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a b s t r a c t

In this paper, we study the most basic domination invariants in graphs, in which number 2
is intrinsic part of their definitions. We classify them upon three criteria, two of which give
the following previously studied invariants: the weak 2-domination number, γw2(G), the
2-domination number, γ2(G), the {2}-domination number, γ {2}(G), the double domination
number, γ×2(G), the total {2}-domination number, γ t{2}(G), and the total double domination
number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined.
The third criterion yields rainbow versions of the mentioned six parameters, one of which
has already been well studied, and three other give new interesting parameters. Together
with a special, extensively studied Roman domination, γR(G), and two classical parameters,
the domination number, γ (G), and the total domination number, γt (G), we consider 13
domination invariants in graphs. In the main result of the paper we present sharp upper
and lower bounds of each of the invariants in terms of every other invariant, a largemajority
of which are new results proven in this paper. As a consequence of the main theorem we
obtain new complexity results regarding the existence of approximation algorithms for the
studied invariants, matched with tight or almost tight inapproximability bounds, which
hold even in the class of split graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Prologue

A continuously growing interest in the area of graph domination, which arises from both practical applications and
combinatorial challenges, has made the theory rather incoherent; two monographs surveying domination theory were
published almost twenty years ago [46,47]. Due to a large number of domination-type concepts, it is not always easy to notice
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and appreciate some deep results that capture a broad aspect of the theory. Several results in domination theory have been
in some sense rediscovered, because an approach that works for one concept can often be used with some slight adjustment
for several other related concepts. We wish to make a step in the direction of making the situation more transparent, by
classifying some of the most basic domination invariants, in which number 2 is involved in the definition. We make a
comparison of their values in graphs between each pair of them, and as a consequence, since the discovered translations
between parameters can be efficiently constructed, a general approach that joins some algorithmic and complexity issues
on all of these concepts is established. In many cases our results imply that an algorithm for one invariant gives a good
approximation algorithm for some other invariant; in addition, strong inapproximability results are inferred for almost all
considered parameters, which hold even in the class of split graphs. (Let us mention that in [7] some connections between a
(different and smaller) group of domination parameters has been established, yet the main focus was on claw-free graphs.)

1.2. Classification of parameters

The central focus of the paper is on several domination invariants of graphs, which have number 2 appearing in their
definition (in particular, vertices must be dominated twice or using the sum of weights 2), and we can classify them upon
three different criteria. The first criterion is the set of weights that are allowed to be assigned to vertices, which can be either
{0, 1, 2} or only {0, 1} (in rainbow versions, whichwewill consider in parallel, theseweights can be either {∅, {a}, {b}, {a, b}}
or only {∅, {a}, {b}}). The second criterion distinguishes three possibilities with respect to the set of vertices that need to
be dominated, and at the same time the type of neighborhoods, which are considered in domination. The possibilities are
as follows: only vertices with weight 0 need to be dominated (‘outer domination’), all vertices need to be dominated and
vertices with a positive weight dominate their closed neighborhoods (‘closed domination’), and finally all vertices need to be
dominated and only open neighborhoods are dominated by vertices with positive weight (‘open domination’). The following
table shows the six concepts that arise from these two criteria, all of which have already been studied in the literature (in
parenthesis a standard symbol of the corresponding graph invariant is written1):

{0, 1, 2} {0, 1}

Outer Weak 2-domination (γw2) 2-domination (γ2)
Closed {2}-domination (γ{2}) Double domination (γ×2)
Open Total {2}-domination (γt{2}) Total double domination (γt×2)

The third criterion is based on the so-called rainbow variations of these parameters, and thus distinguishes domination
parameters as being rainbow or not. This criterion is motivated by the concept known as k-rainbow domination introduced
in [9]; in the case k = 2 the corresponding graph invariant was denoted by γr2, see, e.g., [10]. Note that in this paper the
conceptwill be called rainbowweak 2-domination, and the invariantwill be denoted by γ̃w2, suggesting that it is the rainbow
counterpart of the concept of weak 2-domination, whose graph invariant is denoted by γw2. The k-rainbow domination
(and 2-rainbow domination, in particular) has been considered in several papers [12–14,68,70,74,76], and is interesting also
because of its strong connection with the domination of Cartesian products of graphs; in fact, some initial results on the
2-rainbow domination number in [45] were expressed in the terminology of domination of prisms. In this paper we are
mainly concerned with its conceptual features, which initiates several other rainbow domination parameters. Intuitively
speaking they are obtained as follows: weight 0 is replaced by the label ∅, weight 1 by labels {a} and {b}, and weight 2 by the
label {a, b}, while the conditions imposed by each parameter are meaningfully adjusted to the rainbow version. The main
difference is that instead of the sum of values of weights, in a rainbow version one considers the union of labels, and also the
condition of having weight 2 in a neighborhood corresponds to having label {a, b}.

Given a graph G its weak 2-domination number is denoted by γ w2(G), its 2-domination number by γ2(G), its
{2}-domination number by γ{2}(G), its double domination number by γ×2(G), its total {2}-domination number by γt{2}(G) and
its total double domination number by γt×2(G). (We remark that the notion ofweak 2-domination appeared in the literature
also under the name ‘‘weak 2-rainbow domination’’ [10].) By the above reasoning each of these parameters has its rainbow
counter-part, whichwewill denote in a systematic way, by putting the symbol˜above γ , indicating that we are considering
the rainbow version of the known concept. Two of the parameters among γ̃2(G), γ̃w2(G), γ̃{2}(G), γ̃×2(G), γ̃t{2}(G) and γ̃t×2(G)
(namely γ̃{2}(G) and γ̃t{2}(G)) turn out to be easily expressible by the known graph invariants, and we have thus not studied
them any further. We believe that other four rainbow domination parameters are worth of consideration.

There is yet another well studied domination parameter, which involves number 2, but does not directly fit into the
above frame. Nevertheless, the so-called Roman domination, introduced in [75] (see also [20,64]) has been considered in a
number of papers, and is conceptually relevant also to our study. In the condition of the Roman dominating function, only
the vertices with weight 0 must have in the neighborhood a vertex with weight 2, while there is no such restriction for
the vertices with weight 1 and 2. Beside Roman domination, whose parameter in denoted by γR, we decided to include in
our study also the two classical domination concepts, i.e., the domination and the total domination, denoted by γ and γt ,
respectively. Hence in our main result, see Table 2 (on p. 14), thirteen domination parameters are mutually compared. To
stay within a reasonable length of the paper (and to stay in line with the basic classification presented in this paper) we do
not consider other variations that also involve number 2 in their definitions. In particular, we do not consider the concepts
that arise from basic parameters by imposing additional restrictions (such as paired domination [48], independent Roman
domination [2], exact double domination [16], etc.).

1 The total double domination was also denoted by γ×2,t in the literature, and was also called the double total domination.
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Table 1
Summary of definitions of the parameters under study.

Name Notion Function Condition

Domination γ f : V → {0, 1} f (N[v]) ≥ 1 ∀v

Total domination γt f : V → {0, 1} f (N(v)) ≥ 1 ∀v

Weak 2-domination γw2 f : V → {0, 1, 2} f (N(v)) ≥ 2 if f (v) = 0
Rainbow weak 2-domination γ̃w2 f : V → 2{a,b}

|f∪(N(v))| ≥ 2 if f (v) = ∅

{2}-domination γ{2} f : V → {0, 1, 2} f (N[v]) ≥ 2 ∀v

Rainbow {2}-domination γ̃{2} f : V → 2{a,b}
|f∪(N[v])| ≥ 2 ∀v

Total {2}-domination γt{2} f : V → {0, 1, 2} f (N(v)) ≥ 2 ∀v

Rainbow total {2}-domination γ̃t{2} f : V → 2{a,b}
|f∪(N(v))| ≥ 2 ∀v

2-domination γ2 f : V → {0, 1} f (N(v)) ≥ 2 if f (v) = 0
Rainbow 2-domination γ̃2 f : V → {∅, {a}, {b}} |f∪(N(v))| ≥ 2 if f (v) = ∅

Double domination γ×2 f : V → {0, 1} f (N[v]) ≥ 2 ∀v

Rainbow double domination γ̃×2 f : V → {∅, {a}, {b}} |f∪(N[v])| ≥ 2 ∀v

Total double domination γt×2 f : V → {0, 1} f (N(v)) ≥ 2 ∀v

Rainbow total double domination γ̃t×2 f : V → {∅, {a}, {b}} |f∪(N(v))| ≥ 2 ∀v

Roman domination γR f : V → {0, 1, 2} ∃w ∼ v : f (w) = 2 if f (v) = 0
Edge cover ρ f : E → {0, 1} f (E(v)) ≥ 1 ∀v

2-edge cover ρ2 f : E → {0, 1, 2} f (E(v)) ≥ 2 ∀v

Vertex cover τ f : V → {0, 1} f (v) + f (w) ≥ 1 ∀vw ∈ E
2-vertex cover τ2 f : V → {0, 1, 2} f (v) + f (w) ≥ 2 ∀vw ∈ E

1.3. Algorithmic complexity

The main result of this paper is the list of the sharp upper and lower bounds for each of the parameters, expressed in
terms of any other parameter. The comparison is not only interesting in its own right, but also has several consequences
regarding algorithmic and complexity properties of the invariants involved.

For some of the invariants studied in this paperNP-completeness of their decision problems was known in the literature.
In addition, for γ , γt , γ2, γ×2, γt×2 it was known that any polynomial time approximation of these values to within a
multiplicative factor of (1−ϵ) ln n is very unlikely evenwhen restricted to n-vertex split graphs: it would imply P = NP. (See
Section 6 for details.) By using the main result of this paper we are able to infer such theorems about inapproximability in
split graphs for all but three considered invariants. For two of the remaining invariants (namely, for rainbow 2-domination,
γ̃2, and rainbow double domination, γ̃×2) we obtain the same result using a direct reduction from the Set Cover problem.
The only exception to the inapproximability bounds is the rainbow total double domination number, γ̃t×2, for which we
prove that there is no polynomially computable function f such that there exists an f (n)-approximation algorithm for this
invariant in an n-vertex split graphs for which this parameter is finite, unless P = NP. We prove this using a reduction from
the NP-complete Hypergraph 2- Colorability problem.

On a positive side, for all of the invariants studied in this paper we prove the existence of approximation algorithms
matching the logarithmic lower bound up to a constant factor, with an obvious exception of γ̃t×2 and two other parameters,
γ̃2 and γ̃×2, for which this is still open.

1.4. Organization of the paper

In Section 2 we state the definitions of the parameters studied in this paper as well as some preliminaries on three
covering parameters in graphs, and summarize the definitions in Table 1. In Section 3we present themain results, expressed
in the 13 × 13 table (Table 2), in which rows and columns represent the considered domination parameters, and each entry
contains the upper bound of the row-parameter with respect to the column-parameter in the family of all graphs for which
both parameters are finite. Since the diagonal elements are trivially just the equalities, this means that altogether we have
13·12 = 156 sharp upper bounds between all pairs of parameters. Table 3 in the same section gives a roadmap for deduction
of proofs, either by references to results in one of the next sections, or by references to the papers in which the results were
proven, or (in many cases) by using transitivity.

In Section 4 we make the comparison of the parameters, by proving the upper bounds, if they exist, of parameters
expressed as functions of other parameters. We omit the proofs of most of such bounds that can be found in the literature, as
well as of those that follow by transitivity from other bounds in Table 2. Having in mind this optimization of the proofs, we
only need to prove 17 propositions in this section. Then, in Section 5, we present the values of the parameters in different
families of graphs, some showing the sharpness of the bounds in Table 2, and some other showing that a particular parameter
is not bounded by a function of another parameter.

In Section 6 we discuss the algorithmic and complexity consequences of the bounds obtained in Section 3, proving new
lower and upper bounds regarding the (in-)approximability of the corresponding optimization problems, subject to the
P ̸= NP assumption. We combine this with a survey on previously known (in-)approximability and NP-hardness results on
these parameters.
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Table 2
Upper bounds for several domination parameters in terms of others. The entry in row indexed by parameter ρ and in column indexed by parameter ρ ′

represents either that ρ is not bounded from above by any function of ρ ′ (in this case the entry is ‘‘¬∃f ’’), or gives an upper bound for ρ in terms of a
function of ρ ′ . The bound ρ ≤ f (ρ ′) should be interpreted so that it holds for graphs G such that both ρ(G) and ρ ′(G) are defined. For instance, the entry
in row γt and column γ is 2γ , indicating that for every graph G without isolated vertices, it holds that γt (G) ≤ 2γ (G). Bounds of the form ρ ≤ f (ρ ′)
that are marked with an asterisk are only valid for graphs with at least one edge. The (sharp) bounds for graphs with no edges are, respectively, γ = γR ,
γ{2} = 2γw2 = 2γ2 = 2γ̃w2 = 2γ̃2 = 2γR , and can be easily verified. The bound in entry (9, 3) holds if G ̸= K1 . The correctness of the entries in the table
is proved or referenced in Section 4 (proofs of upper bounds) and in Section 5 (proofs of nonexistence of upper bounds), while the references to proofs
are summarized in Table 3. All the bounds are sharp. The examples for sharpness and for the unboundedness are summarized in Table 5.

ρ ≤ f (ρ ′) 1 2 3 4 5 6 7 8 9 10 11 12 13
γ γt γw2 γ{2} γt{2} γ2 γ×2 γt×2 γ̃w2 γ̃2 γ̃×2 γ̃t×2 γR

1 γ = γt γw2 γ{2} − 1 γt{2} − 1 γ2 γ×2 − 1 γt×2 − 1 γ̃w2 γ̃2
1
2 γ̃×2

1
2 γ̃t×2 γR − 1 ∗

2 γt 2γ =
3γw2−1

2 γ{2} γt{2} − 1 3γ2−1
2 γ×2 γt×2 − 1 γ̃w2 γ̃2 γ̃×2

1
2 γ̃t×2 γR

3 γw2 2γ 2γt = γ{2} γt{2} γ2 γ×2 γt×2 γ̃w2 γ̃2 γ̃×2 γ̃t×2 γR

4 γ{2} 2γ 2γt 2γw2 − 1 ∗
= γt{2} 2γ2 − 1 ∗ γ×2 γt×2 2γ̃w2 − 1 ∗ 2γ̃2 − 1 ∗ γ̃×2 γ̃t×2 2γR − 2 ∗

5 γt{2} 4γ 2γt 2γw2 2γ{2} = 2γ2 2γ×2 γt×2 2γ̃w2 2γ̃2 2γ̃×2 γ̃t×2 2γR

6 γ2 ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f = γ×2 γt×2 ¬∃f γ̃2 γ̃×2 γ̃t×2 ¬∃f

7 γ×2 ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f 2γ2 − 1 = γt×2 ¬∃f 2γ̃2 − 1 γ̃×2 γ̃t×2 ¬∃f

8 γt×2 ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f 3γ2 − 2 2γ×2 − 1 = ¬∃f 3γ̃2 − 2 2γ̃×2 − 1 γ̃t×2 ¬∃f

9 γ̃w2 2γ 2γt 2γw2 − 2 2γ{2} − 2 2γt{2} − 2 2γ2 − 2 2γ×2 − 2 2γt×2 − 2 = γ̃2 γ̃×2 γ̃t×2 γR

10 γ̃2 ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f = γ̃×2 γ̃t×2 ¬∃f

11 γ̃×2 ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f 2γ̃2 = γ̃t×2 ¬∃f

12 γ̃t×2 ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f ¬∃f = ¬∃f

13 γR 2γ 2γt 2γw2 − 1 2γ{2} − 2 2γt{2} − 2 2γ2 − 1 2γ×2 − 2 2γt×2 − 2 3
2 γ̃w2

3
2 γ̃2 γ̃×2 γ̃t×2 =

Table 3
Summary of proofs for the entries of Table 2. Entries labeled H refer to results that are already stated in the corresponding Hasse diagram of Fig. 1. Entries
labeled ‘‘Tk’’ are proved by transitivity through parameter in row/column k. Details regarding the use of transitivity in proving nonexistence of bounds
will be explained in Section 5.3. Entries labeled with numbers refer to propositions that directly prove the bound (or nonexistence of a bound). Finally,
for some entries we give references to papers where a proof of the corresponding bound can be found.

ρ ≤ f (ρ ′) 1 2 3 4 5 6 7 8 9 10 11 12 13
γ γt γw2 γ{2} γt{2} γ2 γ×2 γt×2 γ̃w2 γ̃2 γ̃×2 γ̃t×2 γR

1 γ = H H 4.9 T4 H T4 T2 H H 4.15 T11 4.17

2 γt H [48] = 4.4 H 4.10 T3 H T5 H [35] H H 4.16 H [50]

3 γw2 T4 T1 = H H H H H H H H H H

4 γ{2} 4.2 T1 4.5 = H T3 H H T3 T3 H H T1

5 γt{2} T2 4.3 4.6 T2 = T3 T3 H T3 T3 T3 H T3

6 γ2 T5 T5 T5 T5 5.6 = H H T5 H H H T5

7 γ×2 T5 T5 T5 T5 T6 4.11 = H T5 T6 H H T5

8 γt×2 T5 T5 T5 T5 5.7 4.12 4.13 = T5 T6 T7 H T5

9 γ̃w2 T13 T1 4.7 T3 T3 T3 T3 T3 = H H H H [79]

10 γ̃2 T5 T5 T5 T5 T6 T8 T8 5.8 T5 = H H T5

11 γ̃×2 T5 T5 T5 T5 T6 T8 T8 T10 T5 4.14 = H T5

12 γ̃t×2 T11 T11 T11 T11 T11 T11 T11 T11 T11 T11 5.9 = T11

13 γR [20,51] T1 4.8 T1 T4 T3 T4 T5 [15,34] T9 H H =

2. Definitions and preliminaries

Unless stated otherwise, we consider finite, undirected, simple graphs. Given a vertex x ∈ V (G), N(x) = {v ∈ V (G) | xv ∈

E(G)} denotes its (open) neighborhood, and N[x] := N(x)∪ {x} is the closed neighborhood of x. For a graph G and X ⊆ V (G), we
write N(X) for (

⋃
v∈XN(v)) \ X . As usual, ∆(G) and δ(G) stand for the maximum, resp. the minimum degree of vertices in G.

Let f : V (G) → X be a function such that X is either a set of real numbers or a set of finite sets. For an arbitrary subset
W ⊆ V (G), we denote its weight with respect to f (or just weight when f is clear from the context) by

f (W ) =

∑
w∈W

|f (w)| ,
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Fig. 1. Hasse diagram of the relation ≤ among various domination parameters (see Section 3).

where the notation |r| denotes either the cardinality of r (if r is a set), or the absolute value of r (if r is a real number). For a
function f : V (G) → X , where X is an arbitrary set of finite sets, we denote

f∪(W ) =

⋃
w∈W

f (w) .

Next, we present definitions of all the invariants studied in the paper. Whenever an invariant is not defined for all graphs,
i.e., if there is a graph G for which no function satisfying the corresponding constraints exists, we use the convention of
stating that the value of the invariant in G is infinite.
Domination, total domination.

Definition 2.1 (γ , Row/column 1 in Table 2).
Let G = (V , E) be a graph. A dominating function of G is a function f : V → {0, 1} such that for all v ∈ V (G) it holds that

f (N [v]) ≥ 1 .

Equivalently,

f (v) = 0 H⇒ f (N(v)) ≥ 1 .

The domination number of G is denoted by γ(G) and equals the minimum weight f (V ) over all dominating functions f of G.
Any set of the form D = {v ∈ V | f (v) = 1} where f is a dominating function of G is said to be a dominating set of G. Note

that the minimum size of a dominating set equals γ (G).

Domination number is one of the classical graphs invariants; together with several of its variations it was surveyed in
two monographs [46,47].

Definition 2.2 (γ t , Row/column 2 in Table 2).
Let G = (V , E) be a graph. A total dominating function of G is a function f : V → {0, 1} such that for all v ∈ V (G) it holds

that

f (N (v)) ≥ 1 .

The total domination number of G is denoted by γ t (G) and equals the minimum weight f (V ) over all total dominating
functions f of G.
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Any set of the form D = {v ∈ V | f (v) = 1} where f is a total dominating function of G is said to be a total dominating set
of G. Note that the minimum size of a total dominating set equals γt (G).

Clearly, the total domination number is well-defined (i.e. is finite) in graphs with no isolated vertices. The recent
monograph [56] presents a thorough survey on total domination theory.

Weak 2-domination, rainbow weak 2-domination.

Definition 2.3 (γw2, Row/column 3 in Table 2).
Let G = (V , E) be a graph. A weak 2-dominating function of G is a function f : V → {0, 1, 2} such that for all v ∈ V (G) it

holds that

f (v) = 0 H⇒ f (N (v)) ≥ 2 .

Theweak 2-domination number of G is denoted by γw2(G) and equals the minimumweight f (V ) over all weak 2-dominating
functions f of G.

Definition 2.4 (̃γw2, Row/column 9 in Table 2).
Let G = (V , E) be a graph. A rainbow weak 2-dominating function of G is a function f : V → P({a, b}) such that for all

v ∈ V (G) it holds that

f (v) = ∅ H⇒ |f∪(N (v))| ≥ 2 .

Equivalently, for all v ∈ V (G) with f (v) = ∅, it holds that f∪(N(v)) = {a, b}. The rainbow weak 2-domination number of G is
denoted by γ̃w2(G) and equals the minimum weight f (V ) over all rainbow weak 2-dominating functions f of G.

Rainbow weak 2-domination was introduced less than 10 years ago in [9], under the name 2-rainbow domination; it
has already been considered in a number of papers. Weak 2-domination was studied in [10] with the aim to give more
insight in the (weak) 2-rainbowdomination. It has probably been known before, althoughwewere unable to find a reference
confirming it. Weak 2-domination should not be confused with the concept of weak domination, as introduced in [71].

{2}-domination, rainbow {2}-domination.

Definition 2.5 (γ {2}, Row/column 4 in Table 2).
Let G = (V , E) be a graph. A {2}-dominating function of G is a function f : V → {0, 1, 2} such that for all v ∈ V (G) it holds

that

f (N[v]) ≥ 2 .

The {2}-domination number of G is denoted by γ {2}(G) and equals theminimumweight f (V ) over all {2}-dominating functions
f of G.

The concept of {2}-domination was introduced in 1991 [26], and considered later on in several papers. In particular,
several recent papers consider the variation of Vizing’s conjecture on the domination number of Cartesian products of graphs
with respect to this domination invariant, see [8,18,57,58].

Definition 2.6. Let G = (V , E) be a graph. A rainbow {2}-dominating function of G is a function f : V → P({a, b}) such that
for all v ∈ V (G) it holds that

|f∪(N [v])| ≥ 2 .

Equivalently, f∪(N[v]) = {a, b} holds for all v ∈ V (G). The rainbow {2}-domination number of G is denoted by γ̃ {2}(G) and
equals the minimum weight f (V ) over all rainbow {2}-dominating functions f of G.

It is easy to see that the rainbow {2}-domination number is closely related to the domination number. Indeed, for every
graph G, it holds that γ̃ {2}(G) = 2γ(G). Hence, we will not discuss this parameter any further in the rest of the paper, except
briefly in Sections 3 and 6 (in Theorems 6.7 and 6.11).

Total {2}-domination, rainbow total {2}-domination.

Definition 2.7 (γ t{2}, Row/column 5 in Table 2).
Let G = (V , E) be a graph. A total {2}-dominating function of G is a function f : V → {0, 1, 2} such that for all v ∈ V (G) it

holds that

f (N (v)) ≥ 2 .

The total {2}-domination number of G is denoted by γ t{2}(G) and equals the minimum weight f (V ) over all total {2}-
dominating functions f of G.
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Clearly, the total {2}-domination number is finite precisely in graphs with no isolated vertices. While the concept has
been known for some time, see two recent papers on the total {k}-domination [4,63].

Definition 2.8. Let G = (V , E) be a graph. A rainbow total {2}-dominating function of G is a function f : V → P({a, b}) such
that for all v ∈ V (G) it holds that

|f∪(N (v))| ≥ 2 .

Equivalently, f∪(N(v)) = {a, b} holds for all v ∈ V (G). The rainbow total {2}-domination number of G is denoted by γ̃ t{2}(G)
and equals the minimum weight f (V ) over all rainbow total {2}-dominating functions f of G.

Similarly as the rainbow {2}-domination number is related to the domination number via the relation γ̃{2}(G) = 2γ (G), the
rainbow total {2}-domination number is related to the total domination number via the relation γ̃ t{2}(G) = 2γ t (G). Hence,
we will not discuss this parameter any further in the rest of the paper, except briefly in Sections 3 and 6 (in Theorems 6.7
and 6.11).

2-domination, rainbow 2-domination.

Definition 2.9 (γ2, Row/column 6 in Table 2).
Let G = (V , E) be a graph. A 2-dominating function of G is a function f : V → {0, 1} such that for all v ∈ V (G) it holds that

f (v) = 0 H⇒ f (N (v)) ≥ 2 .

The 2-domination number of G is denoted by γ2(G) and equals the minimum weight f (V ) over all 2-dominating functions f
of G.

Any set of the form D = {v ∈ V | f (v) = 1} where f is a 2-dominating function of G is said to be a 2-dominating set of G.
Note that the minimum size of a 2-dominating set equals γ2(G).

The concept of k-domination (and 2-domination in particular) was introduced back in 1985 [32], and was later studied
quite extensively, see some recent papers [11,22,29,42].

Definition 2.10 (̃γ2, Row/column 10 in Table 2).
Let G = (V , E) be a graph. A rainbow 2-dominating function of G is a function f : V → {∅, {a}, {b}} such that

f (v) = ∅ H⇒ |f∪(N (v))| ≥ 2 .

Equivalently, for all v ∈ V (G) with f (v) = ∅, it holds that f∪(N(v)) = {a, b}. The rainbow 2-domination number of G is denoted
by γ̃2(G) and equals the minimum weight f (V ) over all rainbow 2-dominating functions f of G.

Double domination, rainbow double domination.

Definition 2.11 (γ×2, Row/column 7 in Table 2).
Let G = (V , E) be a graph. A double dominating function of G is a function f : V → {0, 1} such that for all v ∈ V (G) it holds

that

f (N [v]) ≥ 2 .

The double domination number of G is denoted by γ×2(G) and equals the minimum weight f (V ) over all double dominating
functions f of G.

Any set of the form D = {v ∈ V | f (v) = 1} where f is a double dominating function of G is said to be a double dominating
set of G. Note that the minimum size of a double dominating set equals γ×2(G).

Double domination number is finite in graphs without isolated vertices. It was introduced in [44] (see also [43]), and was
studied by a number of authors; consider for instance some recent papers [6,23,27,61].

Definition 2.12 (̃γ×2, Row/column 11 in Table 2).
Let G = (V , E) be a graph. A rainbow double dominating function of G is a function f : V → {∅, {a}, {b}} such that for all

v ∈ V (G) it holds that

|f∪(N [v])| ≥ 2 .

Equivalently, f∪(N[v]) = {a, b} holds for all v ∈ V (G). The rainbow double domination number of G is denoted by γ̃×2(G) and
equals the minimum weight f (V ) over all rainbow double dominating functions f of G.

Note that every graph without isolated vertices has domatic number at least 2, which means that it admits a domatic
2-partition, that is, a partition of its vertex set into two dominating sets. (The domatic number was introduced in a paper
from 1970’s [21], extensively studied afterwards, and surveyed in [81].) To see this, note that for any maximal independent
set S in the graph, the pair (S, V \ S) is a domatic 2-partition. Given a domatic 2-partition (A, B), setting f (v) = {a} for all
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v ∈ A and f (v) = {b} for all v ∈ B results in a rainbow double dominating function of G, which shows that the rainbow
double domination number is well defined for all graphs without isolated vertices.

The above observation can be strengthened as follows: The rainbow double domination number of a graph G without
isolated vertices equals the so-called disjoint domination number of G, defined in [49] as the minimum value of |A| + |B| over
all pairs (A, B) of disjoint dominating sets ofG, and denoted by γ γ (G). The disjoint domination numberwas studied in several
papers, [1,3,53,59,66].

Proposition 2.1. For every graph G without isolated vertices, we have γ̃×2(G) = γ γ (G).

Proof. Suppose that A and B are two disjoint dominating sets in G. Then setting f (v) = {a} for all v ∈ A, f (v) = {b} for all
v ∈ B, and f (v) = ∅ for all v ∈ V \ (A ∪ B) results in a rainbow double dominating function of G with total weight |A| + |B|.
Conversely, if f : V → {∅, {a}, {b}} is a rainbow double dominating function of G, then f −1({a}) and f −1({b}) form a pair of
disjoint dominating sets of G of total size equal to the total weight of f . □

Total double domination, rainbow total double domination

Definition 2.13 (γ t×2, Row/column 8 in Table 2).
Let G = (V , E) be a graph. A total double dominating function of G is a function f : V → {0, 1} such that for all v ∈ V (G) it

holds that

f (N (v)) ≥ 2 .

The total double domination number of G is denoted by γ t×2(G) and equals the minimum weight f (V ) over all total double
dominating functions f of G.

Any set of the form D = {v ∈ V | f (v) = 1} where f is a total double dominating function of G is said to be a total double
dominating set of G. Note that the minimum size of a total double dominating set equals γt×2(G).

The total double domination number is finite precisely in graphs Gwith δ(G) ≥ 2. The invariant, which is in some papers
called double total domination, was studied for instance in [52,54].

Definition 2.14 (̃γ t×2, Row/column 12 in Table 2).
Let G = (V , E) be a graph. A rainbow total double dominating function of G is a function f : V → {∅, {a}, {b}} such that for

all v ∈ V (G) it holds that

|f∪(N (v))| ≥ 2 .

Equivalently, f∪(N(v)) = {a, b} holds for all v ∈ V (G). The rainbow total double domination number of G is denoted by γ̃ t×2(G)
and equals the minimum weight f (V ) over all rainbow total double dominating functions f of G.

The total domatic number of a graph Gwithout isolated vertices is themaximumnumber of total dominating sets of G that
form a partition of its vertex set, cf. [80]. Analogously to the disjoint domination number of a graph, we define the disjoint
total domination number of a graph G as the minimum value of |A| + |B| over all pairs (A, B) of disjoint total dominating sets
of G, and denote it by γtγt (G). Note that this parameter is finite if and only if G admits a partition of its vertex set into two
total dominating sets, that is, if its total domatic number is at least 2 (this is the case, for instance, for all k-regular graphs
with k ≥ 4 [55]). A similar parameter for digraphs was recently considered in [62].

Proposition 2.2. For every graph G, we have γ̃t×2(G) = γtγt (G). In particular, the rainbow total double domination number of
G is finite if and only if V (G) can be partitioned into two total dominating sets.

Proof. Let f : V → {∅, {a}, {b}} be a minimum rainbow total double dominating function of G. Since f∪(N(v)) = {a, b} for all
v ∈ V (G), the set of vertices f −1({a}), that is, the set of vertices labeled by {a}, is a total dominating set in G, and, similarly, so
is f −1({b}). Since these two sets are disjoint, we have γtγt (G) ≤ γ̃t×2(G). Note that in this case, V (G) can be partitioned into
two total dominating sets, namely f −1({∅, {a}}) and f −1({b}).

Conversely, suppose that γtγt (G) is finite, and take a pair A, B of disjoint total dominating sets A and B such that
|A| + |B| = γtγt (G). Then, the function f : V → {{a}, {b}}, defined by f (v) = {a} for all v ∈ A, f (v) = {b} for all v ∈ B,
and f (v) = ∅ for all v ∈ V \ (A ∪ B), is a rainbow total double dominating function of G with f (V ) = γtγt (G). This implies
that γ̃t×2(G) ≤ γtγt (G), and consequently γ̃t×2(G) = γtγt (G). The above argument also shows that if V (G) can be partitioned
into two total dominating sets, then G has a rainbow total double dominating function. □

Roman domination

Definition 2.15 (γR , Row/column 13 in Table 2).
Let G = (V , E) be a graph. A Roman dominating function of G is a function f : V → {0, 1, 2} such that for all v ∈ V (G) it

holds that

f (v) = 0 H⇒ (∃w ∈ N (v) such that f (w) = 2) .
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The Roman domination number of G is denoted by γR(G) and equals the minimum weight f (V ) over all Roman dominating
functions f of G.

As already mentioned in the introduction, the concept of Roman domination was introduced by Stewart in [75], see
also [20]. It was studied also in the PhD thesis of Dreyer [28] and in a series of papers, see, e.g., [31,64,65,67,73] for some
recent references.

Defining the rainbowRoman domination number in the obviousway does not lead to a new graph parameter: it coincides
with the Roman domination number.

For each of above defined domination parameters, given a weight function f , if the defining condition is satisfied for a
vertex v ∈ V (G), we say that v is dominated (with respect to f ).

For later use in Section 4, we now recall also the definitions of three covering parameters in graphs.

Edge covers, 2-edge covers, and 2-vertex covers.
An edge cover of G is a function f : E → {0, 1} such that for all v ∈ V , it holds that∑

w∈V ,vw∈E

f (vw) ≥ 1 .

If G is a graph with no isolated vertices, the edge cover number of G is denoted by ρ(G) and equals the minimum weight
f (E) over all edge covers f of G.

A 2-edge cover of G is a function f : E → {0, 1, 2} such that for all v ∈ V , it holds that∑
w∈V ,vw∈E

f (vw) ≥ 2 .

If G is a graphwith no isolated vertices, the 2-edge cover number of G is denoted by ρ2(G) and equals theminimumweight
f (E) over all 2-edge covers f of G.

A 2-vertex cover of G is a function f : V → {0, 1, 2} such that for all vw ∈ E, it holds that

f (v) + f (w) ≥ 2 .

The 2-vertex cover number of G is denoted by τ2(G) and equals the minimum weight f (V ) over all 2-vertex covers f of G.
The following result is a consequence of several works by Gallai [37–40] (cf. [72, Chapter 30]), and will be used to prove

the bound of γt{2} in terms of γw2 in Proposition 4.6.

Theorem 2.3. For every graph G = (V , E) with no isolated vertices, ρ2(G) + τ2(G) = 2|V |.

3. Comparison of parameters

In this section, we state our main result: the comparison of the values of 13 domination parameters in graphs for each
pair of them (Table 2). We start with describing, in Fig. 1, the Hasse diagram of the relation ≤ on the 15 graph parameters
defined in Section 2. Given two of these parameters, say ρ and ρ ′, we write ρ ≤ ρ ′ if and only if for every graph G for which
both ρ(G) and ρ ′(G) are well defined, it holds that ρ(G) ≤ ρ ′(G). The relations represented in this figure will be used often in
our proofs of upper bounds for the parameters in terms of functions of other parameters, and in the proofs that these bounds
are sharp.

Proposition 3.1. For any two parameters ρ and ρ ′ in the Hasse diagram on Fig. 1, ρ is below ρ ′ in the diagram if and only if
ρ ≤ ρ ′.

Proof. Here, we will only argue the ‘only if’ direction of the proof, that is, if ρ is below ρ ′ in the diagram then ρ ≤ ρ ′. The
other direction will follow from results in Section 5.

Clearly, it suffices to verify the statement only for the ‘covering’ pairs (ρ, ρ ′) in the diagram, that is, pairs such that ρ

is immediately below ρ ′ in the diagram—the inequalities for all the remaining pairs follow by transitivity. The inequality
γ ≤ γw2 can be proved by observing that if f : V (G) → {0, 1, 2} is aminimumweight weak 2-dominating function of G, then
the set f −1({1, 2}) is a dominating set of G of total size |f −1(1)| + |f −1(2)| ≤ f (V ) = γw2(G). Similarly, if f : V (G) → {0, 1, 2}
is a minimum weight {2}-dominating function of G, then the set f −1({1, 2}) is a total dominating set of G of total size
|f −1(1)| + |f −1(2)| ≤ f (V ) = γ{2}(G). This implies the inequality γt ≤ γ{2}. The inequality γt ≤ γ̃w2 was proved in [35]
and the inequality γ̃w2 ≤ γR in [79].

If f is a dominating function of G, then 2f is a Roman dominating function of G (cf. [20,51]). Hence, for every graph G, it
holds γR(G) ≤ 2γ (G) = γ̃{2}(G), which establishes the relation γR ≤ γ̃{2} in the diagram.

That every rainbow parameter is above its original counterpart is a direct consequence of definitions. Similarly, all other
inequalities represented in the diagram H can be easily derived just by looking at the definitions of parameters. □
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Table 4
Summary of proofs for the entries of Table 5. Only the entries that are used in the proof of Table 5 are nonempty. Each nonempty entry of the table gives
the value of the domination parameter indexing the corresponding column on the graph indexing the row. The entries show that the bounds are sharp,
or that a certain parameter cannot be bounded from above by a function of another one.

H vs. ρ(H) 1 2 3 4 5 6 7 8 9 10 11 12 13
γ γt γw2 γ{2} γt{2} γ2 γ×2 γt×2 γ̃w2 γ̃2 γ̃×2 γ̃t×2 γR

A kK2 k 2k 2k 2k 4k 2k 2k 2k 2k 2k 2k
B kC4 2k 2k 2k 4k 2k 4k 2k 2k 4k 4k 3k
C K ∗∗

n , n ≥ 3 n − 1 n − 1 n n n n n n 2n − 2 2n − 2
D kH 2k 4k 4k 4k 4k 4k
E kK4,4 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k
F F 3

n n + 1 2n + 1 n + 1
G F 4

n n + 1 2n + 1 n + 1 2n + 1 3n + 1 n + 1 n + 1
X K1,n, n ≥ 2 1 2 2 2 4 n n + 1 2 n n + 1 2
Y S(K (n)

3 ), n ≥ 3 3 5 6 n + 3 n + 4
Z Qn , n ≥ 3 2 4 4 4 8 2n + 2 4 4
W Tn 3 5 5 6 8 5 6 8 6 6 6 n + 9 6

Table 5
Summary of the families of graphs that either achieve the bounds from Table 2, or demonstrate that there is no function bounding one parameter with
another (the latter families are bolded). Families within a pair of brackets [. . .] demonstrate the sharpness of the bounds for graphs with at least one edge.

ρ ≤ f (ρ ′) 1 2 3 4 5 6 7 8 9 10 11 12 13
γ γt γw2 γ{2} γt{2} γ2 γ×2 γt×2 γ̃w2 γ̃2 γ̃×2 γ̃t×2 γR

1 γ = kC4 kC4 K ∗∗
n , n ≥ 3 K ∗∗

n , n ≥ 3 kC4 K ∗∗
n , n ≥ 3 K ∗∗

n , n ≥ 3 kC4 kC4 kK2 kC4 [S(K1,n)−]

2 γt kK2 = S(K2n+1) kK2 K ∗∗
n , n ≥ 3 S(K2n+1) kK2 K ∗∗

n , n ≥ 3 kK2 kK2 kK2 kC4 kK2
3 γw2 kK2 kH = kK2 kH kK2 kK2 K ∗∗

n , n ≥ 3 kK2 kK2 kK2 kK4,4 kK2
4 γ{2} kK2 kH [F 4

n ] = K ∗∗
n , n ≥ 3 [F 4

n ] kK2 K ∗∗
n , n ≥ 3 [F 4

n ] [F 4
n ] kK2 kK4,4 [S(K1,n)−]

5 γt{2} kK2 kK2 kK2 kK2 = kK2 kK2 K ∗∗
n , n ≥ 3 kK2 kK2 kK2 kC4 kK2

6 γ2 K1,n K1,n K1,n K1,n K1,n = kK2 K ∗∗
n , n ≥ 3 K1,n kK2 kK2 kK4,4 K1,n

7 γ×2 K1,n K1,n K1,n K1,n K1,n F 4
n = K ∗∗

n , n ≥ 3 K1,n F 4
n kK2 kK4,4 K1,n

8 γt×2 Qn Qn Qn Qn Qn F 4
n F 3

n = Qn F 4
n F 3

n kC4 Qn
9 γ̃w2 kK2 kH K ∗∗

n , n ≥ 3 K ∗∗
n , n ≥ 3 K ∗∗

n , n ≥ 3 K ∗∗
n , n ≥ 3 K ∗∗

n , n ≥ 3 K ∗∗
n , n ≥ 3 = kK2 kK2 kK4,4 kK2

10 γ̃2 K1,n K1,n K1,n K1,n K1,n S(K (n)
3 ) S(K (n)

3 ) S(K (n)
3 ) K1,n = kK2 kK4,4 K1,n

11 γ̃×2 K1,n K1,n K1,n K1,n K1,n S(K (n)
3 ) S(K (n)

3 ) S(K (n)
3 ) K1,n kC4 = kC4 K1,n

12 γ̃t×2 Tn Tn Tn Tn Tn Tn Tn Tn Tn Tn Tn = Tn

13 γR kK2 kH S(K (2)
n ) K ∗∗

n , n ≥ 3 K ∗∗
n , n ≥ 3 S(K (2)

n ) K ∗∗
n , n ≥ 3 K ∗∗

n , n ≥ 3 kC4 kC4 kK2 kK4,4 =

In Table 2 we summarize the bounds relating any two of the 13 considered parameters, or the fact that there is no bound.
We will give the necessary proofs of upper bounds in Section 4 and summarize them in Table 3. All the bounds are sharp, as
will be shown in Section 5, whichwill also contain the proofs of nonexistence of bounds between certain pairs of parameters.
The families proving the nonexistence of a bound and the examples showing sharpness are summarized in Tables 4 and 5
(on p. 27 and 29), respectively.

We can also consider the following weaker version of the≤ relation on the 15 graph parameters defined in Section 2. The
relation ⪯ is defined by ρ ⪯ ρ ′ if and only if there exists a function f such that for every graph G for which both ρ(G) and
ρ ′(G) arewell defined, it holds that ρ(G) ≤ f (ρ ′(G)). This relation is reflexive and transitive, but not antisymmetric. It induces
an equivalence relation ≈, defined by ρ ≈ ρ ′ if and only if ρ ⪯ ρ ′ and ρ ′

⪯ ρ. The results summarized in Table 2 imply that
the relation ≈ has exactly four equivalence classes, which are linearly ordered by the quotient partial order obtained from
⪯ by collapsing each equivalence class of ≈ into a single element. See Fig. 2 for a depiction of these four equivalence classes
and the Hasse diagram of the corresponding linear order.

4. Proofs of upper bounds in Table 2

In this sectionwe prove the upper bounds fromTable 2. All the bounds are sharp, whichwill be demonstrated in Section 5.
In the first subsection we concentrate on the bounds that follow from the Hasse diagram in Fig. 1, while in the second
subsection we give explicit proofs of the remaining bounds. Note that the bounds in the entries of Table 2 that are not
proven directly in this section, follow by transitivity from other bounds, as shown in Table 3.

4.1. Upper bounds following from the Hasse diagram on Fig. 1

The first proposition of this subsection is a direct consequence of Proposition 3.1.

Proposition 4.1. The upper bounds indicated by the following entries in Table 2 are correct: (1, 2), (1, 3), (1, 6), (1, 9), (1, 10)
(2, 4) (2, 7) (2, 9), (2, 10) (2, 11) (2, 13), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (3, 11), (3, 12), (3, 13), (4, 5), (4, 7),
(4, 8), (4, 11), (4, 12), (5, 8), (5, 12), (6, 7), (6, 8), (6, 10), (6, 11), (6, 12), (7, 8), (7, 11), (7, 12), (8, 12), (9, 10), (9, 11), (9, 12),
(9, 13), (10, 11), (10, 12), (11, 12), (13, 11), (13, 12). □
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Fig. 2. The Hasse diagram representing the preorder ⪯ on the considered domination parameters.

4.2. Other upper bounds in Table 2

In this subsection the remaining upper bounds are proved. To ease an examination the bounds are numbered by the
ordered pairs (r, c), where r stands for the row and c for the column in the table. Since a proof of the bound labeled by a
pair (r, c) proceeds by taking an optimal solution for the parameter indexed by column c and modifying it into a feasible
solution for the parameter indexed by row r , we group together the proofs of bounds sharing the same column coordinate.
We proceed in increasing order of columns and, within the same column, in increasing order of rows.

The proofs of Propositions 4.5 and 4.6 below make use of two classical results due to Gallai: one on the structure of
minimum edge covers in graphs, and one on the relation between the 2-edge-cover and the 2-vertex cover numbers of a
graph (Theorem 2.3), respectively.

Bound (4,1)

Proposition 4.2. For every graph G, γ{2}(G) ≤ 2γ (G).

Proof. The inequality γ{2}(G) ≤ 2γ (G) follows from the fact that if f : V (G) → {0, 1} is a minimum weight dominating
function of G, then g = 2f : V (G) → {0, 1, 2} is a {2}-dominating function of G of weight exactly 2γ (G). □

Bound (5,2)

Proposition 4.3. For every graph G without isolated vertices, γt{2}(G) ≤ 2γt (G).

Proof. The inequality γt{2}(G) ≤ 2γt (G) follows from the fact that if f : V (G) → {0, 1} is a minimumweight total dominating
function of G, then g = 2f : V (G) → {0, 1, 2} is a total {2}-dominating function of G of weight exactly 2γt (G). □

Bound (2,3)

Proposition 4.4. For every graph G without isolated vertices, γt (G) ≤
3γw2(G)−1

2 .

Proof. Let G be a graph without isolated vertices, and let f : V (G) → {0, 1, 2} be a minimum weight weak 2-dominating
function of G. Let us define the following subsets of V (G). Let Vi = {v ∈ V (G) | f (v) = i} , for i ∈ {0, 1, 2}. Let S be a maximal
set of vertices in V0 such that their neighborhoods intersected with V1 are nonempty and pairwise disjoint. Let D0 denote
the set of vertices in V1 that have no neighbor in S. For every vertex v ∈ D0 ∪ V2, choose a vertex v′ adjacent to it. (Notice
that such a vertex exists, since G has no isolated vertices.) Let D′

0 = {v′
| v ∈ D0} and V ′

2 = {v′
| v ∈ V2}.

We claim that the set D′
= (V1 \D0)∪D′

0 ∪ S ∪ V2 ∪ V ′

2 is a total dominating set of G. If v ∈ V1 \D0, then v has a neighbor
in S. If v ∈ D0, then v has a neighbor in D′

0. If v ∈ V2, then v has a neighbor in V ′

2. If v ∈ V0, then v has either a neighbor in V2,
or it has at least two neighbors in V1, and thus by the definition of S, v has a neighbor in N(S) ∩ V1 ⊆ V1 \ D0.

Since every vertex in S has at least two neighbors in V1, we have |N(S) ∩ V1| ≥ 2|S|. Therefore, we can bound the size of
D′ from above as follows:

|D′
| = (|V1 \ D0| + |D′

0|) + |S| + (|V2| + |V ′

2|) ≤ |V1| +
|N(S) ∩ V1|

2
+ 2|V2| . (1)
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If D0 ̸= ∅, then |N(S) ∩ V1| ≤ |V1| − 1 and hence by (1), we have

|D′
| ≤ |V1| +

|V1| − 1
2

+ 2|V2| ≤
3(|V1| + 2|V2|) − 1

2
=

3γw2(G) − 1
2

.

If V2 ̸= ∅, then 2|V2| ≤ 3|V2| − 1 and by (1) we obtain

|D′
| ≤ |V1| +

|N(S) ∩ V1|

2
+ 3|V2| − 1 <

3(|V1| + 2|V2|) − 1
2

=
3γw2(G) − 1

2
.

Finally, if D0 = ∅ and V2 = ∅, then D′
= V1 ∪ S, and we can obtain a smaller total dominating set D′′ by deleting from D′

an arbitrary vertex of V1. Indeed, every vertex in V0 has at least two neighbors in V1, and hence it has a neighbor in D′′. We
can bound the size of D′′ from above as follows:

|D′′
| = |V1| + |S| − 1 ≤ |V1| +

|N(S) ∩ V1|

2
− 1 ≤

3|V1|

2
− 1 <

3γw2(G) − 1
2

.

In either case, we obtain γt (G) ≤
3γw2(G)−1

2 . □

Bound (4,3)

Proposition 4.5. For every graph G with at least one edge, γ{2}(G) ≤ 2γw2(G) − 1.

Proof. Let G be a graph with at least one edge.
Let f : V (G) → {0, 1, 2} be a minimum weight weak 2-dominating function of G. Let Vi = {v ∈ V (G) | f (v) = i} , for

i ∈ {0, 1, 2}.
We first deal with the case when V2 ̸= ∅. The function g : V (G) → {0, 1, 2} that agrees with f on all vertices except on

the vertices with f -value equal to 1, each of which g maps to 2, is a {2}-dominating function of G. Since

g(V (G)) = 2|V1| + 2|V2| ≤ 2(|V1| + 2|V2| − 1) = 2f (V (G)) − 2 = 2γw2(G) − 2 ,

we have the inequality γ{2}(G) ≤ 2γw2(G) − 2 in this case.
Assume now that V2 = ∅. Note that the set I of isolated vertices in G is a subset of V1, and let V ′

1 = V1 \ I .
We may assume that every vertex u in V ′

1 has a neighbor in V0. Otherwise, if all neighbors of u are in V ′

1, then we can
obtain a weak 2-dominating function of G of the same weight as f by moving the weight 1 from u to one of its neighbors,
and the previous case (V2 ̸= ∅) applies.

Now, let H be the graph with vertex set V ′

1 in which two vertices u and v are adjacent if and only if they have a common
neighbor n(u, v) in V0. Let h : E(H) → {0, 1} be a minimum weight edge cover of H , let C = {e ∈ E(H) | h(e) = 1} be the
support of h, and let N = {n(u, v) | uv ∈ C}. Note that |N| = |C | ≤ |V ′

1| − 1 (recall that a minimum edge cover induces a
spanning forest of stars [40]). Consider the function g : V (G) → {0, 1, 2}, defined as follows:

g(v) =

{2, if v ∈ I;
1, if v ∈ N ∪ V ′

1;
0, otherwise.

Then, g is a {2}-dominating function of G: if v ∈ I , then clearly g(N[v]) = 2; if v ∈ N ∪ V ′

1, then v has a neighbor in N ∪ V ′

1,
and hence g(N[v]) ≥ 2; if v ∈ V0 \ N , then v has at least two neighbors in V ′

1, and again g(N[v]) ≥ 2 holds. Since

g(V (G)) = 2|I| + |V ′

1| + |N| ≤ 2|I| + |V ′

1| + |V ′

1| − 1 = 2|V1| − 1 = 2f (V (G)) − 1 = 2γw2(G) − 1 ,

we have the desired inequality γ{2}(G) ≤ 2γw2(G) − 1. □

Bound (5,3)

Proposition 4.6. For every graph G with no isolated vertices, γt{2}(G) ≤ 2γw2(G).

Proof. Let f : V → {0, 1, 2} be a minimum weight weak 2-dominating function of a graph G = (V , E) with no isolated
vertices. In the proof we will construct a total {2}-dominating function g of Gwith weight less or equal to 2f (V ), yielding the
bound γt{2}(G) ≤ 2γw2(G).

Let Vi = {v ∈ V (G) | f (v) = i} , for i ∈ {0, 1, 2}. Note that for any vertex x in V0 we already have f (N(x)) ≥ 2, which is
the condition imposed on vertices in the total {2}-dominating set. On the other hand, f (N(y)) can be less than 2 for vertices
y ∈ V1∪V2. Note that as f is minimum, each y ∈ V2 is adjacent to a vertex in V0. Suppose that V2 ̸= ∅ and let Y be aminimum
set of vertices from V0 that dominate all vertices from V2; i.e., V2 ⊂ N(Y ) and Y is a smallest possible subset of V0 with this
property. Clearly, |V2| ≥ |Y |. Now, let f1 : V → {0, 1, 2} be the function obtained from f by setting f1(y) = 2 for all y ∈ Y
(changing f only in vertices of Y ). Note that for any vertex x ∈ V0 ∪ V2, we have f1(N(x)) ≥ 2. Moreover, when restricted to
the subgraph G1 of G induced by V2 ∪N(V2), f1 is a total {2}-dominating function of G1 such that f1(V (G1)) ≤ 2f (V (G1)). Thus



F. Bonomo et al. / Discrete Applied Mathematics 235 (2018) 23–50 35

it suffices to consider the remainder of the graph, i.e., G− V (G1); we remark that the function g , which we are constructing,
coincides with f1 on V (G1).

Consider the set Z of vertices z ∈ V1 that are adjacent to some other vertex in V1 (in the case when a vertex z from V1 is
adjacent to a vertex in V2, then it is already in G1, with f1(N(z)) ≥ 2, so this case need not be considered any more). If Z ̸= ∅,
then let f2 : V → {0, 1, 2} be the function obtained from f1 only by increasing the value of all vertices z from V1 that have a
neighbor in V1, by setting f2(z) = 2. Denote by G2 the subgraph of G, induced by Z ∪N(Z). Clearly, f2(N(z)) ≥ 2 for all vertices
z ∈ Z ∪ N(Z). Moreover, when restricted to G2, f2 is a total {2}-dominating function of G2 such that f2(V (G2)) ≤ 2f (V (G2)).
Thus it suffices to consider the remainder of the graph, i.e., G − (V (G1) ∪ V (G2)); we remark that the function g , which we
are constructing, coincides with f2 on V (G1 ∪ G2).

Let x ∈ V1, such that x is not adjacent to any other vertex in V1 ∪ V2 (thus x lies in G − (V (G1) ∪ V (G2))). Then x has a
neighbor in V0, since G has no isolated vertices. It is possible that all neighbors of x are in G1 ∪ G2. Let G3 be the subgraph of
G, induced by all vertices x in V1 and not in G1 ∪ G2, such that all their neighbors are in G1 ∪ G2. To each vertex of G3, we set
f3(x) = 0, and to an arbitrary neighbor y ∈ V0 of x, we set f3(y) = 2 (and f3(u) = f2(u) for all other vertices of G). Note that
f3(N(x)) ≥ 2 for any x ∈ G3, and f3 restricted to V (G1) ∪ V (G2) ∪ V (G3) is a total {2}-dominating function of the subgraph
induced by V (G1) ∪ V (G2) ∪ V (G3). In addition, f3(V (G1) ∪ V (G2) ∪ V (G3)) ≤ 2f (V (G1) ∪ V (G2) ∪ V (G3)); we remark that the
function g , which we are constructing, coincides with f3 on V (G1) ∪ V (G2) ∪ V (G3).

Denote by H the remainder of the graph, i.e., H = G− (V (G1)∪ V (G2)∪ V (G3)). Note that each vertex in H from V1 has at
least one neighbor in V0 ∩ V (H), and also each vertex from V0 ∩ V (H) has at least two neighbors from V1 ∩ V (H) (the latter is
because f is a weak 2-dominating function, and vertices from V0 ∩ V (H) are not adjacent to any vertex from V2 nor to any of
the vertices of V1 that were settled in the previous cases). For each x ∈ V (H) with f (x) = 0, choose arbitrarily any of its two
neighbors y, z in V1, and delete all other edges between x and its neighbors in (V0 ∪ V1) \ {y, z}; call the resulting graph H ′.
Clearly, H ′ is a spanning subgraph of H , in which each vertex in V0 has degree exactly 2, while vertices from V1 can have an
arbitrary degree, including 0. Remove all the isolated vertices from H ′ to obtain the graph H ′′ (we remark that the isolated
vertices will be settled at the end of the proof). Let K be an arbitrary connected component of H ′′. Since vertices from V0
in K have degree 2 and are adjacent to two vertices from V1, K is a subdivision of a graph K ′, whose vertices correspond to
vertices of V1 ∩ K , and edges in K ′ correspond to vertices in V0 ∩ K .

Now, a function h′
: V (K ′) ∪ E(K ′) → {0, 1, 2} in a natural way corresponds to the function h : V (K ) → {0, 1, 2}, where

h′(x) = h(x) for any x ∈ V1, while h′(e) where e ∈ E(K ′) coincides with h(y), where y ∈ V (K ) is the subdivision vertex of e. In
addition, the following conditions imposed to h′: for every vertex x ∈ V (K ′),∑

xy∈E(K ′)

h′(xy) ≥ 2

and for every edge xy ∈ E(K ′),

h′(x) + h′(y) ≥ 2,

are equivalent to the corresponding function h being a total {2}-dominating function of K . Moreover, as f (K ) = f3(K ) =

|V1 ∩K | = |V (K ′)|, it suffices to prove that there exists a function h′ satisfying the above conditions such that the total sum of
values of h′ is at most 2|V (K ′)|, to establish the desired bound of the theorem in the component K . Let h′

1 : V (K ′) → {0, 1, 2}
and h′

2 : E(K ′) → {0, 1, 2} be minimum weight 2-vertex and 2-edge covers of K ′, respectively. Define h′(v) = h′

1(v) for
each v ∈ V (K ′) and h′(e) = h′

2(e) for each e ∈ E(K ′). By definition of 2-vertex cover and 2-edge cover, h′ satisfies the
desired properties. Moreover, by Theorem 2.3, the total sum of values of h′ is exactly 2|V (K ′)|. By the observation above, the
corresponding function h : V (K ) → {0, 1, 2} is a total {2}-dominating function of K of weight at most 2|V (K ) ∩ V1|.

Clearly, in the same way as K all connected components of H ′′ of order at least two can be analyzed, and so the function
h is extended to all vertices of H ′′. Now, H ′ is obtained from H ′′ by adding connected components with only one vertex, and
they have not yet been considered in the proof. Recall that each such vertex x ∈ V (H ′) is in V1, and we set h(x) = 0 and
h(y) = 2 to any neighbor y ∈ V (H ′), with which the value of h, which corresponds to x, is 2 · f (x), as desired. Altogether
we deduce that h is a total {2}-dominating function of H ′ of weight at most 2|V (H ′) ∩ V1|. As H ′ is a spanning subgraph of
H , clearly h is also a total {2}-dominating function of H of the same weight. Finally, we set g(x) = f3(x) for all vertices in
V (G) \ V (H) and g(x) = h(x) for all vertices in V (H). We conclude the main part of this proof by observing that g is a total
{2}-dominating function of G, with g(V ) ≤ 2f (V ). □

Bound (9,3)

Proposition 4.7. For every graph G ̸= K1, it holds that γ̃w2(G) ≤ 2γw2(G) − 2.

Proof. Let f : V (G) → {0, 1, 2} be a minimum weak 2-dominating function of G, and let Vi = {v ∈ V (G) | f (v) = i} , for
i ∈ {0, 1, 2}. We consider two cases.
Case 1. V2 ̸= ∅. Define a function g : V (G) → P({a, b}) as follows:

g(v) =

{
{a, b}, if v ∈ V1 ∪ V2;
∅, otherwise.
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Since f is weak 2-dominating function ofG, every vertex v ∈ V (G) with f (v) = 0 is adjacent to either two vertices of f -weight
1, or to one vertex of f -weight 2. Consequently, every vertex v ∈ V (G) with g(v) = ∅ satisfies g∪(N(v)) = {a, b}. Thus, g
is a rainbow weak 2-dominating function of G, and we have γ̃w2(G) ≤ g(V (G)) = 2(|V1| + |V2|) ≤ 2(|V1| + 2|V2|) − 2 =

2f (V (G)) − 2 = 2γw2(G) − 2.
Case 2. V2 = ∅. In this case, every vertex v ∈ V (G) with f (v) = 0 is adjacent to two vertices of f -weight 1. If V1 = V (G), then
the function g : V (G) → P({a, b}) assigning {a} to every vertex is a rainbow weak 2-dominating function of G, yielding in
this case γ̃w2(G) ≤ g(V (G)) = |V (G)| ≤ 2|V (G)| − 2 = 2γw2(G) − 2, where the inequality holds since G ̸= K1. If V1 ̸= V (G),
then there is a vertex w ∈ V (G) with f (w) = 0 and consequently |V1| ≥ 2. Let u, v ∈ V1 be two distinct vertices. Define a
function g : V (G) → P({a, b}) as follows:

g(w) =

⎧⎪⎨⎪⎩
{a}, if w = u;
{b}, if w = v;
{a, b}, if w ∈ V1 \ {u, v};
∅, otherwise.

Since f is weak 2-dominating function ofG, every vertex v ∈ V (G) with f (v) = 0 is adjacent to either two vertices of f -weight
1, or to one vertex of f -weight 2. It follows that every vertex w ∈ V (G) with g(w) = ∅ is adjacent either to a vertex with
g-label {a, b}, or to vertices u and v; in either case we have g∪(N(w)) = {a, b}. Thus, g is a rainbow weak 2-dominating
function of G, and we have γ̃w2(G) ≤ g(V (G)) = 2 + 2(|V1| − 2) = 2|V1| − 2 = 2f (V (G)) − 2 = 2γw2(G) − 2. □

Bound (13,3)

Proposition 4.8. For every graph G, it holds that γR(G) ≤ 2γw2(G) − 1.

Proof. Let f : V (G) → {0, 1, 2} be a minimum weight weak 2-dominating function of G.
Suppose first that there exists a vertex u ∈ V (G) such that f (u) = 2. Then, let g : V (G) → {0, 1, 2} be defined as follows:

g(v) =

{
2, if f (v) ∈ {1, 2};
0, otherwise.

Note that g is a Roman dominating function of G of total weight at most 2f (V (G)) − 2 = 2γw2(G) − 2. On the other hand, if
f (v) ∈ {0, 1} for all v ∈ V (G), then let u ∈ V (G) be a vertex such that f (u) = 1, and let g : V (G) → {0, 1, 2} be defined as
follows:

g(v) =

{2, if v ̸= u and f (v) = 1;
1, if v = u;
0, otherwise.

Note that g is a Roman dominating function of G of total weight exactly 2f (V (G)) − 1 = 2γw2(G) − 1. Hence, we have the
desired inequality in each case. □

Bound (1,4)

Proposition 4.9. For every graph G, γ (G) ≤ γ{2}(G) − 1.

Proof. Let f : V (G) → {0, 1, 2} be a minimum {2}-dominating function of G, and let Vi = {v ∈ V (G) | f (v) = i} ,
for i ∈ {0, 1, 2}. If V1 = ∅, then V2 is a dominating set of G and hence in this case γ (G) ≤ |V2| ≤ 2|V2| − 1 =

f (V (G)) − 1 = γ{2}(G) − 1. So we may assume that V1 ̸= ∅. Let v1 ∈ V1 and consider the set D = (V1 ∪ V2) \ {v1}. Then,
|D| = |V1| + |V2| − 1 ≤ |V1| + 2|V2| − 1 = f (V (G)) − 1 = γ{2}(G) − 1. Hence, to show that γ (G) ≤ γ{2}(G) − 1, it suffices to
argue that D is a dominating set of G, that is, that every v ∈ V (G) \ D has a neighbor in D. If v ∈ V (G) \ D and v ̸= v1, then v
has a neighbor from V2 or two neighbors from V1, because f is {2}-dominating function of G. In the first case, this neighbor
is clearly from D, while in the second case, there is at least one neighbor of v from V1, which is not equal to v1. Thus v has a
neighbor from D. It remains to show that v1 has a neighbor from D, which is also easy because v1 ∈ V1, hence it must have a
neighbor from V1 ∪ V2, which is thus from D. □

Bound (2,5)

Proposition 4.10. For every graph G without isolated vertices, γt (G) ≤ γt{2}(G) − 1.

Proof. Let f : V (G) → {0, 1, 2} be a minimum total {2}-dominating function of G, and let Vi = {v ∈ V (G) | f (v) = i} ,
for i ∈ {0, 1, 2}. If V1 = ∅, then V2 is a total dominating set of G and hence in this case γt (G) ≤ |V2| ≤ 2|V2| − 1 =

f (V (G)) − 1 = γt{2}(G) − 1. So we may assume that V1 ̸= ∅. Let v1 ∈ V1 and consider the set D = (V1 ∪ V2) \ {v1}. Then,
|D| = |V1| + |V2| − 1 ≤ |V1| + 2|V2| − 1 = f (V (G))− 1 = γt{2}(G)− 1. Hence, to show that γt (G) ≤ γt{2}(G)− 1, it suffices to
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argue that D is a total dominating set of G, that is, that every v ∈ V (G) has a neighbor in D. Since f is a total {2}-dominating
function of G, every vertex of v has either two neighbors in V1 or one neighbor in V2. In particular, every vertex of v has a
neighbor in either V1 \ {v1}, or in V2, and hence in D. □

Bound (7,6)

Proposition 4.11. For every graph G without isolated vertices, it holds that γ×2(G) ≤ 2γ2(G) − 1.

Proof. Let f : V → {0, 1} be a minimum 2-dominating function of G, and let D = {u | f (u) = 1}. For all x ∈ V \ D, we
have f (N[x]) ≥ 2, hence the condition imposed on a double dominating function is already fulfilled for these vertices. Let
y, w ∈ D be two neighbors of x with f -value positive. Let D′ be a superset of D obtained from D by adding to it vertex x and
for each vertex z from D \ {y, w}, adding an arbitrary vertex u ∈ N(z). Clearly, for any z ∈ D, we have |N[z] ∩ D′

| ≥ 2,
where one of the vertices from D′

∩N[z] is itself. Altogether we derive that D′ is a double dominating set, that is, the function
f ′

: V → {0, 1}, which sets value 1 precisely to the vertices from D′, is a double dominating function of G, and its weight is
|D′

| ≤ 2|D| − 1 = 2γ2(G) − 1. □

Bound (8,6)

Proposition 4.12. For every graph G with δ(G) ≥ 2, γt×2(G) ≤ 3γ2(G) − 2.

Proof. Let f : V → {0, 1} such that for all v ∈ V it holds that f (v) = 0 H⇒ f (N(v)) ≥ 2 and such that |D| = γ2(G), where
D = {v ∈ V | f (v) = 1}. So, every vertex in V \ D has at least two neighbors in D. Let D2 be the set of vertices in D having at
least two neighbors in D, let D1 be the set of vertices in D having exactly one neighbor in D, and let D0 be the set of vertices
in D having no neighbors in D. Since δ(G) ≥ 2, we can always define a set D′ of size at most 3|D0| + 2|D1| + |D2| by adding to
D one neighbor of v in V \ D for each vertex v in D1, and two neighbors of v in V \ D for each vertex v in D0. If D2 ̸= ∅, then
|D2 ∪D1| ≥ 3. Thus |D′

| ≤ 3|D0| + 2|D1| + |D2| ≤ 3(|D0| + |D1| + |D2|)− |D1| − 2|D2| ≤ 3|D| − 2. If D2 = ∅ but D1 ̸= ∅, then
|D1| ≥ 2. Again, |D′

| ≤ 3|D| − 2. In both cases, we can define f ′
: V → {0, 1} such that, for every vertex v ∈ V , f ′(v) = 1 if

and only if v ∈ D′. Function f ′ is a total double dominating function, thus γt×2(G) ≤ 3γ2(G) − 2.
Let now suppose D1 = D2 = ∅, so D = D0 is an independent set, and consider the bipartite graph G′ obtained from G by

deleting all edges with both endpoints in V \ D. Since f is a 2-dominating function, δ(G′) ≥ 2, and G′ contains an even cycle
C of length at least four. We can therefore define a set D′ by adding to D the vertices of C and two neighbors of v in V \ D for
each vertex v in D \ C . Function f ′

: V → {0, 1} such that, for every vertex v ∈ V , f ′(v) = 1 if and only if v ∈ D′ is a total
double dominating function, and as |D′

| ≤ 3|D| − 2, we obtain γt×2(G) ≤ 3γ2(G) − 2. □

Bound (8,7)

Proposition 4.13. For every graph G with δ(G) ≥ 2, we have γt×2(G) ≤ 2γ×2(G) − 1.

Proof. Let D ⊆ V (G) be a minimum double dominating set of G. Then, every vertex in D has at least one neighbor in D, and
every vertex in V (G) \ D has at least two neighbors in D. Let D1 = {v ∈ D | dG[D](v) = 1}. If D1 = ∅, then D is also a total
double dominating set, in which case γt×2(G) ≤ |D| = γ×2(G) ≤ 2γ×2(G) − 1.

Now let D1 ̸= ∅. Fix a vertex v ∈ D1, and letw ∈ N(v)\D. Note that such a vertex exists since v ∈ D1 and dG(v) ≥ 2. Since
w ̸∈ D, there exists a neighbor of w in D, say v′, such that v′

̸= v. For each vertex x ∈ D1 \ {v, v′
}, let x′ denote an arbitrary

neighbor of x outside D, and set D′
= D ∪ {w} ∪ X , where X = {x′

| x ∈ D1 \ {v, v′
}}.

We claim that D′ is a total double dominating set of G. To see this, consider an arbitrary vertex x ∈ V (G); we need to
check that x has at least two neighbors in D′. If x ∈ {v, v′

}, then |N(x) ∩ D| ≥ 1 and N(x) ∩ D′
⊇ (N(x) ∩ D) ∪ {w} (disjoint

union). If x ∈ D1 \ {v, v′
}, then again |N(x) ∩ D| ≥ 1 and N(x) ∩ D′

⊇ (N(x) ∩ D) ∪ {x′
} (disjoint union). If x ∈ V (G) \ D1, then

|N(x) ∩ D| ≥ 2 and N(x) ∩ D′
⊇ N(x) ∩ D. In either case, the conclusion follows.

The above implies that γt×2(G) ≤ |D′
|, hence it suffices to show that |D′

| ≤ 2|D| − 1 = 2γ×2(G) − 1. If v′
∈ D1, then

|X | ≤ |D1| − 2 ≤ |D| − 2, hence |D′
| ≤ |D| + 1 + |X | ≤ 2|D| − 1. If v′

̸∈ D1, then v′
∈ D \ D1, hence |D1| ≤ |D| − 1 and again

we have |X | ≤ |D1| − 1 ≤ |D| − 2, thus the same argument applies. □

Bound (11,10)

Proposition 4.14. For every graph G with no isolated vertices, γ̃×2(G) ≤ 2γ̃2(G).
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Proof. Let f : V → {∅, {a}, {b}} such that for all v ∈ V it holds that f (v) = ∅ H⇒ |f∪(N(v))| ≥ 2 and such that
the total weight f (V ) = γ̃2(G). Let Dx = {v ∈ V | f (v) = {x}}, for x ∈ {a, b}, and D0 = {v ∈ V | f (v) = ∅}. Notice that
γ̃2(G) = |Da|+|Db|. Also, every vertex v inD0 has a neighbor inDa and a neighbor inDb, in particular it satisfies |f∪(N[v])| ≥ 2.

Vertices v of Da having neighbors in Db and vertices v of Db having neighbors in Da also satisfy |f∪(N[v])| ≥ 2.
We will do the following process, successively, for all the vertices in Da having neighbors only in Da ∪ D0. Let v be

such a vertex. If v has a neighbor w in D0, then we update f (w) := {b}, and update accordingly the sets Db and D0. Now,
|f∪(N[v])| ≥ 2, and still |f∪(N[z])| ≥ 2 for every z satisfying that before the update. If v has no neighbor in D0, then it has
at least one neighbor in Da. We update f (v) := {b}, and update accordingly the sets Da and Db. Again, |f∪(N[v])| ≥ 2, and
still |f∪(N[z])| ≥ 2 for every z satisfying that before the update, because v had no neighbors in Db ∪ D0. If, with the new
definitions of Da,Db,D0, there are still vertices in Da having neighbors only in Da ∪ D0, we repeat the process. Notice that
the size of this set strictly decreases on each step, while the size of vertices in Db having neighbors only in Db ∪ D0 never
increases.

Once the set of vertices inDa having neighbors only inDa∪D0 is empty,we start processing vertices inDb having neighbors
only inDb∪D0 analogously, interchanging the roles of a and b. Notice that the size of the set of vertices inDb having neighbors
only in Db ∪ D0 strictly decreases on each step, while we never create vertices in Da having neighbors only in Da ∪ D0. So,
once the former set is empty, all the vertices z in V satisfy |f∪(N[z])| ≥ 2, hence f is a rainbow double dominating function
of G. Notice that we have done at most |Da| + |Db| steps and on each step we give a nonempty label to at most one vertex in
D0. So the new weight f (V ) is at most 2γ̃2(G). □

Bound (1,11)

Proposition 4.15. For every graph G without isolated vertices, γ (G) ≤
1
2 γ̃×2(G).

Proof. Let G be a graph without isolated vertices, and let f : V (G) → {∅, {a}, {b}} be a minimum weight rainbow double
dominating function of G. Consider the sets A = {v ∈ V (G) | f (v) = {a}} and B = {v ∈ V (G) | f (v) = {b}}. Without loss of
generality, we may assume that |A| ≤ |B|. Note that every vertex in V (G) \ A has a neighbor in A, thus A is a dominating set
of G, implying γ (G) ≤ |A| ≤

1
2 f (V (G)) =

1
2 γ̃×2(G). □

Bound (2,12)

Proposition 4.16. For every graph G of total domatic number at least 2, γt (G) ≤
1
2 γ̃t×2(G).

Proof. Let G be a graph with total domatic number at least 2, and let f : V (G) → {∅, {a}, {b}} be a minimumweight rainbow
total double dominating function of G. Consider the sets A = {v ∈ V (G) | f (v) = {a}} and B = {v ∈ V (G) | f (v) = {b}}.
Without loss of generality, we may assume that |A| ≤ |B|. Note that every vertex in G has a neighbor in A. In particular, A is
a total dominating set of G, implying γt (G) ≤ |A| ≤

1
2 f (V (G)) =

1
2 γ̃t×2. □

Bound (1,13)

Proposition 4.17. For every graph G with at least one edge, γ (G) ≤ γR(G) − 1.

Proof. Let f : V (G) → {0, 1, 2} be a minimum weight Roman dominating function of G, and let Vi = {v ∈ V (G) | f (v) = i}
for i ∈ {0, 1, 2}. We may assume that in addition f is chosen in such a way that V2 ̸= ∅. Indeed let uv ∈ E(G), and assume
that f (u) = 1 = f (v). But then changing f (u) = 1 to f (u) = 2 and f (v) = 1 to f (v) = 0 yields a Roman dominating function
of the same weight. Note that V1 ∪ V2 is a dominating set, which implies γ (G) ≤ |V1| + |V2| < |V1| + 2|V2| = γR(G), hence
γ (G) ≤ γR(G) − 1. □

5. Examples of sharpness and non-existence

5.1. Main families of graphs used in the proofs

In this sectionwe present several families of graphs thatwill be used in the proofs of sharpness of the bounds fromTable 2
or in the proofs of non-existence of such bounds indicated in the same table. Here we present the families that are used in
several instances, while those that are used just once or twice will be presented along with Table 5, which summarizes the
families used for each proof.

Given a graph G, by kG we define the disjoint union of k copies of G. Hence kK2, resp. kC4 stands for the graphs on k
components, each component being the connected graph on 2 vertices, resp. the square, that is, the cycle on four vertices.

Next, for a graph G, S(G) denotes its subdivision graph, obtained from G by subdividing each of its edges exactly once. In
S(G)we distinguish between original and subdivided vertices that correspond to the vertices ofG and to those internal vertices
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Fig. 3. Graphs F 3
n and F 4

n .

Fig. 4. Examples of graphs K ∗∗
n and S(K (2)

n ).

Fig. 5. Examples of graphs S(K (n)
3 ) and Qn .

of the paths on three vertices replacing the edges of G to obtain S(G) respectively. The stars with n leaves are denoted by
K1,n. We denote by S(K1,n)− the graph obtained from the subdivision graph S(K1,n) of the n-star by deleting a leaf.

The graph H is the tree on 6 vertices, in which each of the two adjacent non-leaves is adjacent to two leaves.
We denote by F 3

n the graph on 2n + 1 vertices, obtained from nK3 by identifying (gluing) one vertex of each triangle to
a single vertex. Similarly, F 4

n is the graph on 3n + 1 vertices, obtained from nC4 by identifying (gluing) one vertex of each
square to a single vertex. See Fig. 3.

For n ≥ 2, let K ∗∗
n denote the graph obtained from the complete graph of order n by gluing two new triangles along each

edge; see Fig. 4 for an example. In other words, for each pair x, y of vertices in the complete graph Kn two vertices are added,
each of which is adjacent only to x and y. The added vertices in K ∗∗

n (that is, those of degree 2) will be called triangle vertices;
vertices that are not triangle will be called original.

By G(k) we denote the multigraph obtained from a graph G by replacing each edge with k parallel edges. In particular,
K (2)
n is the multigraph obtained from the complete graph of order n by duplicating each edge, and so S(K (2)

n ) is its subdivision
graph; see Fig. 4 for an example. Note that S(K (2)

n ) is obtainable from K ∗∗
n by deleting all edges joining pairs of original vertices.

Next, the graph S(K (n)
3 ) is the subdivision graph of the multigraph K (n)

3 (i.e., the subdivision graph of the multigraph obtained
from K3 by adding n − 1 parallel edges between each pair of vertices). See Fig. 5 for an example.
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Fig. 6. Graphs Tn .

Wewill denote by Qn the graph that can obtained from the multigraph K (n)
2 (two vertices, connected by n parallel edges)

by subdividing each edge twice, i.e., each edge is replaced by the path P4 (the so-called double subdivision graphs of K (n)
2 ).

See Fig. 5 for an example.
Finally, graphs Tn are defined as follows. Let V (Tn) = {v1, . . . , vn, w1, . . . , wn, s1, s2, s3, t1, . . . , t5}, so that s1, s2, s3 induce

a triangle, t1, . . . , t5 induce a C5, s1 and s3 are adjacent to vi for every i ∈ {1, . . . , n}, t1 and t5 are adjacent to wi for every
i ∈ {1, . . . , n}, viwi ∈ E(Tn) for every i ∈ {1, . . . , n}, and there are no other edges; see Fig. 6.

It is for instance easy to see that for each n, the set {s1, t1, t3} is a minimum dominating set of Tn. We will discuss the
values of several other parameters of Tn and the consequences for Table 4 in Section 5.3.

The sharpness of the bounds in Table 2 will be demonstrated using the values of relevant parameters on graphs families
summarized in rows A–G of Table 4. In addition, we will use three more families, not described in this table (each of them
used only for three invariants). Furthermore, the results for families in rows X, Y, Z, W will be used in proving that there is
no bound between certain pairs of invariants.

Since most of the values in Table 4 can be proved as an easy exercise, we will only present here a proof for those that are
a bit more involved.

Claim 5.1. For n ≥ 3, we have ρ(K ∗∗
n ) = n for every ρ ∈ {γw2, γ{2}, γt{2}, γ2, γ×2, γt×2}, and γ̃w2(K ∗∗

n ) = γR(K ∗∗
n ) = 2n − 2.

Proof. Recall that K ∗∗
n is the graph obtained from the complete graph of order n by gluing two triangles along each edge,

and let us denote K ∗∗
n shortly by Gn. Let Vn be the set of original vertices in K ∗∗

n (the vertices of the complete subgraph Kn),
and V ∗∗

n the set V (Gn) \ Vn (triangle vertices). On the one hand, it is easy to see that γt×2(Gn) ≤ n, since assigning 1 to each
vertex of Vn and 0 to each other vertex yields a total double dominating function of Gn of total weight n. On the other hand,
we will now show that γ̃w2(Gn) ≥ 2n − 2. Since the bounds from Table 2 imply that γ̃w2(Gn) ≤ γR(Gn) ≤ 2γt×2(Gn) − 2 and
ρ(Gn) ≤ γt×2(Gn) for all ρ ∈ {γw2, γ{2}, γt{2}, γ2, γ×2}, the claim will then follow.

Suppose for a contradiction that there is a minimum rainbow weak 2-dominating function f : V (Gn) → P({a, b}) of Gn
of total weight at most 2n − 3. We first argue that we may assume without loss of generality that f (v) = ∅ for all vertices
v ∈ V ∗∗

n . Indeed, if f (v) ̸= ∅ for some vertex v ∈ V ∗∗
n , then the minimality of f implies that f (v′) ̸= ∅, where v′ denotes the

unique vertex with v′
̸= v and N(v) = N(v′). Hence, assigning {a, b} to one of the neighbors of v and assigning ∅ to each

of v and v′ maintains feasibility without increasing the total weight. Performing the above procedure as long as necessary
eventually results in a function f such that f (v) = ∅ for all vertices v ∈ V ∗∗

n . Let Va = {v ∈ Vn | f (v) = {a}}; the sets Vb and
Vab are defined similarly. Since 2|Vab| ≤ f (V (Gn)) ≤ 2n − 3, we infer that |Vab| ≤ n − 2. The fact that f is a rainbow weak
2-dominating function of Gn with f (v) = ∅ for each v ∈ V ∗∗

n , implies that |Va| ≤ 1 and |Vb| ≤ 1. If either Va = ∅ or Vb = ∅,
then there exists a vertex v ∈ V ∗∗

n such that |f (N(v))| ≤ 1, contrary to the fact that f is a rainbowweak 2-dominating function
and f (v) = ∅. Consequently, |Va| = |Vb| = 1, which implies |Vab| = n − 2. But now, f (V (Gn)) = 2n − 2, a contradiction. □

As most other values in rows A–G in Table 4 are straightforward (in particular the values for kK2, kC4, kH, kK4,4, F 3
n ), we

continue with the class F 4
n ; these are the graphs obtained from a set of n cycles C4 by identifying a vertex from each of the

4-cycles to a single vertex. Let us denote by v the unique vertex of degree 2n in F 4
n . First, note that γ̃w2(F 4

n ) ≤ γ̃2(F 4
n ) ≤ n+ 1,

which is proven by the inequality γ̃w2(F 4
n ) ≤ γ̃2(F 4

n ) (see Table 2) and the function f : V (F 4
n ) → P({a, b}), which assigns

f (v) = {a}, f (u) = {b} to all non-neighbors u of v, and f (x) = ∅ to the remaining vertices. The values γw2(F 4
n ) = γ2(F 4

n ) =

γ̃w2(F 4
n ) = γ̃2(F 4

n ) = n+ 1 can be derived from the following result and the corresponding upper bounds in row 4 in Table 2.

Claim 5.2. For n ≥ 3, γ{2}(F 4
n ) = 2n + 1.



F. Bonomo et al. / Discrete Applied Mathematics 235 (2018) 23–50 41

Proof. Let S denote the set of all vertices at distance two from the central vertex v of F 4
n . Let us denote F 4

n shortly by
Gn. Let us show that γ{2}(Gn) ≥ 2n + 1. Indeed, suppose for a contradiction that there exists a {2}-dominating function
f : V (Gn) → {0, 1, 2} of Gn of total weight at most 2n. Since all vertices in S have pairwise disjoint closed neighborhoods,
each of them needs weight 2 to dominate vertices in S. Since v is not contained in any closed neighborhood of a vertex from
S, we deduce f (v) = 0; moreover, f (N[u]) = 2 for each vertex u ∈ S. In order to dominate the neighbors of v, we must
have f (u) = 2 for all u ∈ S. But this implies that f (N[v]) = 0, a contradiction. This shows that γ{2}(Gn) ≥ 2n + 1. Since
γ{2}(G) ≤ 2γw2(G) − 1 ≤ 2(n + 1) − 1, we derive that the claim is correct. □

Note that Claim 5.2 also implies that γ×2(F 4
n ) = 2n + 1. To see that γt×2(F 4

n ) ≥ 3n + 1 one needs only to observe that for
each vertex u with degree 2 a total double dominating function f of G must assign 1 to each of the neighbors of u. On the
other hand, assigning 1 to all vertices yields a total double dominating function of F 4

n , thus γt×2(F 4
n ) = 3n + 1.

Some of the (not straightforward) values in rows X, Y, Z, W will be proven in Section 5.3 along with the proofs of
unboundedness relations.

5.2. Sharpness of the bounds

The families of graphs used to prove sharpness of the bounds in Table 2 are summarized in Table 5. Most of the required
values for families in Table 5 have already been established in Table 4. In fact, in Table 5 there are only three graph families
whose values have not yet been determined and are used to show the sharpness of bounds (note that the families marked in
bold letters in Table 5 are used to show the non-existence of a function that would bound one parameter with another one).

We start with the family S(K1,n)−, that appears in the entries (1,13) and (4,13) of the table. Note that the corresponding
bounds are γ (G) ≤ γR(G) − 1 and γ{2}(G) ≤ 2γR(G) − 2 for an arbitrary graph G with edges. Recall that the graphs S(K1,n)−
are obtained from the subdivision graph of the star K1,n by deleting a leaf. It is easy to see that γ (S(K1,n)−) = n and
γ{2}(S(K1,n)−) = 2n for n ≥ 3, the main argument being that the closed neighborhoods of the n vertices of degree 1 are
pairwise disjoint. To prove the sharpness of the two bounds it remains to prove the following.

Claim 5.3. For n ≥ 3, γR(S(K1,n)−) = n + 1.

Proof. Note that the function f : V (G) → {0, 1, 2} that assigns 2 to the unique vertex v of degree n, assigns 1 to all vertices
at distance 2 from v, and assigns 0 to all the remaining vertices of S(K1,n)−, is a Roman dominating function of the graph.
γR(K1,n)−) ≤ n + 1. On the other hand, since γ (S(K1,n)−) = n, and since γ (G) ≤ γR(G) − 1 for any graph Gwith an edge (see
Table 2), we infer the claimed result. □

We continue with the subdivision graph S(K2n+1) of the complete graph of odd order 2n+1, which appears in the entries
(2,3) and (2,6). Note that the bounds from the table show that γt (G) ≤

3γw2(G)−1
2 ≤

3γ2(G)−1
2 for any graph G.

Claim 5.4. For n ≥ 2, γw2(S(K2n+1)) = γ2(S(K2n+1)) = 2n + 1 and γt (S(K2n+1)) = 3n + 1.

Proof. Note that the vertex set of S(K2n+1) is given by V ∪
( V
2

)
, where V = V (K2n+1) and

( V
2

)
are the vertices added in

the subdivision of K2n+1. We denote by xuv to the vertex added in the subdivision of the edge uv. Clearly S(K2n+1) is bipartite

with bipartition
{
V ,

( V
2

)}
. On the one hand, V is a 2-dominating set of S(K2n+1), showing that γw2(S(K2n+1)) ≤ γ2(S(K2n+1)) ≤

2n+ 1. On the other hand, we claim that γt (S(K2n+1)) ≥ 3n+ 1. Indeed, suppose to the contrary that D is a total dominating
set of S(K2n+1) with at most 3n vertices. Then either |D∩ V | ≤ 2n− 1 or |D∩

( V
2

)
| ≤ n. In the former case, there exists a pair

u, v ∈ V of distinct vertices not in D, and therefore NS(K2n+1)(xuv) ∩ D = {u, v} ∩ D = ∅. In the latter case, vertices of D ∩
( V
2

)
dominate at most 2n vertices in V , hence there exists a non-dominated vertex in V . In either case, we obtain a contradiction.
Therefore,

3n + 1 ≤ γt (S(K2n+1)) ≤
3γw2(S(K2n+1)) − 1

2
≤

3(2n + 1) − 1
2

= 3n + 1

and equalities hold throughout. □

Finally, the only remaining entries in Table 5 that demonstrate sharpness of the bounds and do not follow from entries
in Table 4 are (13,3) and (13,6). The bounds show that γR(G) ≤ 2γw2(G) − 1 ≤ 2γ2(G) − 1 for any graph G. The sharpness is
demonstrated by the family of graphs Gn = S(K (2)

n ), which are the subdivision graphs of the multigraphs obtained from the
complete graphs by duplicating each edge (see Fig. 4 for an example). On the one hand, the (weak) 2-domination number of
Gn is at most n, since assigning weight 1 to each original vertex of K (2)

n and weight 0 to all other vertices results in a (weak)
2-dominating function of Gn of weight n. On the other hand, we will now show that the Roman domination number of Gn is
at least 2n − 1.

Claim 5.5. For n ≥ 3, γR(S(K
(2)
n )) = 2n − 1.
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Proof. Among all minimum weight Roman dominating functions of Gn, choose one, say f , that minimizes the value of Sf ,
defined as the sum of f -weights of all subdivided vertices. First, we will show that f (s) = 0 for every subdivided vertex s.
Indeed, suppose for a contradiction that f (s) > 0 where s is a subdivided vertex of maximum f -weight. Let s′ be the twin of
s, that is, the vertex s′ ̸= s such that NGn (s

′) = NGn (s), and let t and t ′ be the two (common) neighbors of s and s′ in Gn. We
consider two cases:

• Case 1:
f (s) = 2. Then, f (s′) ≤ 1, since otherwise a Roman dominating function with smaller weight than f could be obtained,
by setting f (s′) = 1.
If both neighbors of s have f -weight 0, then we could obtain a Roman dominating function g of the same weight as f
and such that Sg < Sf by setting g(s) = g(s′) = 0, g(t) = 1, g(t ′) = 2, and g(u) = f (u) for all other vertices u ∈ V (Gn).
This contradicts the choice of f . If both neighbors of s have positive f -weight, then a Roman dominating function with
smaller weight than f could be obtained by setting f (s) = 1, so this case is also impossible.
Hence, we may assume that f (t) = 0 and f (t ′) ∈ {1, 2}. In this case, we could obtain a Roman dominating function
g of the same weight as f and such that Sg < Sf by setting g(s) = 0, g(t) = 2, and g(u) = f (u) for all other vertices
u ∈ V (Gn).

• Case 2:
f (s) = 1. On the one hand, by the choice of s we have f (s′) ∈ {0, 1}. On the other hand, by the minimality of the total
weight of f , f (s′) = 1, for otherwise f (t) = 2 or f (t ′) = 2, and so f (s) could be set to 0 without violating the constraints
of Roman domination. A Roman dominating function g ofweight atmost that of f and such that Sg < Sf can be obtained
by setting g(s) = g(s′) = 0, g(t) = 2, and g(u) = f (u) for all other vertices u ∈ V (Gn). This contradicts the choice of f .

Since f (s) = 0 for every subdivided vertex s, for every pair of original vertices t and t ′, either f (t) = 2 or f (t ′) = 2 (or
both). Hence, at most one original vertex can have weight less than 2. If such a vertex exists, its weight must be 1, hence
γR(Gn) = f (V (Gn)) ≥ 2n − 1. By the above, since γw2(G) ≤ n, we infer that γR(Gn) = 2n − 1. □

By this it is proven that all non-bold entries of Table 5 demonstrate the sharpness of the corresponding bounds from
Table 2.

5.3. Proofs of unboundedness

For the direct proofs of unboundedness of one parameter with respect to another one can use the families of graphs
summarized in Table 5. We will prove in this section the correctness of these examples. As we will elaborate, some of the
unboundedness proofs follow by transitivity, using the bounds in Table 2 and are summarized in Table 3.

While the values for the star K1,n are easy to prove, we can argue the nonexistence of corresponding functions only by
focusing on two parameters, notably γ2 and γt{2}.

Proposition 5.6. There is no function f : N → N such that γ2(G) ≤ f (γt{2}(G)) for every graph G admitting both parameters.

Proof. It is easy to see that γ2(K1,n) = n for n ≥ 2, since the leaves cannot be dominated by a 2-dominating function f from
the outside, i.e., each leaf u must be assigned f (u) = 1. On the other hand, assigning f (v) = 2 to the central vertex, and
f (u) = 2 to one of the leaves, results in a total {2}-dominating function of K1,n, thus γt{2}(K1,n) ≤ 4. □

Since the parameters in columns 1–4, 9, and 13 are bounded from above by a function of γt{2}(G) (see Table 2), we
derive that K1,n is also an example for these invariants compared with γ2. In addition, since the parameters γ×2, γ̃2, γ̃×2
are bounded from below by γ2 (see the diagram on Fig. 1) we infer from both observations that the entries (i, j) from the
subtable {6, 7, 10, 11}× {1, 2, 3, 4, 5, 9, 13} of Table 2, are correct. That is, the family of stars K1,n shows that there does not
exist an upper bound on a parameter ρ in terms of a function of another parameter ρ ′ for all the corresponding pairs (ρ, ρ ′).
Note that this family cannot be used to obtain similar conclusions also for row 12, that is, for the parameter γ̃t×2(G): this
parameter is not finite on the family of stars.

Consider now the graphs Qn, for n ≥ 3, which can be obtained from the multigraph K (n)
2 by replacing each edge with a

path P4 (cf. Fig. 5). These graphs will be used for the proofs of unboundedness in the row 8 of Tables 2 and 4, concerning the
parameter γt×2.

Proposition 5.7. There is no function f : N → N such that γt×2(G) ≤ f (γt{2}(G)) for every graph G admitting both parameters.

Proof. It is easy to see that γt×2(Qn) = 2n + 2. Indeed, if f : V (G) → {0, 1} is a total double dominating function, then for
every vertex of degree 2 both its neighbors must receive f -value 1. This implies that all vertices of Qn must receive value
1. To see that γt{2}(Qn) ≤ 8 for n ≥ 3, consider the function f assigning 2 to both vertices of degree n, and 2 to one of the
neighbors of each of these two vertices. □
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Since the parameters γ , γt , γw2, γ{2}, γ̃w2, γR are all bounded from above by γt{2}, we infer from Proposition 5.7 that
all entries (i, j) from {8} × {1, 2, 3, 4, 5, 9, 13} of Table 2 are correct. In fact, the family of graphs Qn demonstrates the
nonexistence of a function f bounding the corresponding parameters with f (γt×2(G)).

Recall that the graph S(K (n)
3 ) is the subdivision graph of the multigraph K (n)

3 (the multigraph obtained from K3 by adding
n − 1 parallel edges between each pair of vertices; cf. Fig. 5).

Proposition 5.8. There is no function f : N → N such that γ̃2(G) ≤ f (γt×2(G)) for every graph G admitting both parameters.

Proof. The result follows from the correctness of the entries (Y,8) and (Y,10) in Table 4. To see this consider the function
f : V (S(K (n)

3 )) → {0, 1}, which assigns 1 exactly to the three vertices of degree 2n and to three vertices of degree 2, one
from each subdivided parallel edge. Then f is clearly a total double dominating function of the graph, with total weight 6. On
the other hand, note that for n ≥ 3, every rainbow 2-dominating function of S(K (n)

3 ) that assigns the empty set to a vertex
of degree 2n is of total weight at least 2n. Furthermore, in every rainbow 2-dominating function of S(K (n)

3 ) that assigns a
nonempty set to each vertex of degree 2n, at least two vertices of degree 2n receive the same value, hence the neighbors v

of these two vertices must receive a nonempty value. The above arguments imply that γ̃2(S(K
(n)
3 )) ≥ n + 3. □

Since γ2 and γ×2 are bounded from above by γt×2(G), we derive that S(K (n)
3 ) is also an example for these invariants with

respect to γ̃2. In addition, the parameter γ̃×2 is bounded from below by γ̃2 (see the Hasse diagram on Fig. 1), which together
with the previous observation implies that the entries (i, j) from the subtable {10, 11} × {6, 7, 8} of Table 2, are correct. In
fact, the family of graphs S(K (n)

3 ) can be used to demonstrate that there does not exist an upper bound on a parameter ρ in
terms of a function of another parameter ρ ′ for all the corresponding pairs (ρ, ρ ′).

Proposition 5.9. There is no function f : N → N such that γ̃t×2(G) ≤ f (γ̃×2(G)), for every graph G admitting both parameters.

Proof. Recall that Tn, for n ∈ N, is the graph whose vertex set is {v1, . . . , vn, w1, . . . , wn, s1, s2, s3, t1, . . . , t5} and such that
s1, s2, s3 induce a triangle, t1, . . . , t5 induce C5, s1 and s3 are adjacent to vi for every 1 ≤ i ≤ n, t1 and t5 are adjacent to wi
for every 1 ≤ i ≤ n, viwi ∈ E(Tn) for every 1 ≤ i ≤ n, and there are no other edges (see Fig. 6).

Consider h defined as h(s1) = h(t1) = h(t4) = {a}, h(s3) = h(t3) = h(t5) = {b}, and h(v) = ∅ for every other
v ∈ V (Tn). It can be easily checked that h is a rainbow double domination function of Tn, as for every vertex v ∈ V (Tn),
it holds h∪(N[v]) = {a, b}. So γ̃×2(Tn) ≤ 6, and indeed it can be seen that it holds by equality, because s2, t3 and w1 have
disjoint closed neighborhoods.

As for the rainbow total double domination number, where h∪(N(v)) = {a, b} is required for every vertex v ∈ V (Tn),
first note that if a vertex v has degree two in a graph then its two neighbors have to be labeled with different labels. This
implies that in a rainbow total double domination function h of Tn, h(t1) ̸= h(t3) and h(t5) ̸= h(t3), hence h(t1) = h(t5).
So the vertices w1, . . . , wn are missing one label on their open neighborhoods, therefore vertices v1, . . . , vn have to have
a nonempty label, implying γ̃t×2(Tn) ≥ n. Indeed, a rainbow total double domination function h of Tn can be defined as
h(s1) = h(s2) = h(t1) = h(t2) = h(t5) = {a}, h(s3) = h(t3) = h(t4) = h(w1) = {b}, h(vi) = {b} for every 1 ≤ i ≤ n, and
h(wi) = ∅ for every 2 ≤ i ≤ n. It is not hard to see that its weight is minimum possible, so γ̃t×2(Tn) = n + 9. □

Since all the parameters (except of course for γ̃t×2) in graphsG are bounded by a function of γ̃2(G) we infer that the entries
in the row 12 of Table 2 are correct. In fact, the family of graphs Tn demonstrates the nonexistence of a function f bounding
any of the other parameters with f (γ̃t×2(G)).

6. Algorithmic and complexity issues

We now discuss the algorithmic and complexity consequences of the bounds obtained in Section 3 for corresponding
optimization problems. More specifically, we obtain new results regarding the existence of approximation algorithms for
the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split
graphs.

Recall that an algorithmA for aminimization problemΠ is said to be a c-approximation algorithm (where c ≥ 1) if it runs
in polynomial time and for every instance I of Π , we haveA(I) ≤ c ·OPT (I), whereA(I) is the value of the solution produced
byA, given I , and OPT (I) is the optimal solution value, given I . (For more details on complexity and approximation, we refer
to [5,77].) Given a graph G, let ρ(G) denote the optimal value of any of the minimization parameters studied in this paper
(e.g., the domination number of G, the rainbow total double domination number of G, etc.). The corresponding optimization
problem is the following problem: Given a graph G, compute the value of ρ(G). In the case of a c-approximation algorithm
for the above problem, we also require that for each instance G not only an approximation to the optimal value but also a
feasible solution to the problem is computed achieving value at most c ·ρ(G). Note that in the problems relating to any of the
parameters considered in this paper, a feasible solution is a function f with domain V , whose value equals the total weight
f (V ) (see Section 2).

First we recall a simple (folklore) observation that can be useful for transferring both lower and upper bounds regarding
(in)approximability of minimization problems. In order to keep the notation as simple as possible, we keep the presentation
of the result confined to the parameters defined in Section 2, however, the same result clearly applies more generally. For
the sake of completeness, we include the simple proof.
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Proposition 6.1. Let ρ and ρ ′ be any two graph invariants defined in Section 2 and let G be a class of graphs such that there
exist constants c1, c2 > 0 such that for all G ∈ G, we have c1 · ρ(G) ≤ ρ ′(G) ≤ c2 · ρ(G) . Suppose furthermore that there exists
a polynomial time algorithm that for a given graph G ∈ G and a feasible solution f to ρ, computes a feasible solution f ′ to ρ ′

with f ′(V (G)) ≤ c2 · f (V (G)). Then, for every c ≥ 1, if there is a c-approximation algorithm for ρ on graphs in G, then there is
(cc2/c1)-approximation algorithm for ρ ′ on graphs in G.

Proof. Let A be a c-approximation algorithm for ρ on graphs in G. Consider the following algorithm for ρ ′ on graphs in G:

1. Given a graph G ∈ G, run A on G and let fA be the solution produced by A.
2. Compute a feasible solution f ′ to ρ ′ with f ′(V (G)) ≤ c2 · fA(V (G)) using the algorithm that exists by assumption.
3. Return f ′.

Since A is a c-approximation algorithm for ρ on graphs in G, we have fA(V (G)) ≤ cρ(G). It follows that f ′(V (G)) ≤

c2 · fA(V (G)) ≤ c2 · cρ(G) ≤ (c2c/c1)ρ ′(G) , where the last inequality follows from c1ρ(G) ≤ ρ ′(G). As the algorithm clearly
runs in polynomial time, it is a (c2c/c1)-approximation algorithm for ρ ′ for graphs in G. □

Note that all the bounds from Table 2 are of the form ρ ′(G) ≤ cρ(G) − d for some constants c ≥ 1 and d ≥ 0, hence
they immediately imply bounds of the form ρ ′(G) ≤ cρ(G) (for some constant c ≥ 1). Furthermore, it follows from the
proofs of the bounds that all the translations between parameters involving bounds summarized in Table 2 can be efficiently
constructed, in the sense that if ρ ′(G) ≤ cρ(G) is a bound following from bounds in Table 2, then there is a polynomial
time algorithm that, given a graph G = (V , E) and a feasible solution f to ρ, computes a feasible solution f ′ to ρ ′ with
f ′(V ) ≤ c · f (V ).

6.1. Lower bounds

Several hardness and inapproximability results for variants of domination considered in the paper are already known
in the literature. We list here only the strongest results known and an earliest available proof for each of them, making no
attempt to survey the literature regarding hardness of the problems in various graph classes — with the single exception of
the class of split graphs, which naturally appears in many of the underlying proofs. A graph G = (V , E) is said to be split if it
admits a split partition, that is, a pair (C, I) such that C is a clique in G, I is an independent set in G, C ∪ I = V , and C ∩ I = ∅.
Split graphs were introduced by Földes and Hammer in [33], where several characterizations were also given.

Theorem 6.2 (Combining Results from [17,19,60,69]). For every ρ ∈ {γ , γt , γ2, γ×2, γt×2} and every ϵ > 0, there is no
polynomial time algorithm approximating ρ for n-vertex split graphs without isolated vertices within a factor of (1 − ϵ) ln n,
unless NP ⊆ DTIME(nO(log log n)).

The statement of Theorem 6.2 was proved:

(i) for domination and total domination (γ , γt ) by Chlebík and Chlebíková in [17],
(ii) for 2-domination (γ2) by Cicalese et al. [19] (in the more general context of k-domination),
(iii) for double domination (γ×2) by Klasing and Laforest [60] (in the more general context of k-tuple domination),
(iv) for total double domination (γt×2) independently by Pradhan [69] and by Cicalese et al. [19] (in both cases in themore

general context of k-tuple domination).

Only the results by Chlebík and Chlebíková were mentioned explicitly for split graphs. However, since the corresponding
reductions from [19,60,69] are performed from either domination or total domination by simply adding a number of
universal vertices to the input graph, all of the above results also hold for split graphs.

The basis of the inapproximability results from [17,19,60,69] summarized in Theorem 6.2 is the analogous result due to
Feige for the well-known Set Cover problem: Given a set system (S,F) where S is a finite set (also called a ground set) and
F is a family (multiset) of subsets of S, find a smallest set cover of F , that is, a sub-collection F ′

⊆ F such that
⋃

F ′
= S

(that is, such that every element of S appears in some member of F ′).

Theorem 6.3 (Feige [30]). For every ϵ > 0, there is no polynomial time algorithm approximating Set Cover within a factor of
(1 − ϵ) ln n (where n is the size of the ground set), unless NP ⊆ DTIME(nO(log log n)).

In 2014, Dinur and Steurer improved Feige’s inapproximability result by weakening the hypothesis to P ̸= NP.

Theorem 6.4 (Dinur and Steurer [24]). For every ϵ > 0, there is no polynomial time algorithm approximating Set Cover within
a factor of (1 − ϵ) ln n, unless P = NP.

An essential fact in proving the bounds from Theorem 6.2 is that the instances of Set Cover arising in Feige’s construction
are such that ln(|S| + |F|) ≈ ln|S|, that is, the ratio ln(|S| + |F|)/ln|S| can be assumed to be arbitrarily close to 1. This is
also true for the instances of arising in the construction proving Theorem 6.4. Consequently, Theorem 6.2 can be improved
as follows:
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Theorem 6.5. For every ρ ∈ {γ , γt , γ2, γ×2, γt×2} and every ϵ > 0, there is no polynomial time algorithm approximating ρ for
n-vertex split graphs without isolated vertices within a factor of (1 − ϵ) ln n, unless P = NP.

In particular, the above results imply that the decision variants of the corresponding optimization problems are NP-
complete.

We are not aware of inapproximability results for any of the invariants ρ ∈ {γR, γw2, γ{2}, γt{2}, γ̃2, γ̃w2, γ̃×2, γ̃t×2}. (Recall
that invariants γ̃2, γ̃×2, and γ̃t×2 are, to the best of our knowledge, considered for the first time in this paper.) The following
NP-completeness results for some of these parameters are available in the literature:

• The NP-completeness of Roman domination (γR) was proved by Dreyer in [28]. (The problem was already claimed to
be NP-complete in [20], referring to a private communication with A.A. McRae.)

• The weak 2-domination (γw2) and the rainbow weak 2-domination (γ̃w2) problems were proved NP-complete by
Brešar and Kraner Šumenjak in [10].

• The NP-completeness of {2}-domination (γ{2}) was proved by Gairing et al. in [36] (in the more general context of
{k}-domination).

• The NP-completeness of rainbow double domination (γ̃×2(G); for graphs without isolated vertices) follows from the
analogous result due to Hedetniemi et al. [49] for disjoint domination (cf. Proposition 2.1).

We are not aware of any published hardness results about total {2}-domination (γ{2}).
In the rest of this subsection, we strengthen the above NP-completeness results by showing that all the domination

parameters studied in this paper, except for the rainbow total double domination number, admit an inapproximability bound
of the form Ω(ln n) for n-vertex split graphs, unless P = NP. Before doing that, we show that for the rainbow total double
domination number (γ̃t×2; recall that this is the topmost parameter in the diagram in Fig. 2), the situation is even worse. We
say that a graph G is γ̃t×2-feasible if γ̃t×2(G) is finite (cf. Proposition 2.2 on p. 10).

Theorem6.6. There is no polynomially computable function f such that there exists an f (n)-approximation algorithm for rainbow
total double domination on n-vertex γ̃t×2-feasible split graphs, unless P = NP.

Proof. Suppose for a contradiction that there exists a polynomially computable function f such that there exists an f (n)-
approximation algorithm for rainbow total double domination on n-vertex γ̃t×2-feasible split graphs. Wewill show that this
implies P = NP, by designing a polynomial time algorithm for the NP-complete Hypergraph 2- Colorability problem [41],
which asks whether a given hypergraph is 2-colorable. A hypergraph H is a pair (V , E) where V is a finite set and E is a set
of subsets of V . A hypergraph is said to be 2-colorable if its vertex set V admits a partition into two independent sets A and
B, where a set X ⊆ V is independent if it does not contain any hyperedge e ∈ E . We may assume that |A| ≥ 2 and |B| ≥ 2 in
every partition as above since otherwise the problem can be solved in polynomial time.

Given an input H = (V , E) to the Hypergraph 2- Colorability problem, construct the split graph G = (V ′, E) with split
partition (C, I) where C = V , I = E , and there is an edge in G between v ∈ C and e ∈ I if and only if v ∈ e. Clearly, G can be
constructed from H in polynomial time.

We claim that H is 2-colorable if and only if G is γ̃t×2-feasible. First, suppose that H is 2-colorable, and let {A, B} be a
partition of V into two independent sets. Then, the function g : V (G) → {∅, {a}, {b}} defined by

g(v) =

{
{a}, if v ∈ A;
{b}, if v ∈ B;
∅, otherwise.

is a rainbow total double dominating function ofG. Indeed, the assumption |A| ≥ 2 and |B| ≥ 2 implies that g∪(N(v)) = {a, b}
for all v ∈ C , while the fact that A and B are both independent in H implies that g also dominates vertices in I . It
follows that G is γ̃t×2-feasible. Conversely, suppose that G is γ̃t×2-feasible, with a rainbow total double dominating function
g : V (G) → {{a}, {b}, ∅}. Modify g if necessary by setting g(v) = {a} for every v ∈ C with g(v) = ∅; clearly, the so
obtained function is still a rainbow total double dominating function of G. Moreover, the sets A = {v ∈ V : g(v) = a} and
B = {v ∈ V : g(v) = b} form a partition of V , the vertex set of H. Since g∪(N(v)) = {a, b} for all v ∈ I , each of the sets A and
B is independent in H, and thus H is 2-colorable.

Now, let n = |V ′
|, and let A be an f (n)-approximation algorithm for rainbow total double domination on n-vertex γ̃t×2-

feasible split graphs. We know that A computes a rainbow total double dominating function on γ̃t×2-feasible split graphs,
but if the input graph is not of this form, there is no guarantee about whatA computes or whether it even halts. By definition
A runs in polynomial time on n-vertex γ̃t×2-feasible split graphs, say its running time is bounded by a polynomial p(n).

The polynomial time algorithm that decides whether H is 2-colorable goes as follows.

1. Construct the split graph G as specified above.
2. Compute n = |V (G)| and f (n), and let A be an f (n)-approximation algorithm for rainbow total double domination on

n-vertex γ̃t×2-feasible split graphs.
3. Run A on G for at most p(n) steps.
4. If A did not compute anything, then G is not γ̃t×2-feasible. We conclude that H is not 2-colorable.
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5. If A computed something, then check whether what it computed is a rainbow total double dominating function on G.
If it is, then G is γ̃t×2-feasible, and we conclude thatH is 2-colorable. (In this case we also have that the total weight of
the computed function is at most f (n)γ̃t×2(G), but we will not need this fact.)
If it is not, then G is not γ̃t×2-feasible, and we conclude that H is not 2-colorable.

It is clear that the algorithm runs in polynomial time. Its correctness follows from the correctness ofA and from the fact that
H is 2-colorable if and only if G is γ̃t×2-feasible. Thus, the above algorithm efficiently solves the NP-complete Hypergraph
2- Colorability problem, implying that P = NP. This completes the proof. □

We now turn out attention to the remaining parameters. Proposition 6.1 and the discussion following it show that in
order to prove an inapproximability bound of the form Ω(ln n) for each of the remaining considered parameters, namely
ρ ∈ {γw2, γ{2}, γt{2}, γR, γ̃2, γ̃w2, γ̃×2}, it suffices to show an inapproximability bound of the same type for just one parameter
in each of the bottom three equivalence classes in the diagram of Fig. 2. Asmentioned above, such bounds already exist, even
for the class of split graphs, for any ρ ∈ {γ , γt , γ2, γ×2, γt×2}, which takes care of the invariants appearing in the bottom two
equivalence classes in Fig. 2. We summarize this in the following theorem.

Theorem 6.7. For every ρ ∈ {γw2, γ{2}, γt{2}, γR, γ̃w2, γ̃{2}, γ̃t{2}} and every ϵ > 0, there is no polynomial time algorithm
approximating ρ for n-vertex split graphs without isolated vertices within a factor of (1/2 − ϵ) ln n, unless P = NP.

Proof. Recall from Section 3 that for every graph G without isolated vertices, we have γ (G) ≤ γw2(G) ≤ γ̃w2(G) ≤ γR(G) ≤

γ̃{2}(G) = 2γ (G) and γt (G) ≤ γ{2}(G) ≤ γt{2}(G) ≤ γ̃t{2}(G) = 2γt (G) . Thus, the theorem follows from the inapproximability
bound for domination (resp., total domination), see Theorem 6.5, the above inequalities, and Proposition 6.1. We prove the
statement formally only for the weak 2-domination number (γw2); the proofs for the other parameters are analogous.

Let G be the class of split graphs without isolated vertices and suppose that there is some ϵ > 0 such that there is
a polynomial time algorithm approximating the weak 2-domination number on n-vertex graphs in G within a factor of
(1/2 − ϵ) ln n. For every graph G, we have 1

2γw2(G) ≤ γ (G) ≤ γw2(G). Moreover, for every weak 2-dominating function f of
G, the set {v ∈ V (G) : f (v) > 0} is a dominating function of G of weight at most f (V (G)). Therefore, Proposition 6.1 applies
with c1 = 1/2, c2 = 1, and hence there is a polynomial time algorithm approximating the domination number on n-vertex
graphs in G within a factor of (1 − 2ϵ) ln n. By Theorem 6.5, this is only possible if P = NP. □

We also explicitly state the following consequence of Theorem 6.7 for total {2}-domination (γt{2}), which does not seem
to be yet available in the literature.

Corollary 6.8. The decision version of the total {2}-domination problem is NP-complete.

The remaining equivalence class from Fig. 2 contains two parameters, namely rainbow 2-domination (γ̃2) and rainbow
double domination (γ̃×2). Using a reduction from Set Cover, we now prove the inapproximability bounds for the rainbow
2-domination (γ̃2) and the rainbow double domination (γ̃×2) problems in split graphs. As discussed above, it would suffice
to prove a bound for only one of the two parameters. We give a direct proof for both parameters, since with almost no
additional work, we save a multiplicative factor of 2 in one of the two bounds compared to the bounds we would obtain
using the above approach.

Theorem 6.9. For every ρ ∈ {γ̃2, γ̃×2} and every ϵ > 0, there is no polynomial time (1 − ϵ) ln n-approximation algorithm for
computing ρ on n-vertex split graphs, unless P = NP.

Proof. Fix ρ ∈ {γ̃2, γ̃×2} and suppose for some ϵ > 0, there is a polynomial time (1 − ϵ) ln n-approximation algorithm, say
A, for computing ρ on n-vertex split graphs.

Let J = (S,F) be an instance to the Set Cover problem. First, note that we may assume that

ln 3 + ln(|S| + |F|) ≤ (1 + ϵ/2) ln(|S| + |F|) ≤ (1 + ϵ) ln|S| . (2)

Indeed, if the first inequality above is violated, then ln(|S| + |F|) is bounded by 2 ln 3/ϵ and the problem can be solved in
constant time. The second inequality follows from the fact that the ratio ln(|S| + |F|)/(ln|S|) can be made arbitrarily close
to 1 (as remarked right after Theorem 6.4).

Consider the split graph GJ = (V , E) with split partition (C, I) where C = A ∪ B with A = {aF | F ∈ F}, B = {bF | F ∈ F},
I = S1 ∪ S2 ∪ S3 with Sj = {sj : s ∈ S} for j ∈ {1, 2, 3}, and there is an edge between Fi for i ∈ {a, b}, F ∈ F and sj ∈ Sj for
j ∈ {1, 2, 3}, s ∈ S if and only if s ∈ F .

Graph GJ has 3|S|+2|F| ≤ 3(|S|+ |F|) ≤ |S|1+ϵ vertices and can be computed in polynomial time from J . Let OPT denote
the minimum size of a set cover for F . First, we prove the following claim.
Claim: γ̃2(GJ ) = γ̃×2(GJ ) = 2 · OPT .

Proof of claim. The inequality γ̃2(GJ ) ≤ γ̃×2(GJ ) always holds (see Table 2). Thus, it remains to prove γ̃×2(GJ ) ≤ 2 · OPT and
2 · OPT ≤ γ̃2(GJ ).
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We first prove that γ̃×2(GJ ) ≤ 2 · OPT . First, let F ′ be a minimum set cover for F . Consider the function f : V (GJ ) →

{∅, {a}, {b}} defined as follows:

f (v) =

{
{a}, if v = aF ∈ A and F ∈ F ′;
{b}, if v = bF ∈ B and F ∈ F ′;
∅, otherwise.

Clearly, f (V (GJ )) = 2|F ′
| = 2 · OPT . Thus, to prove that γ̃×2(GJ ) ≤ 2 · OPT , it suffices to check that f is a rainbow double

dominating function of GJ , that is, that f∪(N[v]) = {a, b} holds for all v ∈ V . If v ∈ I , then v = sj for some s ∈ S and some
j ∈ {1, 2, 3}. There exists some F ∈ F ′ with s ∈ F . This implies that aF and bF are adjacent to sj in GJ , and by construction
these two vertices are labeled {a} and {b}, respectively. If v ∈ C , then we have either f (v) = {a} or f (v) = {b} or f (v) = ∅.
If f (v) = {a} then since C is a clique, any vertex bF with F ∈ F ′ is a neighbor of v labeled {b}. The case when f (v) = {b} is
symmetric. Finally, if f (v) = ∅, then we similarly observe that v is adjacent to both a vertex of the form aF and a vertex of
the form bF (with F ∈ F ′). It follows that f is a rainbow {2}-dominating function of GJ , which implies γ̃×2(GJ ) ≤ 2 · OPT .

Now, we prove that OPT ≤ γ̃2(GJ )/2. Let f : V (GJ ) → {∅, {a}, {b}} be a minimum rainbow 2-dominating function. We
therefore have f∪(N(v)) = {a, b} for all v ∈ V (GJ ) with f (v) = ∅. First, we will show that we have f (v) = ∅ for all v ∈ I .
Suppose for a contradiction that f (v) ̸= ∅ for some v ∈ I . By minimality of f , the function obtained by relabeling v to ∅ is
not a rainbow 2-dominating function of GJ , which implies that v does not have both labels {a} and {b} in its neighborhood.
Assume that a ̸∈ f∪N(v) (the other case is symmetric). Let s ∈ S and j ∈ {1, 2, 3} be such that v = sj. Then a ̸∈ f∪N(u) for
all u ∈ {s1, s2, s3}, which implies that f (sj) ̸= ∅ for all j ∈ {1, 2, 3}. Let F ∈ F such that s ∈ F , and consider the function
f ′ obtained from f by relabeling each of sj to ∅, and by setting f ′(aF ) = {a} and f ′(bF ) = {b} (and leaving all other values
unchanged). It is easy to see that f ′ is a rainbow 2-dominating function of smaller total weight than f . This is a contradiction
with the minimality of f and proves that f (v) = ∅ for all v ∈ I . This assumption implies that every v ∈ I has both labels {a}
and {b} in its neighborhood.

The minimality of f implies that for every F ∈ F , at most one of aF and bF gets label {a}. (If both aF and bF would get
label {a}, then replacing one of them with ∅ would result in a rainbow 2-dominating function of GJ of smaller total weight
than f .) Similarly, at most one of aF and bF gets label {b}. Also, by the symmetry of the construction, we may assume that
if one of aF and bF gets label {a}, then f (aF ) = {a}, and that if one of aF and bF gets label {b}, then f (bF ) = {b}. Thus,
A′

= {v ∈ C : f (v) = {a}} and B′
= {v ∈ C : f (v) = {b}} satisfy A′

⊆ A and B′
⊆ B. Without loss of generality assume that

|A′
| ≤ |B′

|. We claim that F ′
= {F ∈ F : aF ∈ A′

} is a set cover of F . Indeed, if s ∈ S, then the fact that s1 ∈ I and every vertex
in I has label {a} in its neighborhood implies that there is a vertex aF ∈ N(s1) such that f (aF ) = {a}, in other words aF ∈ A′,
which implies that s ∈ F (since aF ∈ N(s1)) and F ∈ F ′ (since aF ∈ A′). Since F ′ is a set cover of F , it follows that

OPT ≤ |F ′
| = |A′

| ≤
|A′

| + |B′
|

2
=

f (V (GJ ))
2

=
γ̃2(GJ )

2
.

This completes the proof of the claim. ▲

Nowwe can complete the proof of the theorem. Recall thatA is a polynomial time (1 − ϵ) ln n-approximation algorithm
for computing ρ on n-vertex split graphs. Using A, we can design an approximation algorithm for Set Cover, transforming
an instance J = (S,F) to the split graph GJ , computing an approximate solution f to ρ on GJ , and returning the corresponding
set cover F ′ obtained from f as in the above proof of the claim. Letting n = |V (GJ )|, we can bound the size of F ′ from above
as

|F ′
| ≤ f (V (GJ ))/2 (by the above proof of the claim)

≤ (1 − ϵ)(ln n)ρ(GJ )/2 (since fwas computed using the
(1 − ϵ) ln n − approximation algorithmA)

≤ (1 − ϵ) ln(3(|S| + |F|))OPT (since n ≤ 3(|S| + |F|) andρ(GJ ) = 2 · OPT )
≤ (1 − ϵ)(1 + ϵ)(ln|S|)OPT (by(2))
≤ (1 − ϵ2)(ln|S|)OPT .

Therefore, there exists a polynomial time algorithm that computes a (1 − ϵ2) ln|S|-approximation to Set Cover. By
Theorem 6.4, this is only possible if P = NP. □

6.2. Upper bounds

The following theorem summarizes the upper bounds on approximability of domination parameters considered in this
paper available in the literature:

Theorem 6.10 (Combining Results from [19,25,60,69]).

1. For each ρ ∈ {γ , γ×2}, there is a (ln(∆(G) + 1) + 1)-approximation algorithm for ρ.
2. For each ρ ∈ {γt , γt×2}, there is a (ln(∆(G)) + 1)-approximation algorithm for ρ.
3. For each ρ ∈ {γ2, γw2}, there is a (ln(∆(G) + 2) + 1)-approximation algorithm ρ.
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The result for domination and total domination follows from the fact that these two problems can be easily modeled as
special cases of Set Cover. It is well known that a simple greedy algorithm for Set Cover produces a solution that is always
within a factor ln∆ + 1 of the optimum, where ∆ is the maximum size of a set in F [25]. As proved independently by
Dobson [25] and by Klasing and Laforest [60], the same is true for the more general problem in which the task is to find a
minimum size subcollection F ′

⊆ F such that every element s appears in at least k sets in F ′ (Dobson’s result is in fact more
general: each vertex can have a different coverage requirement). In turn, this implies the above-mentioned approximation
results for double domination (γ×2) and total double domination (γt×2); see [19,60,69]. The result for 2-domination (γ2)
can be obtained with a straightforward modification of the proof of [19, Theorem 3]. That result gives an approximation
algorithm for the more general problem called vector domination (in which one seeks a small subset S of vertices of a graph
such that any vertex outside S has at least a prescribed number of neighbors in S), using a reduction to the so-calledMinimum
Submodular Cover problem and applying a result of Wolsey [78].

Without trying to optimize the obtained approximation ratios, let us simply note that Theorem 6.10 and a similar
approach to that used in the proof of Theorem 6.7 implies the following result.

Theorem 6.11. For every ρ ∈ {γ{2}, γt{2}, γ̃w2, γR, γ̃{2}, γ̃t{2}}, there is a 2(ln(∆(G) + 2) + 1)-approximation algorithm for ρ.

To the best of our knowledge, these are the first results regarding approximation algorithms for any of these parameters.
Development of approximation algorithms for rainbow 2-domination and rainbow double domination remains an open
question.

We conclude with the following related questions, which we leave for future research:

• Can the factors 1/2−ϵ in the inapproximability bounds from Theorem 6.7 be improved to 1−ϵ? Possible approaches
to this question include a development of direct reductions from Set Cover and a study of the inequalities relating
the relevant parameters in the class of split graphs.

• Can the approximation ratios given by Theorem 6.11 be further improved?
• The only known inapproximability bound for the rainbow 2-domination and rainbow double domination problems

are those given by Theorem 6.9, and no nontrivial approximation algorithms for these two problems are known. It
would be interesting to settle the (in-)approximability status of these two problems. The case of the rainbow double
domination number γ̃×2(G) of a graph G without isolated vertices is particularly interesting, because the parameter
coincides with the previously studied disjoint domination number γ γ (G) (cf. Proposition 2.1).
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