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1. Introduction

A graph G = (V, E), or simply G, consists of a nonempty set V of vertices and 
a set E of edges, formed by 2-element subsets of V . We will consider graphs without 
multiple edges and without loops. Let G be a connected graph on n vertices with vertex 
set V = {v1, . . . , vn}. The distance between vertices vi and vj , denoted d(vi, vj), is the 
number of edges of a shortest path from vi to vj . The distance matrix of G, denoted 
D(G), is the n × n symmetric matrix having its (i, j)-entry equal to d(vi, vj). We also 
use di,j to denote d(vi, vj).

The distance matrix has been widely studied in the literature. The interest in this 
matrix was motivated by the connection with a communication problem (see [3,5] for 
more details). In an early article, Graham and Pollack [3] presented a remarkable result, 
proving that the determinant of the distance matrix of a tree T on n vertices only de-
pends on n, being equal to (−1)n−1(n− 1)2n−2. This result was generalized by Graham, 
Hoffman, and Hosoya in 1977 [4], who proved that, for any graph G, the determinant of 
D(G) depends only on the blocks of G (see Theorem 2).

In 2005, more than 30 years after the result of Graham and Pollack on trees, Bapat, 
Kirkland and Neumann [1] exhibited a formula for the determinant of the distance matrix 
of a unicyclic graph (see Theorem 1).

For a bicyclic graph, the determinant can be easily computed in the case where the 
cycles have no common edges, since its blocks are edges and cycles. In a conference 
article [2], we presented some advances for the remaining cases; i.e., when the cycles 
share at least one edge. In addition, we conjectured the formula for the remaining cases. 
In the present article, we completely solve these conjectures, extending the formula of 
the determinant of D(G) to graphs G having bicyclic blocks as well as trees and unicyclic 
blocks.

This paper is organized as follows. In Section 2 we present some basic notations, 
preliminary results, and we briefly describe previous results in connection with the 
determinant of the distance matrix of a bicyclic graph. In Section 3 we examine the de-
terminant of the distance matrix for special classes of bicyclic graphs, namely θ-graphs, 
whose definition is stated in Section 2, and also the determinant of a θ-graph attached 
to a path. In Theorem 5, we present a formula for the determinant of a graph where 
each block is generated from a tree by the addition of at most two edges (graphs with 
blocks at most bicyclic).

2. Definitions and preliminary results

A tree is a connected acyclic graph. A unicyclic graph is a connected graph with as 
many edges as vertices. The path and the cycle on n vertices are denoted by Pn and Cn, 
respectively.

The determinant and the sum of all cofactors of the distance matrix of a cycle are 
already known. Recall that, for any square matrix A, the cofactor ci,j is defined as 
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(−1)i+j times the determinant of the submatrix obtained by deleting its ith row and jth 
column. Let cof(A) =

∑
i,j ci,j be the sum of the cofactors of A.

Lemma 1 ([1,7]). For each n ≥ 3:

• if n is odd, detD(Cn) = (n2 − 1)/4 and cof D(Cn) = n;
• if n is even, detD(Cn) = 0 and cof D(Cn) = 0.

In [1], the determinant of D(G) was obtained when G is a unicyclic graph.

Theorem 1 ([1]). Let G be a unicyclic graph consisting of a cycle of length l plus m edges 
outside the cycle. If l is even, then detD(G) = 0; otherwise:

detD(G) = (−2)m l2 + 2ml − 1
4 .

A cut-vertex of a connected graph is a vertex whose removal disconnects the graph. 
A block of a graph G is a maximal connected subgraph of G having no cut-vertices. A 
block is a connected graph having no cut-vertices.

In [4], it was proved that, if the blocks of a graph G are G1, G2, . . . , Gk, then detD(G)
depends only on detD(G1), detD(G2), . . . , detD(Gk) and cof D(G1), cof D(G2), . . . ,
cof D(Gk).

Theorem 2 ([4]). If G is a connected graph whose blocks are G1, G2, . . . , Gk, then

detD(G) =
k∑

i=1
detD(Gi)

∏
j∈{1,2,...,k}−{i}

cof D(Gj)

and

cof D(G) =
k∏

i=1
cof D(Gi).

A cactus is a connected graph in which any two cycles have at most one vertex in 
common. By definition, every unicyclic graph is a cactus. Moreover, each block of a 
cactus on at least two vertices is either an edge or a cycle. As detD(G) depends only on 
the blocks of G and detD and cof D are known for an edge and for the cycles, we obtain 
the next corollary as an immediate consequence of Lemma 1 and Theorem 2.

Corollary 1. Let G be a connected cactus having precisely c cycles whose lengths are 
l1, l2, . . . , lc plus m other edges outside these cycles.

• If at least one of l1, l2, . . . , lc is even, then detD(G) = 0.
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Fig. 1. θ(2, 3, 4).

• Otherwise (i.e., if all of l1, l2, . . . , lc are odd),

detD(G) = (−2)m
(

c∏
i=1

li

)(
m

2 +
c∑

i=1

l2i − 1
4li

)
.

A bicyclic graph is a graph obtained by adding an edge to a unicyclic graph. The 
special case of c = 2 in the formula of the corollary above was also obtained in [6] by 
alternative means, corresponding to a special class of bicyclic graphs.

As detD for all cacti is known, in order to find detD for all bicyclic graphs, it is 
enough to find detD and cof D for bicyclic blocks.

Definition 1. Let Pl+1, Pp+1, Pq+1 be three vertex disjoint paths, l ≥ 1 and p, q ≥ 2, each 
of them having endpoints, vl1, vl2, v

p
1 , v

p
2 , v

q
1, v

q
2, respectively. We denote by θ(l, p, q)-graph, 

or simply θ-graph, the graph obtained by identifying the vertices vl1, v
p
1 , v

q
1 as one vertex, 

and proceeding in the same way for vl2, v
p
2 , v

q
2 (see Fig. 1).

Note that θ(l, p, q)-graph is a bicyclic graph, with no pendant vertex, whose cycles 
share at least one edge. In [2], we proved the following results:

Proposition 1 ([2, Lemma 3.1]). For every positive integer k,

detD(θ(2, 2, 2k + 1)) = 4(k2 + k − 1).

Proposition 2 ([2, Lemma 3.2]). Let G be one of the graphs below:

• θ(1, 2k − 1, 2k − 1), for k ≥ 2;
• θ(2, 2, 2k − 2), for k ≥ 3;
• θ(l, p, q), for l ≥ 2, p ≥ 3, and q ≥ 3.

Then detD(G) = 0.

3. Bicyclic graphs

The next theorem yields the determinant of D(G) when G = θ(l, p, q), completing the 
remaining cases in [2].
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Fig. 2. θ(1, 2, 2k).

Theorem 3. Let G = θ(l, p, q). The following assertions hold:

(a) If G = θ(1, p, q) for even integers p and q, then detD(G) = −(p+q)2
4 .

(b) If G = θ(2, 2, 2), then detD(G) = −16.
(c) If G = θ(2, 2, q) for some odd integer q > 1, then detD(G) = q2 − 5.
(d) Otherwise, detD(G) = 0.

Proof. Items (c) and (d) correspond to Proposition 1 and Proposition 2 of [2], respec-
tively. Item (b) can be computed directly. The proof of case (a) will be divided in the 
following 2 cases:

Case 1: Let G = θ(1, 2, 2k), for some k ≥ 1, with its vertices labeled as in Fig. 2. The 
distance matrix of θ(1, 2, 2k) is

D(θ(1, 2, 2k)) =
(

0 vt

v D(C2k+1)

)
,

where D(C2k+1) is the distance matrix of the cycle induced by the vertices v2, . . . , v2k+2
and vt = (1, 2, . . . , k, k + 1, k, . . . , 2, 1).

From [1], we know that

D(C2k+1)−1 = −2I − Ck − Ck+1 + 2k + 1
k(k + 1)J, (1)

and detD(C2k+1) = k(k + 1), where J is the all ones matrix, with appropriate size, and 
C is the cyclic permutation matrix of order 2k+1 having Ci,i+1 = 1 for i = 1, . . . , 2k+1, 
taking indices modulo 2k + 1. We have that

D(θ(1, 2, 2k))−1 = M t
1M2M1, (2)

where

M1 =
(

1 −vtD(C2k+1)−1

0 I

)
,

M2 =
(

(−vtD(C2k+1)−1v)−1 0
0 D(C2k+1)−1

)
,
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Fig. 3. θ(1, 2s, 2k).
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Fig. 4. θ(1, 2(s − 1), 2(k + 1)).

and

detD(θ(1, 2, 2k)) = detM−1
2 = −vtD(C2k+1)−1v detD(C2k+1)

= −vtD(C2k+1)−1v k(k + 1). (3)

Now, we will calculate vtD(C2k+1)−1v. Using (1) we obtain

vtD(C2k+1)−1v = −2vtv − vtCkv − vtCk+1v + 2k + 1
k(k + 1)v

tJv

= −4
k∑

i=1
i2 − 2(k + 1)2 − 2

k∑
i=1

i(k + 1 − i)

−2
k+1∑
i=1

i(k + 2 − i) + 2k + 1
k(k + 1)(k + 1)4 (4)

= −2
k∑

i=1
i(k + 1) − 2

k+1∑
i=1

i(k + 2) + (2k + 1)(k + 1)3

k

= −k(k + 1)2 − (k + 1)(k + 2)2 + (2k + 1)(k + 1)3

k
= k + 1

k
.

Combining this result with (3), we deduce that

detD(θ(1, 2, 2k)) = −(k + 1)2 = − (2k + 2)2

4 = −n2

4 , (5)

with n = p + q, where p = 2 and q = 2k.

Case 2: Let H = θ(1, 2s, 2k) and G = θ(1, 2(s − 1), 2(k + 1)), for some k ≥ 2 and s ≥ 2, 
with its vertices labeled as in Fig. 3 and Fig. 4, respectively.
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The distance matrices of G and H are

D(G) =
(
P At

A P

)
and D(H) =

(
P Bt

B P

)
,

where

P =
k+s∑
i=1

k+s∑
j=1

|i− j| eietj , (6)

is the distance matrix of Pk+s (the path on k + s vertices), and ei denotes a vector 
having an entry equal to 1 on the i-th coordinate and 0’s in the remaining coordinates. 
Moreover,

Bt =
k+s∑
j=1

(k + s + 1 − j)e1e
t
j +

k+s∑
i=2

(k + s + 1 − i)eiet1

+
s+1∑
i=2

k+1∑
j=2

(s + k + 3 − j − i)eietj +
s+k∑

i=s+2

k+s∑
j=k+2

(j + i− s− k − 1)eietj

+
s+1∑
i=3

s eie
t
i+k−1 +

s+1∑
i=2

k+s∑
j=k+2

j �=i+k−1

|r2s+1(1 − k + j − i) − s− 1|eietj

+
s+k∑

i=s+2
k eie

t
i−s +

s+k∑
i=s+2

k+1∑
j=2

j �=i−s

|r2k+1(s + j − i) − k − 1|eietj (7)

and

At =
k+s∑
j=1

(k + s + 1 − j)e1e
t
j +

k+s∑
i=2

(k + s + 1 − i)eiet1

+
s∑

i=2

k+2∑
j=2

(s + k + 3 − j − i)eietj +
s+k∑

i=s+1

k+s∑
j=k+3

(j + i− s− k − 1)eietj

+
s∑

i=3
(s− 1) eie

t
i+k +

s∑
i=2

k+s∑
j=k+3
j �=i+k

|r2s−1(j − k − i) − s|eietj

+
s+k∑

(k + 1) eie
t
i−s+1
i=s+1
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+
s+k∑

i=s+1

k+2∑
j=2

j �=i−s+1

|r2k+3(s + j − i− 1) − k − 2|eietj , (8)

where rα(β) represent the remainder when integer β is divided by α.
It is easy to see that P is invertible and

P−1 = − k + s− 2
2(k + s− 1) e1e

t
1 −

k + s− 2
2(k + s− 1) ek+se

t
k+s −

k+s−1∑
i=2

eie
t
i

+
k+s−1∑
i=1

1
2 eie

t
i+1 +

k+s∑
i=2

1
2 eie

t
i−1

+ 1
2(k + s− 1) e1e

t
k+s + 1

2(k + s− 1) ek+se
t
1.

We define

N :=
(

I 0
(A−MB)P−1 M

)
,

where

M := e1e
t
1 + e2e

t
k+1 − e2e

t
k+s +

k+s∑
i=2

eie
t
i−1.

We claim that

D(G) = N ·D(H) ·N t. (9)

Indeed, it is easy to see that

N ·D(H) ·N t =
(
P At

A P̂

)
,

where

P̂ = A P−1 (At −BtM t) + (A−MB) P−1 Bt M t + M P M t.

Hence, it is sufficient to prove that P̂ = P . We first compute M P M t. Since
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M t = e1e
t
1 + ek+1e

t
2 − ek+se

t
2 +

k+s∑
i=2

ei−1e
t
i,

M P =
k+s∑
j=1

(j − 1) e1e
t
j +

k+s∑
j=1

(|k + 1 − j| + 2j − 1 − k − s) e2e
t
j

+
k+s∑
i=3

k+s∑
j=1

|i− 1 − j| eietj

and

M P M t = (1 − s) e2e
t
1 + (1 − s) e1e

t
2 + 4(1 − s) e2e

t
2 (10)

+
k+s∑
i=3

(i− 2) eie
t
1 +

k+s∑
j=3

(j − 2) e1e
t
j

+
k+s∑
j=3

(|k + 2 − j| + 2j − 3 − k − s) e2e
t
j

+
k+s∑
i=3

(|k + 2 − i| + 2i− 3 − k − s) eie
t
2

+
k+s∑
i=3

k+s∑
j=3

|i− j| eietj .

We continue obtaining At −BtM t. Multiplying Bt and M t we obtain

BtM t = Bte1e
t
1 + Btek+1e

t
2 −Btek+se

t
2 +

k+s∑
i=2

Btei−1e
t
i,

that is,

BtM t =
k+s∑
i=1

(k + s + 1 − i)eiet1 + (k + 2s− 1)e1e
t
2 +

k+s∑
j=3

(k + s + 2 − j)e1e
t
j

+
s∑

i=2
(k + 2s + 3 − 3i)eiet2 +

k+s∑
i=s+1

(k + 2 − i)eiet2

+
s+1∑
i=2

k+2∑
j=3

(s + k + 4 − j − i)eietj +
s+k∑

i=s+2

k+s∑
j=k+3

(j + i− s− k − 2)eietj

+
s∑

i=3
s eie

t
i+k +

s+1∑
i=2

k+s∑
j=k+3

|r2s+1(j − i− k) − s− 1|eietj

j �=i+k
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+
s+k∑

i=s+2
k eie

t
i−s+1 +

s+k∑
i=s+2

k+2∑
j=3

j �=i−s+1

|r2k+1(s + j − i− 1) − k − 1|eietj .

From this, we deduce that

At −BtM t =
s∑

i=1
(2i− 2 − s)eiet2 +

s+k∑
i=s+1

s eie
t
2 +

s+k∑
i=s+1

k+s∑
j=3

eie
t
j −

s∑
i=1

k+s∑
j=3

eie
t
j .

It follows that

P−1(At −BtM t) =
(
− k + s− 2

2(k + s− 1) e1e
t
1 + 1

2 e1e
t
2 + 1

2(k + s− 1) e1e
t
k+s

+
k+s−1∑
i=2

1
2 eie

t
i+1 −

k+s−1∑
i=2

eie
t
i +

k+s−1∑
i=2

1
2 eie

t
i−1

+ 1
2(k + s− 1) ek+se

t
1 + 1

2 ek+se
t
k+s−1 −

k + s− 2
2(k + s− 1) ek+se

t
k+s

)
·
( s∑

i=1
(2i− 2 − s)eiet2 +

s+k∑
i=s+1

s eie
t
2 +

s+k∑
i=s+1

k+s∑
j=3

eie
t
j −

s∑
i=1

k+s∑
j=3

eie
t
j

)

= e1e
t
2 +

k+s∑
i=3

ese
t
i −

k+s∑
i=2

es+1e
t
i.

Finally, we see that

AP−1(At −BtM t) = A
(
e1e

t
2 +

k+s∑
i=3

ese
t
i −

k+s∑
i=2

es+1e
t
i

)
= s e1e

t
2 + (s− 2)e2e

t
2

+
k+1∑
i=3

(s− 3)eiet2 +
k+s∑

i=k+2

(s + 2k + 1 − 2i)eiet2

+
k+s∑
j=3

e1e
t
j −

k+s∑
i=3

k+s∑
j=3

eie
t
j ,

and

(A−MB)P−1BtM t =
(
e2e

t
1 +

k+s∑
i=3

eie
t
s −

k+s∑
i=2

eie
t
s+1

)
BtM t

= s e2e
t
1 + (3s− 2)e2e

t
2
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+
k+1∑
j=3

(s− 1)e2e
t
j +

k+s∑
j=k+2

(s + 2k + 3 − 2j)e2e
t
j

+
k+s∑
i=3

eie
t
1 +

k+s∑
i=3

2eiet2 +
k+s∑
i=3

k+s∑
j=3

eie
t
j .

Thus

AP−1(At −BtM t) + (A−MB)P−1BtM t = s e1e
t
2 + s e2e

t
1 + 4(s− 1)e2e

t
2

+
k+s∑
j=3

e1e
t
j +

k+s∑
i=3

eie
t
1

+
k+s∑
i=3

(s + k + 1 − i− |k + 2 − i|)eiet2

+
k+s∑
j=3

(s + k + 1 − j − |k + 2 − j|)e2e
t
j .

Therefore, by (10), we obtain

P̂ = AP−1(At −BtM t) + (A−MB)P−1BtM t + MPM t = P.

This completes the proof of (9). Furthermore, since detN · detN t = 1, we deduce that

detD(G) = detD(H).

Combining this with (5), using an inductive argument, it follows

detD(θ(1, 2s, 2k)) = −n2

4 ,

with n = p + q, where p = 2s and q = 2k. �
Before computing cof D(θ(l, p, q)), we need to introduce a new family of bicyclic 

graphs.

Definition 2. Let l, p, q be positive integers such that at most one of them is equal to 
one. We define the family of graphs Θ′(l, p, q) as the set of graphs generated from the 
θ(l, p, q)-graph by adding a pendant vertex. (see Figs. 5 and 6).

For given l, p, q, since any graph G ∈ Θ′(l, p, q) has as blocks the graph θ(l, p, q) and 
one edge, it follows from Theorem 2 that the values detD(G) and cof D(G) are the same, 
independent of the vertex of θ(l, p, q) to which the pendant edge is attached in order to 
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Fig. 5. θ′(1, 2, 2k).

v1

v2 vs+1 vs+k

vs+k+1

vs+k+2vs+2k+1v2k+2s

v2s+2k+1

Fig. 6. θ′(1, 2s, 2k).

obtain G. For this reason, we will use θ′(l, p, q) for any graph in the family Θ′(l, p, q). 
Moreover, from Theorem 2, it follows that

cof D(θ(l, p, q)) = −2 detD(θ(l, p, q)) − detD(θ′(l, p, q)).

Theorem 4. Let G = θ′(l, p, q) ∈ Θ′(l, p, q), for integers l, p, q such that at most one of 
them is 1. Then, the following assertions hold:

(a) If G = θ′(1, p, q) for some even integers p and q, then detD(G) = (1+p+q)2−1
2 .

(b) If G = θ′(2, 2, 2), then detD(G) = 48.
(c) If G = θ′(2, 2, q) for some odd integer q > 1, then detD(G) = −2(q2 + 2q − 9).
(d) Otherwise, detD(G) = 0.

Proof. Once again, items (c) and (d) can be found in [2] and (b) can be computed 
directly. The proof of case (a) will be divided in the following 2 cases. All along this 
proof, θ′(l, p, q) denotes the graph that arises from θ(l, p, q) by adding a pendant edge 
incident precisely to the midpoint of the path of length p joining the two vertices of 
degree 3 of θ(l, p, q). Notice that in Figs. 5 and 6 such midpoint is the vertex v1.

Case 1: Let G = θ′(1, 2, 2k), for some k ≥ 1, with its vertices labeled as in Fig. 5. The 
distance matrix of θ′(1, 2, 2k) is

D(θ′(1, 2, 2k)) =

⎛⎜⎝ 0 vt 1
v D(C2k+1) v + 1
1 vt + 1t 0

⎞⎟⎠ ,

where D(C2k+1) is the distance matrix of the cycle induced by the vertices v2, . . . , v2k+2
and vt = (1, 2, . . . , k, k + 1, k, . . . , 2, 1). By (2), it follows that
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(
0 vt

v D(C2k+1)

)−1

= M t
1M2M1.

We define

M3 :=
(

I 0
−wtM t

1M2M1 1

)
,

M4 :=
(
M t

1M2M1 0
0 (−wtM t

1M2M1w)−1

)
,

with wt := (1, vt + 1t). Then,

D(G)−1 = M t
3M4M3

and

detD(G) = detM−1
4 = −wtM t

1M2M1w det
(

0 vt

v D(C2k+1)

)
.

Combining this result with (5), we conclude that

detD(G) = wtM t
1M2M1w (k + 1)2.

Now, we will calculate wtM t
1M2M1w. From (1), we obtain

wtM t
1M2M1w = (0, vt)M t

1M2M1

(
0
v

)
+ 2 (0, vt)M t

1M2M1

(
1
1

)

+(1,1t)M t
1M2M1

(
1
1

)

= (0, vt)
(

1
0

)
+ 2 (1,0t)

(
1
1

)
+ (1,1t)M t

1M2M1

(
1
1

)

= 2 + (1,1t)M t
1M2M1

(
1
1

)

= 2 +
vtD(C2k+1)−1v 1tD(C2k+1)−11 −

(
vtD(C2k+1)−11 − 1

)2

t −1 .

v D(C2k+1) v
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v2 vs vs+k

vs+k+1

vs+k+2vs+2k+2v2k+2s

v2s+2k+1

Fig. 7. θ′(1, 2(s − 1), 2(k + 1)).

By (1), it follows that

vtD(C2k+1)−11 = −2vt1 − vtCk1 − vtCk+11 + 2k + 1
k(k + 1)v

tJ1

= −8
k∑

i=1
i− 4(k + 1) + 2k + 1

k(k + 1)(2k + 1)(2
k∑

i=1
i + (k + 1))

= −4(k + 1)2 + (2k + 1)2

k
(k + 1) = k + 1

k
,

and

1tD(C2k+1)−11 = −21t1 − 1tCk1 − 1tCk+11 + 2k + 1
k(k + 1)1

tJ1

= −4(2k + 1) + 2k + 1
k(k + 1)(2k + 1)2

= 2k + 1
k(k + 1) .

Thus, by (4), we deduce that

wtM t
1M2M1w = 2 +

k+1
k

2k+1
k(k+1) −

(
k+1
k − 1

)2

k+1
k

= 2k + 4
k + 1 .

Finally, we obtain

detD(θ′(1, 2, 2k)) = (2k + 4)(k + 1) = −n(n + 2m)(−2)m−2, (11)

with n = p + q and m = 1, where p = 2 and q = 2s.

Case 2: Let Ĥ = θ′(1, 2s, 2k) and Ĝ = θ′(1, 2(s − 1), 2(k + 1), 1) be the graphs with its 
vertices labeled as in Fig. 6 and Fig. 7, respectively, for some k ≥ 2 and s ≥ 2.

The distance matrices of Ĝ and Ĥ are

D(Ĝ) =

⎛⎜⎝ P At v + 1
A P w1 + 1

vt + 1t wt + 1t 0

⎞⎟⎠ ,
1
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D(Ĥ) =

⎛⎜⎝ P Bt v + 1
B P w2 + 1

vt + 1t wt
2 + 1t 0

⎞⎟⎠ ,

where P , A and B are the matrices defined in (6), (7) and (8), respectively, v is the first 
column of P , w1 is the first column of A and w2 is the first column of B.

We claim that

D(Ĝ) =
(
N 0
0 1

)
D(Ĥ)

(
N t 0
0 1

)
, (12)

where

N =
(

I 0
AP−1 −MBP−1 M

)
.

Indeed, by (9), it follows that

(
P At

A P

)
= N

(
P Bt

B P

)
N t,

and, hence, it is sufficient to prove that

N

(
v + 1
w2 + 1

)
=

(
v + 1
w1 + 1

)
.

It is easy to check that

N

(
v + 1
w2 + 1

)
=

(
v + 1

(A−MB)P−1(v + 1) + M(w2 + 1)

)
.

Since v is the first column of P , we obtain

(A−MB)P−1v + Mw2 = (A−MB)e1 + Mw2

= w1 −Mw2 + Mw2 = w1.

From the proof of Theorem 3, Case 2, we get that

(A−MB)P−1 = e2e
t
1 +

k+s∑
eie

t
s −

k+s∑
eie

t
s+1,
i=3 i=2
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and combining this with the definition of M , we conclude that

(A−MB)P−11 + M1 = 0 + 1 = 1.

This completes the proof of (12). Furthermore, since

det
(
N 0
0 1

)
· det

(
N t 0
0 1

)
= 1,

we deduce that

detD(Ĝ) = detD(Ĥ).

Combining this with (11) and using an inductive argument, we obtain

detD(θ′(1, 2s, 2k)) = −n(n + 2m)(−2)m−2,

with n = p + q and m = 1, where p = 2s and q = 2k. �
We now consider the case in which a path is attached to a vertex of θ(l, p, q). We denote 

by θ′m(l, p, q) the graph obtained from θ(l, p, q) by identifying one vertex of degree three 
of θ(l, p, q), with one vertex of degree one of a path of length m ≥ 0.

The next proposition investigates the determinant of these graphs, when p and q are 
even.

Proposition 3. If p and q are even integers, then

detD(θ′m(1, p, q)) = −n(n + 2m)(−2)m−2,

where n = p + q and m ≥ 0.

Proof. Let Gm = θ′m(1, p, q), V (Gm) = {1, . . . p + q, . . . , p + q + m} be such that the 
vertices {1, . . . , p + q} induce θ(1, 2s, 2k) and the vertices {p + q, . . . , p + q + m} induce 
Pm+1, where p = 2s, q = 2k and m ≥ 0 for some k ≥ 1 and s ≥ 1. Arguing as in [6, 
Theorem 3.2], we obtain

detD(Gm) = −4 detD(Gm−1) − 4 detD(Gm−2),

for m ≥ 2. Combining this identity with the results of Theorem 3, case (a), and Theo-
rem 4, case (a), we deduce that

detD
(
Gm

)
= −n(n + 2m)(−2)m−2,

where n = p + q and m ≥ 0. �
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As we already know the determinant of any θ-graph and θ′-graph, we obtain the values 
of cof D(G), for G = θ(l, p, q).

Corollary 2. The following assertions hold:

• If G = θ(1, p, q) for some even integers p and q, then cof D(G) = −(p + q).
• If G = θ(2, 2, 2), then cof D(G) = −16.
• If G = θ(2, 2, q) for some odd integer q > 1, then cof D(G) = 4q − 8.
• Otherwise, cof D(G) = 0.

Remark 1. A graph is said to be at most bicyclic if it arises from a tree by the addition 
of at most two edges. The blocks that are at most bicyclic graphs having at least two 
vertices are: edge blocks, cycles, and θ-graphs. The values of detD(G) and cof D(G)
were already known in the first two cases. Now, we have obtained the values of detD(G)
and cof D(G) for the last case.

From the results above, by applying Theorem 2, we present in the following sequence 
a formula for detD(G) for all graphs having at most bicyclic blocks. Notice that this 
class generalizes the class of cacti (which are graphs having at most unicyclic blocks).

Theorem 5. Let G be a connected graph having blocks at most bicyclic. If G = K1 or 
any block of G is an even cycle or a graph θ(l, p, q) with detD(θ(l, p, q)) = 0, then 
detD(G) = cof D(G) = 0. Otherwise, if the blocks of G are:

• m edge blocks,
• c odd cycles of lengths l1, l2, . . . , lc,
• r graphs θ(1, p1, q1), θ(1, p2, q2), . . . , θ(1, pr, qr) for even integers p1, q1, . . . , pr, qr,
• s graphs θ(2, 2, 2), and
• t graphs θ(2, 2, q1), θ(2, 2, q2), . . . , θ(2, 2, qt) for odd integers q1, q2, . . . , qt > 1,

then

detD(G) =

⎛⎝m

2 +
c∑

h=1

l2h − 1
4lh

+
r∑

i=1

pi + qi
4 + s +

t∑
j=1

q2
j − 5

4qj − 8

⎞⎠ cof D(G),

where

cof D(G) = (−2)m(−1)r(−16)s
(

c∏
h=1

lh

)(
r∏

i=1
(pi + qi)

)
t∏

j=1
(4qj − 8).
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