1) which are essentially even. Explicitly,

Vϕf(t) = ϕ(t)ϕ̄(−t)f(t),

modulo the functions ϕ such that ϕ(t) = ϕ(−t) for almost every t ∈ (−1, 1).

The second example has pure point spectrum.

Example 5.2. Let I, J ⊂ Rn be Lebesgue measurable sets with positive finite measure. Consider H = L2(Rn)
and the projections

PI = MχI
and QJ = F−1PJF

where χD is the characteristic function of D ⊂ Rn and F : H → H is the Fourier-Plancherel transform. 
These pairs have been studied in connection with mathematical formulation of the uncertainty principle (see 
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[23], the survey [17] or the book [20]; see also [4]). Specifically, the products PIQJ , PIQJPI are of interest. 
Among the basic facts concerning these operators, it is known that they are Hilbert-Schmidt operators, and 
that

R(PI) ∩R(QJ ) = R(PI) ∩N(QJ) = N(PI) ∩R(QJ) = {0},

and N(PI) ∩ N(QJ) is infinite dimensional (see for instance [23]). In particular, PIQJPI has a complete 
orthonormal system of eigenvectors (i.e., PIQJPI is diagonalizable). In [5] it was proved that for a pair 
of projections P, Q, PQP is diagonalizable if and only if P − Q is diagonalizable. In this case, there is an 
explicit relation between the eigenvectors and eigenvalues of PQP and P −Q. If sn are the eigenvalues of 
PQP (0 < sn < 1), then ±λn = ±(1 −sn)1/2 are the eigenvalues of P−Q. The eigenvalue s = 1 corresponds 
with λ = 0.

Thus, our second example A = PI −QJ is diagonalizable. Moreover,

H0 = N(A)⊥ = (N(PI) ∩N(QJ))⊥ .

In the particular case I = (0, 1) and J = (−Ω/2, Ω/2) the eigenvectors are known (called prolate 
spheroidal functions [28], [20]), and the eigenvalues have simple multiplicity. Therefore, in this case A0
consists of all diagonal matrices in this orthonormal basis. In particular, A0 is commutative, as in the 
previous example.

Let us characterize in this example the symmetries which anti-commute with A0. Note that this implies 
that V commutes with A2

0. Therefore V has block diagonal form, with blocks of size 2 × 2, generated, for 
each fixed n ≥ 1, by the eigenvectors en, fn of λn and −λn, respectively. Note that V en is an eigenvector 
for −λn:

A0V en = −V A0en = −λnV en.

Thus, since in this case all eigenvalues have multiplicity one, V en = ωnfn, for some ωn ∈ C with |ωn| = 1. 
Similarly, V fn is an unimodular multiple of en. The fact that V 2 = 1 implies that V fn = ω̄nen. Therefore, 
any symmetry V anti-commuting with A0 (in H0) is of the form

V = Vω = ⊕∞
n=1Vωn

∈ ⊕∞
n=1Hn , where Vωn

=
(

0 ωn

ω̄n 0

)

and Hn is the subspace spanned by en and fn. That is, the elements of DA0 can be parametrized by 
sequences ω = {ωn} of complex numbers of modulus 1.

Remark 5.3. If we consider the 2 ×2 matrix representation of the previous section, elementary computations 
show that if A0 is commutative, then all entries in the matrices commute.

Example 5.4. Consider H = L2(T ), put H+ = H2(T ), P+ = PH+ . Let a = {a1, . . . , aN}, b = {b1, . . . , bN}
two (finite) sequences of points in the open disk D. We suppose that ai �= aj if i �= j and ai �= bj for all i, j. 
Let Ba, Bb be the corresponding Blaschke products. Put Pa = PBaH+ , and similarly Pb = PBbH+ . Note 
that since the multiplication operator MBa

is a unitary operator in H, Pa = MBa
P+MB̄a

and similarly 
Pb = MBb

P+MB̄b
. Also note that, if a#b = {a1, . . . , aN , b1, . . . , bN}, then

Ha ∩Hb = Ha#b ;

Ha ∩H⊥
b = H⊥

a ∩Hb = {0}.
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This is an exercise which follows from the fact that a and b have the same cardinality (see also [3] for a 
proof). Moreover,

H⊥
a ∩H⊥

b = (Ha ∪Hb)⊥ = (H+)⊥ = H−

because Ba and Bb are coprime inner functions (ai �= bj). Therefore, the generic part H0 equals the model 
space

H0 = H+ 
Ha#b,

spanned by {ka1 , . . . , kaN
, kb1 , . . . , kbN }, where kc denotes the reproducing kernel of H+ at c ∈ D. Since 

we have chosen different points ai, bj in the disk, these functions are linearly independent, and H0 has 
dimension 2N . Thus A0 is a finite dimensional algebra. The operator A0 = Pa − Pb|H0 is a 2N × 2N
matrix. Let us compute A0 in the elements of the basis kai

, kbj . First, note that kai
∈ H⊥

a : if h ∈ H+, 
〈Bah, kai

〉 = Ba(ai)h(ai) = 0. Then

Pakai
= 0 , Pbkbj = 0.

Note that

P+B̄akbj =
∑
l≥0

〈B̄akbj , z
l〉zl =

∑
l≥0

〈kbj , Baz
l〉zl =

∑
l≥0

Ba(bj)(b̄jz)l = Ba(bj)
1

1 − b̄jz
= Ba(bj)kbj .

Then, Pakbj = MBa
P+MB̄a

kbj = Ba(bj)Bakbj . Similarly for Pbkai
. Then,

A0kai
= −Bb(ai)Bbkai

and

A0kbj = Ba(bj)Bakbj .

Thus, in principle, it is possible to compute the 2N × 2N matrix of A0 in the (non-orthogonal) basis of 
the reproducing kernels kai

, kbj . It would be interesting to know if under the present assumptions, A0 has 
eigenvalues of simple multiplicity.

Example 5.5. Let E ∈ B(H) be a non-selfadjoint idempotent operator (E2 = E). Consider the orthogonal 
projections PR(E) and PR(E∗) = PN(E)⊥ . In matrix form, in terms of the decomposition H = R(E) ⊕R(E)⊥, 
E is written

E =
(

1 B

0 0

)
,

where B : R(E)⊥ → R(E). Consider the selfadjoint operator S = E + E∗ − 1. S is selfadjoint with trivial 
nullspace, which satisfies SE = E∗S and SE∗ = ES. Then, similarly as before, the unitary part of S in the 
polar decomposition intertwines E and E∗. Then, it also intertwines the range projections. Moreover, by 
straightforward matrix computations (which were done explicitly in [6]), this unitary part coincides with 
Davis’ symmetry V for the pair of projections PR(E), PR(E∗). Also note the well known formulas

PR(E) = ES−1 and PR(E∗) = E∗S−1,



168 E. Andruchow et al. / Differential Geometry and its Applications 66 (2019) 155–180
so that

A = (E − E∗)S−1. (2)

Note that R(E) ∩N(E) = {0} and R(E∗) ∩N(E∗) = {0}. Straightforward computation show that

R(E) ∩R(E∗) = N(B∗) and N(E∗) ∩N(E) = N(B).

Thus, in order that PR(E) and PR(E∗) be in generic position, B should have dense range and trivial nullspace. 
Let us assume this. In particular it implies that dimR(E) = dimR(E)⊥. Clearly, if we want to study the 
structure of DA, we can replace E with UEU∗, where U : H → J is a unitary transformation. Thus, 
A = PR(E) − PR(E∗) is replaced by UAU∗. Pairs in DA are mapped onto pairs in DUAU∗ by means of 
(P, Q) �→ (UPU∗, UQU∗). Therefore (by the equality of dimensions between R(E) and R(E)⊥) we can 
choose a model J = L × L. Next consider the polar decomposition of B, B = W0|B|. Clearly W0 : L → L

is a unitary operator. Consider the unitary operator W in L × L given by W =
(
W ∗

0 0
0 1

)
. Then,

WEW ∗ =
(

1 W ∗
0 B

0 0

)
=

(
1 |B|
0 0

)
.

Summarizing, we can suppose that H = L ×L and B is positive with trivial nullspace. Therefore, with the 
current assumptions, using (2), one has

A0 = A =
(

B2(1 + B2)−1 −B(1 + B2)−1

−B(1 + B2)−1 −B2(1 + B2)−1

)
.

In order to describe A0 = {A0}′, note that A2
0 =

(
B2(1 + B2)−1 0

0 B2(1 + B2)−1

)
. Therefore, if X =(

X11 X12
X21 X22

)
belongs to A0, in particular it commutes with A2

0. This clearly implies that the entries Xij

commute with B (recall that B ≥ 0). Next, note that the condition that X commutes with A0 means that

BX12 = X21B = BX21,

which implies X12 = X21, because N(B) = 0, and that

BX22 −X11B = B(X22 −X11) = 2B2X12,

which implies that X22 = 2BX12 + X11. Therefore

A0 = {
(
Y Z

Z Y + 2BZ

)
: Y,Z commute with B}.

Let us describe the isotropy subalgebra, i.e., the operators which commute with PR(E) and PR(E∗). Operators 

which commute with PR(E) =
(

1 0
0 0

)
, are diagonal matrices. If they belong additionally to A0, they are 

of the form



E. Andruchow et al. / Differential Geometry and its Applications 66 (2019) 155–180 169
{
(
Y 0
0 Y

)
: Y commutes with B}.

Easy examples (of positive operators B), show that the isotropy subalgebra, and therefore A0, may not be 
commutative.

6. A regular structure for DA

We shall prove that DA is an homogeneous C∞ space of the unitary group UA. If A2−1 has closed range, 
then DA is additionally a complemented submanifold of P(H) × P(H). As seen above, DA decomposes as 
three spaces in the decomposition (1).

• In N(A), the group acting is the whole unitary group of N(A), and the space DA reduces to pairs of the 
form (E, E), where E ∈ P(H) and R(E) ⊂ N(A), i.e., DA|N(A) identifies with the space of projections 
in the Hilbert space N(A), under the action of the unitary group of N(A). This space is well studied: 
it is a C∞ complemented submanifold of B(N(A)) (see [11]).

• In N(A2 − 1), DA|N(A2−1) is a single point, namely, (PN(A−1), PN(A+1)).
• Therefore, the task is reduced to show that DA0 has local regular structure.

In order to prove that DA0 has differentiable structure, and also in order to define later a linear connection 
in this manifold, the following map will be useful:

Definition 6.1. Fix (P0, Q0) ∈ DA0 , and fix also a Halmos decomposition for this pair. Consider the map 
E(P0,Q0) : A0 → A0,

E(P0,Q0)(
(
X Y

Y Z

)
) =

(
1
2 (X + Z) 0

0 1
2 (X + Z)

)
. (3)

It is easy to see that this map is a conditional expectation, with range equal to the subalgebra of elements 
in A0 which commute with P0 and Q0 (see Remark 4.3).

Remark 6.2. Let us prove that the conditional expectation E(P0,Q0) depends only on the pair (P0, Q0) (and 

not on the Halmos decomposition). Indeed, first note that Q0 − P0Q0P0 − P⊥
0 Q0P

⊥
0 =

(
0 CS

CS 0

)
. Let 

us denote this operator by K. Since C and S have trivial nullspace, then N(K) = 0. Also, it is clear that 
K∗ = K. Then, in the polar decomposition of K,

K = W |K| = W

(
CS 0
0 CS

)
;

using again that C and S have trivial nullspaces, it follows that it must be W =
(

0 1
1 0

)
. The operator 

W is obtained by means of the functional calculus of K: W = sgn(K), where sgn denotes the (Borel, 

eventually non continuous) sign function (sgn(t) = 1 if t ≥ 0, −1 if t < 0). Note that P0W =
(

0 1
0 0

)
and 

WP0 =
(

0 0
1 0

)
. Then, if M =

(
X Y

Y Z

)
, we get
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E(P0,Q0)(M) = 1
2P0(M + WMW )P0 + 1

2P
⊥
0 (M + WMW )P⊥

0 .

Definition 6.3. As above, fix (P0, Q0) ∈ DA0 and a Halmos decomposition for this pair. Denote

H(P0.Q0) := N(E(P0,Q0)) ∩ (A0)ah = {
(
−Y τ Y

Y Y τ

)
: Y ∗ = −Y, Y Γ = ΓY, Y τ is bounded in L}. (4)

Note that if Y τ is bounded, then Z −X = 2Y τ .

Remark 6.4. Let us point out the fact, which will be relevant later, that for any (matrix) element in H(P0,Q0), 
all entries of the matrix commute. Indeed, Y commutes with τ = tan(Γ).

In order to study the local structure of DA0 we first suppose that R(A2−1) is closed. In this case we shall 
prove that DA0 is a submanifold of B(H0) ×B(H0) (as well as a homogeneous space of UA0). To prove this 
fact we shall need the following lemma, which is an application of the inverse function theorem in Banach 
spaces. One can find a detailed and elementary proof of this fact in [26].

Lemma 6.5. Let G be a Banach-Lie group acting smoothly on a Banach space X. For a fixed x0 ∈ X, denote 
by πx0 : G → X the smooth map πx0(g) = g · x0. Suppose that:

1. πx0 is an open mapping, regarded as a map from G onto the orbit {g ·x0 : g ∈ G} of x0 (with the relative 
topology of X).

2. The differential d(πx0)1 : (TG)1 → X splits: its nullspace and range are closed complemented subspaces 
in the Banach-Lie algebra G of G and X, respectively.

Then, the orbit {g · x0 : g ∈ G} is a smooth submanifold of X, and the map

πx0 : G → {g · x0 : g ∈ G}

is a smooth submersion.

Proposition 6.6. Suppose that A2 − 1 has closed range. Then, DA0 is a complemented C∞ submanifold of 
B(H) × B(H), and for any fixed (P0, Q0) ∈ DA0 , the map

π(P0,Q0) : UA0 → DA0 , π(P0,Q0)(U) = (UP0U
∗, UQ0U

∗)

is a C∞ submersion.

Proof. We shall apply Lemma 6.5 above. Note that the condition that π(P0,Q0) is open is fulfilled: if A2 − 1
has closed range, then π(P0,Q0) has continuous local cross-sections. A cross section on a neighbourhood of 
(P0, Q0) was defined in Section 2 by

s : {(P ′, Q′) ∈ DA0 : P0 + Q′ − 1 ∈ Gl(H0)} → UA0 , s(P ′, Q′) = (P0 + Q′ − 1)|P0 + Q′ − 1|−1V.

This map can be extended to a map š defined on an open subset in B(H0) ×B(H0), with values in Gl(H0). 
Namely

š : {(T, S) ∈ B(H0) × B(H0) : P0 + S − 1 ∈ Gl(H0)} , š(T, S) = (P0 + S − 1)|P0 + S − 1|−1V.
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Clearly, {(T, S) ∈ B(H0) × B(H0) : P0 + S − 1 ∈ Gl(H0)} is an open subset of B(H0) × B(H0) containing 
(P0, Q0), and š is C∞.

The differential d(π(P0,Q0))1 : (A0)ah → B(H0) × B(H0) is given by

d(π(P0,Q0))1(Z) = (ZP0 − P0Z,ZQ0 −Q0Z).

Here, (A0)ah denotes the set of anti-Hermitian elements of A0 (which is the Banach-Lie algebra of UA0). 
Clearly, this map has a natural extension

Π : B(H0) → B(H0) × B(H0) , Π(X) = (XP0 − P0X,XQ0 −Q0X).

Denote Š = d(š)(P0,Q0). The fact that s is a cross section for π(P0,Q0) implies that π(P0,Q0) ◦ s ◦ π(P0,Q0) =
π(P0,Q0). Equivalently,

π(P0,Q0) ◦ š ◦ π(P0,Q0) = π(P0,Q0).

This is a composition of C∞ maps defined on open subsets of Banach spaces. If we differentiate this identity 
at 1, we get

Π ◦ Š ◦ Π = Π. (5)

If we restrict this identity to (A0)ah, the image Π((A0)ah) equals the image of d(π(P0,Q0))1. Then, identity 
(5) above implies that Π ◦ Š is an idempotent whose range equals the range of Π. It follows that the range 
of d(π(P0,Q0))1 is complemented in B(H0) × B(H0).

The nullspace of d(π(P0,Q0))1 is

{Z ∈ (A0)ah : ZP0 = P0Z and ZQ0 = Q0Z}.

This is the Banach-Lie algebra of π−1
(P0,Q0)(P0, Q0) (usually called the isotropy subgroup of the action at 

(P0, Q0)). It was described in Remark 4.3 using Halmos representation. It is clear, then, that the Banach 
Lie algebra of the isotropy group consists of matrices

(
X 0
0 X

)

with X∗ = −X and XΓ = ΓX.
Let us prove that this space is complemented in the Banach-Lie algebra (A0)ah, which (in this represen-

tation) consists of matrices of the form
(
X Y

Y Z

)

where X, Y, Z commute with Γ, and satisfy the equation

C(X − Z) + 2SY = 0.

As remarked above, E(P0,Q0) is a conditional expectation between the von Neumann algebras A0 and 
the isotropy subalgebra N(d(π(P0,Q0))1) at (P0, Q0). Therefore, the anti-Hermitian part of the nullspace 
N(E(P0,Q0)) ∩ (A0)ah is a supplement for the isotropy subalgebra. �
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In the general case, i.e., if R(A2 − 1) is not necessarily closed, we shall use the transitive action of UA0

to induce a differentiable structure in DA0 . Using Halmos representation, we know the explicit form of the 
isotropy subgroups of the action. In order to prove that DA0 has a C∞ structure, and that the maps π(P0,Q0)
are submersions, we shall use a general result on quotients of unitary groups (see, for instance, [9]). In this 
result, it is required that H is a Banach-Lie subgroup of G in the following specific sense:

Definition 6.7. ([9] Definition 4.1) Let G be a Banach-Lie group and H a subgroup of G. We say that H is 
a Banach-Lie subgroup of G if the following conditions are satisfied.

1. The subgroup H is endowed with a structure of Banach-Lie group whose underlying topology is the 
same as the relative topology of H in G.

2. The inclusion map H ↪→ G is smooth and the induced map between the Banach-Lie algebras L(H) →
L(G) is an injective operator with closed range.

3. There exists a closed linear subspace M of L(G) such that L(H) ⊕M = L(G).

Proposition 6.8. ([9] Theorem 4.19) Let G be a Banach-Lie group, H a Banach-Lie subgroup of G and 
π : G → G/H the natural projection. Endow G/H with the quotient topology and consider the natural 
transitive action

G×G/H → G/H, (g, kH) �→ gkH.

Then G/H has a structure of C∞ manifold and the following conditions are satisfied:

1. The mapping π is C∞ and has C∞ local cross sections near every point of G/H.
2. For every g ∈ G the mapping

G/H → G/H , kH �→ gkH

is C∞.

The isotropy subgroup I(P0,Q0) := {W ∈ UA0 : (WP0W
∗, WQ0W

∗) = (P0, Q0)} ⊂ UA0 clearly satisfies 
the conditions of Definition 6.7 (the space M := H(P0,Q0) given in (4), satisfies condition 3.).

Corollary 6.9. If A ∈ D, the space DA0 inherits a C∞ manifold structure from the quotient UA0/I(P0,Q0), 
which makes π(P0,Q0) a C∞ submersion.

Remark 6.10. The topology that the quotient UA0/I(P0,Q0) induces in DA0 might be different from the 
ambient topology induced by B(H0) ×B(H0). In other words, the identification is not necessarily a homeo-
morphism between these topologies.

7. A reductive structure for DA0

Recall the supplement H(P0,Q0) of L(I(P0,Q0)) = N(E(P0,Q0)) ∩ (A0)ah in (A0)ah, defined in 6.3,

H(P0,Q0) = {
(
−Y τ Y

Y Y τ

)
: Y ∗ = −Y, Y τ bounded}.

This distribution of subspaces DA0 � (P0, Q0) �→ H(P0,Q0) is what in differential geometry is called a 
reductive structure for DA0 , meaning that it satisfies the following conditions:
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• The subspace H(P0,Q0) is invariant under the inner action of I(P0,Q0): if W ∈ I(P0,Q0) and Z ∈ H(P0,Q0)
then W · Z ∈ H(P0,Q0).

• The distribution of supplements DA0 � (P ′, Q′) �→ H(P ′,Q′) is C∞. This means that if PH(P ′,Q′) denotes 
the idempotent (real) linear map acting in (A0)ah corresponding to the projection to the first component 
in the decomposition (A0)ah = H(P ′,Q′) ⊕ L(I(P ′,Q′)), then the map

DA0 � (P ′, Q′) �→ PH(P ′,Q′) ∈ B((A0)ah)

is C∞.

In our case, the fact that the supplement is the (anti-Hermitian part) of the nullspace of an L(I(P0,Q0))-valued 
conditional expectation, implies the first property. Also note that PH(P ′,Q′) =

(
Id− E(P0,Q0)

)
|B((A0)ah).

Each pair (P ′, Q′) gives rise to a conditional expectation, which due to Remark 6.2, depends only on the 
pair. We must show that if the pairs (P ′, Q′) vary smoothly, then so do the maps E(P ′,Q′). The map B �→ V , 
via the polar decomposition B = V |B|, in general is not continuous, much less smooth. However, in the 
unitary orbit of (P0, Q0), it is smooth. Indeed, note that, locally (for (P ′, Q′) close to (P0, Q0)), the unitary 
U in A0 such that (UP0U

∗, UQ0U
∗) = (P ′, Q′) can be chosen as a smooth map in the arguments P ′, Q′, 

by means of smooth local cross section for the submersion π(P0,Q0). Then, if we denote (as in Remark 6.2), 
B = Q0 − P0Q0P0 + P⊥

0 Q0P
⊥
0 , and, accordingly, B′ = Q′ − P ′Q′P ′ − P ′ ⊥Q′P ′ ⊥, and V and V ′ are the 

isometric parts in the corresponding polar decompositions of B and B′, then

UV U∗ = V ′.

Therefore, E(P ′,Q′) = UE(P0,Q0)(U∗ · U)U∗.

Remark 7.1. Elements Z ∈ H(P0,Q0) have symmetric spectrum, with symmetric multiplicity. Indeed, consider

J =
(

0 1
−1 0

)
.

Then J∗ = −J , J2 = −1 (a fortiori, J is a unitary in H0), and for any Z ∈ H(P0,Q0),

J

(
−Y τ Y

Y Y τ

)
= −

(
−Y τ Y

Y Y τ

)
J,

i.e., JZJ∗ = −ZJJ∗ = −Z.
Therefore, if one considers the symmetry V = iJ , it turns out that elements in H(P0,Q0) are of the form 

Z = r(E − F ), for r = ‖Z‖ and E, F orthogonal projections.

Remark 7.2. A reductive structure on a homogeneous space induces a linear connection (see [22], or [24] for 
an infinite dimensional setting). For instance, the geodesics can be explicitly computed (in terms of Y C−1). 

Indeed, note that, if Z =
(
−Y τ Y

Y Y τ

)
, then

Z = Z0 + Z1, where Z0 =
(
−Y τ 0

0 Y τ

)
and Z1 =

(
0 Y

Y 0

)
,
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and Z0, Z1 anti-commute. Thus,

Z2 = Z2
0 + Z2

1 =
(
Y 2τ2 + Y 2 0

0 Y 2τ2 + Y 2

)
= (Y C−1)2

(
1 0
0 1

)
,

and Z2n = (Y C−1)2n
(

1 0
0 1

)
. Also

Z2n+1 = Z2nZ =
(
−(Y C−1)2nY τ (Y C−1)2nY

(Y C−1)2nY (Y C−1)2nY τ

)
=

(
−(Y C−1)2n+1S (Y C−1)2n+1Y C

(Y C−1)2n+1Y C (Y C−1)2n+1Y S

)

= (Y C−1)2n+1

(
−S C

C S

)
.

Then,

etZ = cosh(tY C−1)
(

1 0
0 1

)
+ sinh(tY C−1)

(
−S C

C S

)
. (6)

The operator Σ =
(
−S C

C S

)
is a symmetry: Σ∗ = Σ = Σ−1.

Note that, since Y C−1 is anti-Hermitian, and cosh and sinh are, respectively, even and odd functions, 
then the first term of etZ is selfadjoint and the second is anti-Hermitian. Then,

e−tZ = cosh(tY C−1)
(

1 0
0 1

)
− sinh(tY C−1)

(
−S C

C S

)
.

Therefore, the geodesic δ(t) = (etZP0e
−tZ , etZQ0e

−tZ) can be explicitly computed.
Alternatively, let D∗ = D such that Y C−1 = iD. Then, cosh(tY C−1) = cos(tD) and sinh(tY C−1) =

i sin(tD).

Remark 7.3. The geodesics can be described in an intrinsic way, without reference to the Halmos frame of 

reference. To this effect, note that the matrix 

(
−S C

C S

)
above is precisely −J0, (J0 = sgn(A0)). Indeed:

A0 =
(

S2 −CS

−CS −S2

)
, A2

0 =
(
S2 0
0 S2

)
and |A0| =

(
S 0
0 S

)
.

Next, note that

P0ZP0J0P0 =
(
−Y τ 0

0 0

)(
−S 0
0 0

)
=

(
Y C−1 0

0 0

)
.

Then

etZ = cosh(tP0ZP0J0P0) + sinh(tP0ZP0J0)J0, (7)

and similarly for e−tZ .
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With these expressions above, the bijectivity radius of the exponential map can be computed.

Theorem 7.4. Let (P0, Q0) ∈ DA0 . Then the exponential map

exp(P0,Q0) : {Z ∈ H(P0,Q0) : ‖Z‖ < π/2} → exp(P0,Q0)
(
{Z ∈ H(P0,Q0) : ‖Z‖ < π/2}

)
is a bijection, whose image

exp(P0,Q0)
(
{Z ∈ H(P0,Q0) : ‖Z‖ < π/2}

)
⊂ DA0

is an open dense subset.

Proof. Let v1, v2 ∈ (TDA0)(P0,Q0) with the same exponential, i.e., if Z1, Z2 ∈ H(P0,Q0) are the corresponding 
horizontal elements, eZ1 · (P0, Q0) = eZ2 · (P0, Q0). Then, following the notations of the preceding remark 

(Zj =
(
−Yjτ Yj

Yj Yjτ

)
and Dj = −iYjτ , for j = 1, 2), there exists a unitary operator in L such that

e−Z2eZ1 =
(
W 0
0 W

)
,

i.e., sin(D2)W = sin(D1) and cos(D2)W = cos(D1). If we suppose that |vj |(P0,Q0) = ‖Dj‖ < π/2, then the 
cosines are invertible, and, then, these identities imply that D1 = D2.

Let us prove that exp(P0,Q0)
(
{Z ∈ H(P0,Q0) : ‖Z‖ < π/2}

)
is an open dense subset of DA0 . In order to 

prove this fact, we shall use the alternative characterization for DA0 given in Theorem 2.2. Namely, repre-
senting the elements of DA0 as symmetries V which anti-commute with A0. Recall that the correspondence is 
given by (P, Q) ↔ V , where V is the symmetry (the isometric part) in the polar decomposition of P +Q −1. 
Let us compute V0, the symmetry corresponding to the pair (P0, Q0), using Halmos decomposition based 
on the pair (P0, Q0). Note that

P0 + Q0 − 1 =
(

C2 CS

CS −C2

)
, (P0 + Q0 − 1)2 =

(
C2 0
0 C2

)
,

so that

|P0 + Q0 − 1| =
(
C 0
0 C

)
and V0 =

(
C S

S −C

)
.

Pick Z ∈ H(P0,Q0), Z =
(
−Y τ Y

Y Y τ

)
. Recall that Y and Y τ commute with C and S, so we get

ZV0 =
(
−Y τ Y

Y Y τ

)(
C S

S −C

)
=

(
0 −Y τS − Y C

Y C + Y τS 0

)

and

V0Z =
(

0 Y τS + Y C

−Y C − Y τS 0

)
.
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That is, ZV0 = −V0Z. Conversely, a similar computation shows that anti-Hermitian elements Z which 
anti-commute with V0 belong to H(P0,Q0). Pick a symmetry V which anti-commutes with A0, such that 
‖V − V0‖ < 2. In general, any pair of symmetries lie at distance less or equal than 2. Therefore, the set 
of such V form an open dense subset of DA0 . We claim that these elements V belong to the image of the 
exponential exp(P0,Q0) restricted to {Z ∈ H(P0,Q0) : ‖Z‖ < π/2}. In [25], H. Porta and L. Recht proved that 
a symmetry V such that ‖V − V0‖ < 2 is of the form V = eZV0e

−Z , where Z is an anti-Hermitian operator 
which anti-commutes with V0, i.e., Z ∈ HP0,Q0 , with ‖Z‖ < π/2. Also note that, since Z anti-commutes 
with V0, V0e

−Z = eZV0, thus,

V = e2ZV0 and e2Z = V V0.

Since ‖2Z‖ < π, Z can be obtained as Z = 1
2 log(V V0) (log the unique logarithm for unitary operators U

such that ‖U − 1‖ < 2; notice that ‖V V0 − 1‖ = ‖V − V0‖ < 2). Since V and V0 anti-commute with A0, 
V V0 and its logarithm Z belong to A0.

The correspondence between symmetries and pairs in DA0 is clearly equivariant: UV0U
∗ ↔ U · (P0, Q0), 

for U ∈ UA0 . Therefore, (P, Q) = exp(P0,Q0)(Z), where Z ∈ {Z ∈ H(P0,Q0) : ‖Z‖ < π/2}. �
A similar argument (representing DA0 as Davis’ symmetries) allows one to prove that exp(P0,Q0) is 

globally onto. The proof is also a refinement of the argument which showed that the action of UA0 on DA0

is transitive. In fact, the result below implies the former.

Theorem 7.5. Let (P0, Q0) ∈ DA0 . The exponential map

exp(P0,Q0) : {Z ∈ H(P0,Q0) : ‖Z‖ ≤ π/2} → DA0

is onto.

Proof. Pick (P, Q) ∈ DA0 , and let V = sgn(P + Q − 1) be its Davis’ symmetry. Let V0 be the symmetry 
corresponding to (P0, Q0). Denote by

H+,+ = {ξ ∈ H : V0ξ = ξ and V ξ = ξ} , H−,− = {ξ ∈ H : V0ξ = −ξ and V ξ = −ξ} ,

H+,− = {ξ ∈ H : V0ξ = ξ and V ξ = −ξ} and H−,+ = {ξ ∈ H : V0ξ = −ξ and V ξ = ξ}.

Recall the symmetry J0 obtained as the sign of A0, which anti-commutes with V and V0. Note that, if 
V0ξ = ξ, then J0ξ �= 0 satisfies V0J0ξ = −J0V0ξ = −J0ξ, and similarly for ξ such that V0ξ = −ξ. The 
analogous property holds for V . Therefore, J0 maps H+,+ into H−,− and vice versa, and it is one to one 
between these subspaces. The same happens for H+,− and H−,+. In [2], it was proven that there exists 
a geodesic of the Grassmann manifold of H (= space of symmetries of H) joining V and V0 if and only 
if

dim(H+,−) = dim(H−,+).

It follows that there exists Z, Z∗ = −Z, ‖Z‖ ≤ π/2, which is co-diagonal with respect to V0, such that 
eZV0e

−Z = V . Such Z may not be unique (if the dimensions above are non zero). To finish the proof, we 
must show that we can find one of these Z in A0. In [2] it was shown that all such Z are reduced by the 
decomposition

H0 = H′
0 ⊕H′′

0 ⊕H0
0,
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where H′
0 = H+,+ ⊕H−,−, H′

0 = H+,− ⊕H−,+ and H0
0 is the orthogonal complement to the sum of these 

two. Both J0 and A0 are reduced by this decomposition. Clearly, also V and V0 are also reduced.
Z is trivial in H′

0 ([2]). In H′′
0 , we choose Z|H′′

0
= iπ/2J0|h′′

0
. The exponential of this anti-Hermitian 

operator yields a unitary operator intertwining V0|H′′
0

and V |H′′
0
. In the third subspace, which, in fact, is 

the generic part of the pair V0, V , the exponent Z|H0
0

is obtained uniquely as the logarithm (see [2])

Z|H0
0

= log(SV0|H0
0
),

where S is the Davis symmetry of the reductions V0|H0
0

and V |H0
0

to their generic part:

S = sgn(−1
2{V0 + V }|H0

0
).

{V + V0}|H0
0

anti-commutes with A0|H0
0
, then so does its unitary part S in the polar decomposition. It 

follows that SV0 commutes with A0|H0
0
. Therefore, our choice of Z belongs to A0 and the proof is com-

plete. �
8. A Hopf-Rinow theorem for DA0

In [15], Durán, Mata-Lorenzo and Recht introduced a Finsler metric for homogeneous spaces UA/UB which 
are obtained as the quotient of the unitary group of a C∗-algebra by the unitary group of a C∗-subalgebra 
B ⊂ A. Denote by

π : UA → UA/UB

the quotient map. A tangent vector v at [1] (the class of 1 in UA/UB) identifies with an element in the 
quotient of (real) Banach spaces Aah/Bah (Aah and Bah denote the spaces of anti-Hermitian elements of A
and B, respectively). Thus v = d(π)1(z), for some z ∈ Aah; we shall say that z is a lifting of v. The Finsler 
norm |v|[1] is defined as the infimum

|v| = |v|[1] = inf{‖z‖ : z ∈ Aah is a lifting of v}.

Or equivalently, if z0 is an arbitrary lifting of v,

|v| = inf{‖z0 + y‖ : y ∈ Bah}.

The metric is carried over the entire tangent bundle by means of the left action of UA on UA/UB. Thus, 
the metric so defined is invariant under this action. A lifting z0 which achieves this infimum is called a 
minimal lifting. Minimal liftings may not exist (see for instance [10] for a nice example), and may fail to be 
unique (see [7] for a finite dimensional example), but if B ⊂ A are von Neumann algebras, they do exist [16]. 
We shall apply this theory to DA0 , where the algebras are indeed von Neumann algebras (being defined as 
commutant of selfadjoint operators). The main result in [15] states that if z0 ∈ Aah is a minimal lifting of 
v, then

δ(t) = [etz]

is a curve of minimal length for time |t| ≤ π
2|v| .

In our context L(I(P0,Q0)) is the space of anti-Hermitian elements of the von Neumann algebra of operators 
which commute with P0 and Q0, inside the von Neumann algebra of operators which commute with A0 =
P0 −Q0. The fact that H(P0,Q0) is a supplement for L(I(P0,Q0)) in (A0)ah, implies that any tangent vector 
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v in T (DA0)(P0,Q0) has a lifting Z ∈ H(P0,Q0). We claim that this lifting is minimal. To prove this we need 
the following result:

Proposition 8.1. (Proposition 5.2 of [15], see also Theorem 2.2 of [7]) Let B ⊂ A be C∗-algebras, and let 
Z ∈ Aah. Suppose that there exists a state ψ in A with the following properties:

1. ψ(Z2) = −‖Z‖2.
2. For any Y ∈ B, ψ(Y Z) = 0.

Then Z is a minimal lifting (i.e., ‖Z‖ ≤ ‖Z + D‖, for all D ∈ Bah).

Lemma 8.2. Let Z∗ = −Z, with matrix

Z =
(
X Y

Y −X

)

such that X and Y commute. Then

‖Z‖ ≤ ‖Z + D‖,

for any D∗ = −D of the form D =
(
D′ 0
0 D′

)
.

Proof. We use Proposition 8.1 above. Note that

Z2 =
(

X2 + Y 2 XY − Y X

Y X −XY X2 + Y 2

)
=

(
X2 + Y 2 0

0 X2 + Y 2

)
.

Note, also, that X2 + Y 2 ≤ 0, and that ‖Z2‖ = ‖X2 + Y 2‖. There exists a state ψ0 in B(L) such that 
ψ0(X2 + Y 2) = −‖X2 + Y 2‖. Let τ the positive unital linear map

τ(
(
T11 T12
T21 T22

)
) = 1

2{T11 + T22}.

Then ψ = ψ0 ◦ τ is a state in B(H) such that
1.

ψ(Z2) = ψ0(X2 + Y 2) = −‖X2 + Y 2‖.

2. For D∗ = −D of the form, D =
(
D′ 0
0 D′

)
,

τ(ZB) = τ(
(
XD′ Y D′

Y D′ −XD′

)
= 0.

Then ψ(ZB) = 0. �
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If v ∈ T (DA0)(P0,Q0), we shall denote by Zv ∈ H(P0,Q0) the unique lifting of v which belongs to H(P0,Q0). 
Note that the mapping v �→ Zv is a linear isomorphism (it is the inverse of d(π(P0,Q0))1 restricted to 
H(P0,Q0)).

The following result follows:

Theorem 8.3. Let (P0, Q0) ∈ DA0 and v ∈ T (DA0)(P0,Q0) such that Zv =
(
Y τ Y

Y −Y τ

)
. Then

δ(t) = etZv · (P0, Q0) = (etZvP0e
−tZv , etZvQ0e

−tZv)

is a minimal geodesic for the Finsler metric defined above, up to time

|t| ≤ π

2|v|(P0,Q0)
= π

2‖Zv‖
= π

2‖Y 2 + (Y τ)2‖1/2 .

Proof. Recall from Remark 6.4, that for any Zv ∈ H(P0,Q0), all entries in the matrix commute. Thus, 
Lemma 8.2 holds and Zv has minimal norm among all perturbations with elements in the isotropy alge-
bra. �

The fact that the minimal liftings belong to the linear space H(P0,Q0) implies, additionally, the following 
result, which can be regarded as a Hopf-Rinow Theorem for the space DA0 (in a context which is far from 
being Riemannian). Note that the pairs in DA0 which can be reached from any given pair (P0, Q0) by a 
unique minimal geodesic, is an open dense subset of DA0 . Theorem 7.4 and Theorem 8.3 imply

Corollary 8.4. Let (P, Q), (P0, Q0) ∈ DA0 , and let V and V0 be the corresponding Davis’ symmetries: V =
sgn(P+Q −1), V0 = sgn(P0+Q0−1). If ‖V −V0‖ < 2, then there exists a unique element Z = Z(P0,Q0)(P, Q), 
which is a C∞ map in terms of the arguments (P0, Q0), (P, Q), such that

(P,Q) = eZ · (P0, Q0).

The geodesic δ(t) = etZ · (P0, Q0) has minimal length among all piecewise smooth curves in DA0 joining 
(P0, Q0) with (P, Q).

Proof. From the proof of Theorem 7.4, it is clear that ‖Z‖ < π/2. Then, by Theorem 8.3, δ is minimal up 
to time t = 1, and δ(1) = (P, Q). �

Using now Theorem 7.5, one can show that (dropping the uniqueness condition), any pair of elements in 
DA0 can be joined by a minimal geodesic.

Corollary 8.5. Let (P0, Q0), (P, Q) ∈ DA0 . Then there exists a minimal geodesic of DA0 , of length less or 
equal than π/2, which joins them.

Proof. The existence of a geodesic δ, parametrized in the interval [0, 1], joining (P0, Q0) and (P, Q) is a 
direct consequence of Theorem 7.5. Also, it is clear there that the norm of the exponent Z (= the length 
of the geodesic) is less or equal than π/2. Let us prove, by a standard geometric argument, that it must 
be minimal. Clearly, by the above result, we must consider the case when the length �(δ) of δ is π/2. 
Suppose there is a curve γ ∈ DA0 joining (P0, Q0) of length π/2 − r, for some r > 0. Pick t0 such that 
(1 − t0)π/2 = �(δ|[t0,1]) < r/2. Then the length of the curve obtained by adjoining to γ the curve δ|[t0,1]
reversed, gives a curve joining (P0, Q0) and δ(t0), of length strictly less than t0π/2. This is a contradiction, 
since by the above Corollary, the curve δ|[0,t0] has minimal length t0π/2. �
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Remark 8.6. Note that if Z =
(
−Y τ Y

Y Y τ

)
is a horizontal element, then also Y C−1 is bounded. Recall 

that X, Y, Z commute with C, S, τ , the equality C(Z −X) = 2SY implies that

C2(Z −X)24S2Y 2 = 4Y 2 − 4C2Y 2 , i.e., C2A = Y 2,

where A = 1
4 ((X − Z)2 + Y 2) is bounded. It follows that Y 2C−2 is bounded, thus its square root |Y |c−1 is 

bounded, and then also Y C−1 is bounded. Moreover, if Z =
(
−Y τ Y

Y Y τ

)
, then

‖Z‖ = ‖Y 2τ2 + Y 2‖1/2 = ‖Y C−1‖.

Therefore, if ‖Z‖ ≤ π/2, the distance between (P0, Q0) and eZ · (P0, Q0) equals ‖Y C−1‖.
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