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A set of vertices X of a graph G is convex if no shortest path between two vertices in X
contains a vertex outside X . We prove that for fixed p ≥ 1, all partitions of the vertex set 
of a bipartite graph into p convex sets can be found in polynomial time.
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1. Introduction

Given a graph G = (V , E), a set X of vertices is called convex if G[X], the graph induced by X , contains all shortest 
paths between any two of its vertices. All graphs here are undirected and simple. The notion probably first appeared in [8], 
see also [10], and later became also known as geodesic convexity, or d-convexity, in order to distinguish it from different 
notions of convexity in graphs and other combinatorial structures (see [7] for an early overview). The book [11] gives an 
up-to-date survey of results on convexity in graphs.

One of the approaches to convexity in graphs comes from the viewpoint of computational complexity. Clearly, by com-
puting the distances between all pairs, one can decide in polynomial time if a given set of vertices is convex. To determine 
the size of a largest convex set not covering the whole graph, however, is an NP-complete problem, even for bipartite graphs, 
albeit linear for cographs [5]. The same phenomenon occurs (NP-completeness even for bipartite graphs, but linearity for 
cographs) if we wish to determine related invariants such as the hull number and the geodetic number of a graph [1,4,6].

We focus here on the notion of a convex p-partition of a graph, that is, a partition of the vertex set into p convex sets. 
For instance, any graph on n vertices containing a matching of size m has a convex (n −m)-partition, and trivially, any graph 
has a convex 1-partition. Deciding whether a graph has a convex p-partition, for fixed p ≥ 2, is NP-complete for arbitrary 
graphs, and linear time solvable for cographs [2]. Also, any connected chordal graph has at least one convex p-partition for 
each p ≥ 1 [2].

In view of the above described panorama, it was conjectured in [11] that also for bipartite graphs, it should be NP-
complete to decide whether they have a convex p-partition. We show that, for any fixed p ≥ 1, this is not the case. More 
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precisely, we prove that for p ≥ 1, all convex p-partitions of a bipartite graph can be enumerated in polynomial time. This 
extends a recent result of Glantz and Meyerhenke [9], who prove the same for the case p = 2. They also showed that all 
convex 2-partitions of a planar graph can be found in polynomial time.

2. Bipartite graphs with convex p-partitions

We start by reproving the result for bipartite graphs from [9] in a slightly different way. At the same time, this will serve 
as a base for the general case. We denote the distance between two vertices u and v in a graph G by dG(u, v), defined as 
the length of a shortest path between u and v . It is known that for a given u, the set of all distances d(u, v), for v ∈ V , can 
be computed in linear time [12].

Lemma 1. Given a convex set C in a connected bipartite graph G, and an edge uv with u ∈ C , v /∈ C we have that dG(u′, u) < dG (u′, v), 
for each u′ ∈ C.

Proof. Suppose otherwise. Observe that since G is bipartite, dG(u′, u) �= dG(u′, v), and thus we may assume dG (u′, u) >
dG(u′, v). Then there is a shortest path P from u′ to v not containing u. Extending P to u through the edge vu, gives a 
shortest path from u′ to u, a contradiction, as u and u′ lie in the convex set C , but v /∈ C . �

Let e = uv be an edge of G and denote by Xuv the set of vertices that are closer to u than to v . If G is a connected 
bipartite graph, then V is the disjoint union Xuv ∪ Xvu . From Lemma 1 we get the following corollaries.

Corollary 2. Let uv be an edge of a connected bipartite graph G. If C is a convex set containing u and not containing v, then C ⊆ Xuv .

Corollary 3. Let G = (V , E) be a connected bipartite graph, with a partition of V into convex sets X1, X2 . Let uv ∈ E, with u ∈ X1 and 
v ∈ X2 . Then X1 ⊆ Xuv and X2 ⊆ Xvu which, as V = Xuv ∪ Xvu , implies that X1 = Xuv and X2 = Xvu .

From the previous corollary it is direct that there are at most |E| convex 2-partitions and, as a consequence, we can 
enumerate all convex 2-partitions in polynomial time.

Proposition 4. We can enumerate in polynomial time all convex 2-partitions of a connected bipartite graph.

We now prove that for fixed p ≥ 3, we can enumerate in polynomial time all convex p-partitions of a connected bipartite 
graph. In order to do so, we extend the idea present in Corollary 3.

We write [p] for the set {1, . . . , p}. For a set F of edges, let V (F ) denote the set of all endvertices of edges of F .
Given a convex p-partition X = {X1, X2, . . . , Xp} of a graph G = (V , E), we call a pair (F , φ) an X -skeleton, if F ⊆ E and 

φ : V (F ) → [p] satisfy the following:

• all edges of F go between distinct parts of X ;
• if there is at least one edge in E between Xi and X j , then there is exactly one edge of F between Xi and X j ;
• φ(v) = i if and only if v ∈ Xi .

Note that the first two conditions might be equivalently expressed by saying that after contracting the sets Xi and deleting 
all remaining edges that are not in F , we are left with a (simple) graph H(F ,φ) whose edges represent the edges of G that 
cross the partition. The last condition says φ assigns the same color to all vertices of V (F ) that become identified in H(F ,φ) .

Note that for a connected graph G the second condition implies that V (F ) ∩ X j �= ∅, for each j ∈ [p]. Then, the third 
condition implies that φ is a surjective function.

Given a set of edges F we say that a function φ : V (F ) → [p] is a p-coloring of F if it is surjective and for each v w ∈ F , 
φ(v) �= φ(w).

We shall prove that given a graph G = (V , E), F ⊆ E and φ a p-coloring of F , we can decide in linear time whether 
(F , φ) is the X -skeleton of a convex p-partition X = {X1, X2, . . . , Xp} of G .

To this end, we use the following two criteria which follow from Corollary 2 and the definition of a convex set, respec-
tively.

1. For each i ∈ [p] and for each edge v w ∈ F with φ(w) = i, if a vertex u ∈ Xv w then u /∈ Xi .
2. For each i ∈ [p], for any three distinct vertices u, v, w with w ∈ V (F ) and dG (u, w) = dG (u, v) + dG (v, w), if v /∈ Xi and 

w ∈ Xi , then u /∈ Xi .

The algorithm described in Algorithm 1 has three steps. It starts with considering for each part of the convex partition 
the whole set of vertices. In a second step, it eliminates from each part Xi those vertices indicated by the first criterion. 
For each v w ∈ F we can compute in linear time the set Xv w , and thus, we can check in constant time whether u ∈ Xv w . 
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Algorithm 1 p-is-skeleton.
Require: A graph G = (V , E) and (F , φ), F ⊆ E , φ a p-coloring of F .
Return: X – a convex p-partition of G having (F , φ) as skeleton, if it exists.
For all i ∈ [p]

X1
i ← V ;

For all v w ∈ F with φ(w) = i
For all u ∈ Xv w

X1
i ← X1

i \ {u};
If X1

i = ∅ then return False.
For all i ∈ [p]

X2
i ← X1

i ;
For all w ∈ V (F ) with φ(w) = i

For all u ∈ X1
i s.t. ∃v ∈ V \ X1

i with dG (u, v) + dG (v, w) = dG (u, w)

X2
i ← X1

i \ {u};
If X2

i = ∅ then return False.
For all i ∈ [p]

If X2
i is not convex then return False.

Return: X = {X2
1 , . . . , X2

p}

Therefore, this part takes linear time. Finally, in the third step, the algorithm eliminates all vertices indicated by the second 
criterion from the parts obtained in the previous step. As before, for each w ∈ V (F ) we can compute, in linear time, the 
distance from w to all the vertices, and during the same process, we can already eliminate the vertices that are as in the 
second criterion. Hence, Algorithm 1 runs in linear time.

The correctness of this algorithm is proved in the next result. However, in the proof, instead of working with parts Xi , 
we associate to each vertex the set of indices of the parts to which it belongs. Initially this set is [p], in the second step we 
erase for these sets all the indices indicated by the first criterion, and in the third step we erase from the remaining indices 
those indicated by the second criterion.

For each pair of vertices u and w in a graph G we define I[u, w] as the set of vertices in shortest paths between u
and w . Then, v ∈ I[u, w] if and only if dG (u, w) = dG(u, v) + dG (v, w).

Theorem 5. Let G = (V , E) be a connected bipartite graph, let F ⊆ E and let φ : V (F ) → [p]. If G has a convex p-partition with 
skeleton (F , φ), then this partition is unique. We can find such partition, or show it does not exist, in polynomial time.

Proof. Define lists L(u) for each vertex u ∈ V by setting

L(u) := [p] − {φ(w) : u ∈ Xv w for some v w ∈ F }.
The idea behind the lists L(u) is that they do not contain colors corresponding to partition sets u cannot belong to, as 
explained in more detail above. Restricting these lists even more, we define, for each vertex u,

L′(u) := L(u) − {φ(w) : w ∈ V (F ) and φ(w) /∈ L(v) for some v ∈ I[u, w]}.
We will prove that if G has a convex p-partition X = {X1, . . . , Xp} with skeleton (F , φ), then, for each i ∈ [p],

L′(u) = {i} for every u ∈ Xi . (1)

We first observe that

i ∈ L(u) for every u ∈ Xi . (2)

Otherwise, there are u ∈ Xi and v w ∈ F such that φ(w) = i and u ∈ Xv w . Hence, u, w ∈ Xi and v ∈ I[u, w]. Since Xi is 
convex, v ∈ Xi , contradicting the fact that the edge v w of F must join distinct parts of X . This contradiction proves (2).

Moreover,

i ∈ L′(u) for every u ∈ Xi . (3)

Otherwise, by (2), there are u ∈ Xi , w ∈ V (F ) and v ∈ I[u, w] such that φ(w) = i and i /∈ L(v). Now, on the one hand, since 
u, w ∈ Xi and v ∈ I[u, w], the convexity of Xi implies that v ∈ Xi . On the other hand, since i /∈ L(v), we know by (2) that 
v /∈ Xi . This contradiction proves (3).

Next, we now show that, for each j ∈ [p],
if v ′w ′ ∈ E, with w ′ ∈ X j and v ′ /∈ X j, then j /∈ L(v ′). (4)

This is immediate if v ′ w ′ ∈ F , by the definition of L(v ′). Otherwise, there is v w ∈ F such that w ∈ X j , and v, v ′ ∈ Xi for 
some i �= j. Lemma 1 applied to the convex set Xi and the edge v w yields that d(v ′, v) < d(v ′, w); i.e., v ′ ∈ Xv w . Thus, the 
definition of L(v ′) gives that j /∈ L(v ′), proving (4).

We now prove (1). Consider u ∈ Xi and j ∈ [p] − {i}. Let w ∈ V (F ) ∩ X j (as G is connected, this set is non-empty) and 
let P be a shortest path between u and w . By construction, P has some edge v w ′ such that v /∈ X j and w ′ ∈ X j . By (4), we 
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have that j /∈ L(v). As v ∈ I[u, w], and as φ(w) = j, the definition of L′(u) implies that j /∈ L′(u). This completes the proof 
of (1).

Therefore, a convex p-partition with skeleton (F , φ) exists if and only if the following conditions hold: (i) |L′(u)| = 1 for 
each vertex u of G; (ii) the parts of the corresponding partition are convex. The time needed to find a convex p-partition 
with skeleton (F , φ) is dominated by the time needed to compute the set of distances dG (w, u) for each w ∈ V (F ) and 
each u ∈ V which is linear for each set F . Indeed, for each w ∈ V (F ) we can make a breadth first search starting at w
and delete φ(w) from L(u), for those u in Xv w . Similarly, we can construct lists L′(u), by running for each w ∈ V (F ), 
a breath first search starting at w during which we delete φ(w) from L(u) of all the descendent u of a vertex v for which 
φ(w) /∈ L(v). �

When given a connected bipartite graph G and an integer p, we can decide whether G has a convex p-partition as 
follows. We first guess a candidate skeleton (F , φ) with φ a p-coloring of F , and then, by using Theorem 5, we compute in 
linear time the unique (if any) partition {X1, . . . , Xp} associated to (F , φ). The choices for (F , φ) are bounded from above 
by a function that depends only on p. In fact, if (F , φ) is a skeleton of some partition, then it must satisfy the following 
properties.

• The size of F satisfies |F | ∈ {p − 1, . . . , 
(p

2

)}.
• The function φ is surjective.
• Identifying all vertices v ∈ V (F ) of the same color under φ yields a connected simple graph.

From the first condition we know that there are at most((n
2

)
|F |

)
≤

(
n

2

)|F |

choices for the set F . Hence, there are at most 
(p

2

)(n
2

)(p
2

)
choices in total.

From the second condition we know that there are roughly 
(p2

|F |
) ≤ p2p functions φ. Since the problem of determining the 

convex p-partitions of a graph can be reduced in polynomial time to computing the convex p′-partitions of its components 
for p′ ∈ {1, . . . , p} [2,3], we conclude the following.

Corollary 6. For each fixed p ≥ 1, all convex p-partitions of a bipartite graph can be enumerated in polynomial time.
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