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a b s t r a c t

A normal Helly circular-arc graph is the intersection graph of a set of arcs on a circle
of which no three or less arcs cover the whole circle. Lin et al. (2013) characterized
circular-arc graphs that are not normal Helly circular-arc graphs, and used them to develop
the first recognition algorithm for this graph class. As open problems, they ask for the
forbidden subgraph characterization and a direct recognition algorithm for normal Helly
circular-arc graphs, both of which are resolved by the current paper. Moreover, when the
input is not a normal Helly circular-arc graph, our recognition algorithm finds in linear
time a minimal forbidden induced subgraph as a certificate. Our approach yields also a
considerably simpler algorithm for the certifying recognition of proper Helly circular-arc
graphs, a subclass of normal Helly circular-arc graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph is a circular-arc graph if its vertices can be assigned to arcs on a circle such that two vertices are adjacent if and
only if their corresponding arcs intersect. Such a set of arcs is called a circular-arc model for this graph. If some point on the
circle is not covered by any arc in the model, then the graph can also be represented by a set of intervals on the real line.
This set of intervals is called an interval model, and the graph is an interval graph. The intersection graph of a set of subtrees
of a tree is called a chordal graph. Circular-arc graphs, interval graphs, and chordal graphs are three of the most famous
intersection graph classes, and have been studied intensively for more than half century. In contrast to interval graphs and
chordal graphs, however, our understanding of circular-arc graphs is far limited, and to date some fundamental problems
remain unsolved.

One fundamental combinatorial problemon a graph class is its characterization by forbidden (induced) subgraphs. For ex-
ample, the forbidden induced subgraphs of chordal graphs are holes (i.e., induced cycles of length at least four). Lekkerkerker
and Boland [13] showed in 1962 that the forbidden induced subgraphs of interval graphs include holes and graphs in Fig. 1.
In contrast, the characterization of circular-arc graphs by forbidden induced subgraphs remains a notorious open problem
since it was first asked by Hadwiger et al. [7] in 1964, though previous attempts did have partial success, which is mainly on
subclasses of circular-arc graphs. For example, Tucker [23] characterized unit circular-arc graphs (i.e., a graphwith a circular-
arcmodel where every arc has the same length) and proper circular-arc graphs (i.e., a graphwith a circular-arcmodel where
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(a) Long claw. (b) Whipping top. (c) Ď. (d) Ě.

Fig. 1. Chordal minimal forbidden induced graphs.

(a) Tent (a Ě on 6 vertices). (b) A normal model. (c) A Helly model.

Fig. 2. Tent and its circular-arc models. The arcs ({u, v, w}) invalidating the Helly property in (b) and the arcs ({u, v}) invalidating the normal property in
(c) are marked as thick.

no arc properly contains another). We refer to the surveys of Lin and Soulignac [17] and of Durán et al. [4] for recent results
in this line. The recent breakthrough of Francis et al. [5] may shed some light on the final resolution of this problem.

One fundamental algorithmic problem on a graph class is its recognition, i.e., to efficiently decide whether a given graph
belongs to this class or not. For intersection graph classes, all recognition algorithms known to the authors provide an
intersectionmodel or some equivalent structure when themembership is asserted. Most of them, on the other hand, simply
return ‘‘NO’’ for non-membership, while one might also want a verifiable certificate for some reason [19]. A recognition
algorithm is certifying if it provides both positive and negative certificates. There are different forms of negative certificates,
while aminimal forbidden induced subgraph is arguably the simplest andmost preferable of them [8]. For example, it is long
known that a hole can be detected from a non-chordal graph in linear time [22]. Very recently, Lindzey and McConnell [14]
reported a linear-time algorithm that detects a subgraph in Fig. 1 from a chordal non-interval graph. They together make a
linear-time certifying algorithm for the recognition of interval graphs. On the other hand, although a circular-arc model for
a circular-arc graph can be produced in linear time [18], it remains a challenging open problem to find a negative certificate
for a non-circular-arc graph in the same time.

The complication of circular-arc graphsmay be attributed to two special intersection patterns of circular-arcmodels that
are not possible in interval models. The first is two arcs intersecting in their both ends, and a circular-arc model is called
normal if no such pair exists. The second is a set of arcs intersecting pairwise but containing no common point, and a circular-
arc model is called Helly if no such set exists. Normal and Helly circular-arc models are precisely those without three or less
arcs covering the whole circle [20,15]. A graph that admits such a model is called a normal Helly circular-arc graph. Clearly,
all interval graphs are normal Helly circular-arc graphs; indeed, onemay verify that all normal Helly circular-arc graphs that
are chordal are interval graphs.

A word of caution is worth on the definition of normal Helly circular-arc graphs. One graph might admit both a normal
circular-arc model and a Helly circular-arc model but not a circular-arc model that is both normal and Helly. See Fig. 2 for
an example. One may want to verify that arranging a normal and Helly circular-arc model for a tent (i.e., a Ě on 6 vertices)
is out of the question. This example convinces us that the class of normal Helly circular-arc graphs is not equivalent to the
intersection of the class of normal circular-arc graphs and the class of Helly circular-arc graphs, but a proper subset of it.

Let us mention some previous work related to normal Helly circular-arc graphs. The algorithm of Tucker [24] colors a
normal Helly circular-arc graph using at most 3ω/2 colors, where ω denotes the size of its maximum cliques. Note that
by the Helly property, ω is equivalent to the maximum number of arcs covering a single point on the circle. This is tight
as any odd hole, which has ω = 2 and needs at least three colors, is a normal Helly circular-arc graph. In the study of
convergence of circular-arc graphs under the clique operator, Lin et al. [16] observed that normal Helly circular-arc graphs
arose naturally. They [15] then undertook a systematic study of normal Helly circular-arc graphs as well as its subclass.
Their results include a partial characterization of normal Helly circular-arc graphs by forbidden induced subgraphs (more
specifically, those restricted to Helly circular-arc graphs), and a linear-time recognition algorithm (by calling a recognition
algorithm for circular-arc graphs). As open problems, they ask for determining the remaining minimal forbidden induced
subgraphs, and designing a direct recognition algorithm, both of which are resolved by the current paper.

The firstmain result of this paper is a complete characterization of normal Helly circular-arc graphs by forbidden induced
subgraphs. A wheel (resp., C∗) comprises a hole and another vertex completely adjacent (resp., nonadjacent) to the hole.

Theorem 1.1. A graph is a normal Helly circular-arc graph if and only if it contains no C∗, wheel, or any graph depicted in Figs. 1
and 3 as an induced subgraph.
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(a) K2,3 . (b) Twin-C5 . (c) Domino. (d) C6 . (e) FIS-1. (f) FIS-2.

Fig. 3. Non-chordal and finite minimal forbidden induced graphs.

Let F denote the set of C∗, wheel, and all graphs depicted in Figs. 1 and 3. First, a C∗ is not a circular-arc graph, while a
wheel cannot be arranged without three or less arcs covering the circle. Second, every graph in Fig. 1 is a chordal but non-
interval graph, and thus cannot be a normal Helly circular-arc graph. Third, every graph in Fig. 3 has only a small number
of vertices and can be easily checked. Therefore, each graph in F is not a normal Helly circular-arc graph, and to prove
Theorem 1.1, it suffices to show that a graph containing none of them is a normal Helly circular-arc graph. That fact was
actually proved in [6], but the proof given there does not imply a linear-time procedure to find the corresponding forbidden
induced subgraphs when the graph is not a normal Helly circular-arc graph. Such a procedure was subsequently discovered
by the first author in [2], and we decide to merge our work into a joint paper.

It is known that if a normal Helly circular-arc graph G is not chordal, then every circular-arc model for G has to be normal
and Helly [20,15]. This observation inspires us to recognize normal Helly circular-arc graphs as follows. If the input graph
is chordal, it suffices to check whether it is an interval graph. Otherwise, we try to build a circular-arc model for it, and if
we succeed, verify whether the model is normal and Helly. Lin et al. [15] showed that this approach can be implemented
in linear time. Moreover, if there exists a set of at most three arcs covering the circle, then their algorithm returns it as a
certificate. This algorithm, albeit conceptually simple, suffers from twofold weakness. First, it needs to call some recognition
algorithm for circular-arc graphs, while all known ones are extremely complicated. Second, it is very unlikely to deliver a
negative certificate in general.

The second main result of this paper is the following recognition algorithm. We use n := |V (G)| and m := |E(G)|
throughout.

Theorem 1.2. There is an O(n+m)-time algorithm that given a graph G, either constructs a normal and Helly circular-arc model
for G, or finds a subgraph of G that is in F .

Since the algorithm of Theorem 1.2 always finds a subgraph in F when the input graph is not a normal Helly circular-arc
graph, Theorem 1.1 follows from the correctness proof as a corollary. Let us briefly discuss the basic idea behind the way
we deal with a non-chordal graph G. If G is a normal Helly circular-arc graph, then for any vertex v of G, both N[v] and its
complement induce nonempty interval subgraphs. Themain technical difficulty is how to combine interval models for them
to make a circular-arc model for G. For this purpose we build an auxiliary graph f(G) by taking two identical copies of N[v]

and appending them to the ‘‘two ends’’ of G − N[v] respectively. The shape of symbol f is a good hint for understanding
the structure of the auxiliary graph. We show that f(G) is an interval graph and more importantly, a circular-arc model for
G can be produced from an interval model for f(G). On the other hand, if G is not a normal Helly circular-arc graph, then
either the construction of f(G) fails, or it is not an interval graph. In the final case we use the following procedure to obtain
a minimal forbidden induced subgraph of G.

Theorem 1.3. Given aminimal non-interval induced subgraph of f(G), we can in O(n+m) time find a subgraph of G that is inF .

A circular-arc or interval model is proper if no arc or interval in it properly contains another arc or interval. A graph is a
proper interval/circular-arc graph if has a proper interval/arc model respectively. A graph is a proper Helly circular-arc graph
if it has a circular-arc model that is both proper and Helly. One should again be warned that a circular-arc graph might have
a proper model and a Helly model but nomodel that is both proper and Helly, e.g., the model given in Fig. 2(b) is proper. It is
known that proper Helly circular-arc graphs are exactly normal Helly circular-arc graphs that are claw-free [15]. Therefore,
our recognition algorithm for normal Helly circular-arc graphs can be turned to a recognition algorithm for proper Helly
circular-arc graphs as follows. It is trivial when the input graph is not a normal Helly circular-arc graph. Otherwise, we have
a normal and Helly circular-arc model, and it suffices to apply the algorithm of Kaplan and Nussbaum [10], which either
makes the model proper or finds a claw. This is already better than the previous algorithm based on recognizing (proper)
circular-arc graphs [15]. Actually, we can do even better. We observe that if G is a proper Helly circular-arc graph, then the
auxiliary graph f(G) is a proper interval graph, which admits an even simpler certifying recognition algorithm [3]. Similar
as Theorem 1.3, a minimal non-proper-interval subgraph of f(G) can be translated to a negative certificate of G. Therefore,
we provide an alternative and considerably simpler proof for the following.

Theorem 1.4 ([15]). There is an O(n+m)-time algorithm that given a graph G, either constructs a proper and Helly circular-arc
model for G, or finds a minimal subgraph of G that is not a proper Helly circular-arc graph.
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The crucial idea behind our certifying algorithms is a novel correlation between normal Helly circular-arc graphs
and interval graphs, which can be efficiently used for algorithmic purpose. This correlation was originally observed in
the detection of small non-interval subgraphs [1], which used a similar definition of the auxiliary graph and pertinent
observations. However, themain structures and the procedures for their detection divert completely. For example, themost
common forbidden induced subgraphs in [1] are C4’s and C5’s, which, however, are allowed in normal Helly circular-arc
graphs. This means that the interaction between N[v] and G − N[v] in the current paper are far more subtle.

A similar observation, working on interval subgraph G − N[v] and then adding back N[v], had been used by Hsu
and Spinrad [9] to obtain the first linear-time algorithm for finding a maximum independent set in a circular-arc graph.
Interestingly, their algorithm picks a vertex with the minimum degree as the special vertex, while in our case a vertex with
a larger degree is preferred. It is worthmentioning that back then there was no known linear-time recognition algorithm for
circular-arc graphs. Thus, they could not assume the possession of a circular-arcmodel for the graph, and their algorithmhas
to take into consideration that the input might not be a circular-arc graph. This became unnecessary after the linear-time
recognitionwas finally discovered, first byMcConnell [18] and then by Kaplan andNussbaum [11]. However, wemightwant
to avoid calling these recognition algorithms for some subclasses of circular-arc graphs.

2. The recognition algorithm

This paper will be only concerned with undirected and simple graphs. All graphs are stored as adjacency lists. We use
the customary notation v ∈ G to mean v ∈ V (G), and u ∼ v to mean uv ∈ E(G). The degree of a vertex v is defined
by d(v) := |N(v)|, where the neighborhood N(v) of v comprises all vertices u such that u ∼ v. The closed neighborhood
of v is defined by N[v] := N(v) ∪ {v}. For a vertex set U , its closed neighborhood and neighborhood are defined by
N[U] :=


v∈U N[v] and N(U) := N[U]\U respectively. The length of a cycle or a path is the number of edges it contains.

For ℓ ≥ 4, we use Cℓ to denote an hole on ℓ vertices; likewise, a C∗ and a wheel with a hole Cℓ are denoted by a C∗

ℓ and aWℓ

respectively. Exclusively concerned with induced subgraphs, we will abuse notation by using the same symbol to denote a
subset of vertices and the subgraph induced by it.

Consider a circular-arc model A that is both normal and Helly. It is trivially equivalent to an interval model if some point
of the circle is not covered by any arc in A. Otherwise, we can find an inclusion-wise minimal set X of arcs that cover the
entire circle. It consists of at least four arcs [20,15] and thus represents a hole. Therefore, a normal Helly circular-arc graph G
is chordal if and only if it is an interval graph, for which it suffices to call the algorithms of [12,14]. We are hence focused on
graphs that are not chordal.

Proposition 2.1. Let H be a hole of a circular-arc graph G. In any circular-arc model for G, the union of arcs for H covers the
whole circle.

As a result, every vertex should have neighbors on any hole H . We use NH [v] as a shorthand for N[v] ∩ H , regardless of
whether v ∈ H or not. Using circular-arc models one can verify that every hole of a circular-arc graph has the following
properties:

(P1’) For every vertex v, the set NH [v] is nonempty and its vertices are consecutive on H .
(P2’) For any pair of adjacent vertices u, v, the intersection of NH [u] and NH [v] is nonempty.

As we will see shortly, stronger versions of them are satisfied by every hole of a normal Helly circular-arc graph.

(P1) For every vertex v, the set NH [v] of vertices induces a nonempty sub-path of H .
(P2) For any pair of adjacent vertices u, v, either one of NH [u] and NH [v] is a subset of the other, or precisely one end of (the

sub-path induced by) NH [u] is contained in NH [v].

Property P1 strengthens P1’ by excluding the case NH [v] = H (i.e., H ⊆ N[v]), when H and v make a wheel. Property P2
strengthens P2’ by excluding the case where both ends of NH [u] are in NH [v] but NH [u] ⊈ NH [v]; note that if the second
case of P2 holds, then precisely one end ofNH [v] is contained inNH [u]. A holeH is denoted by h0h1 · · · h|H|−1, and the indices
of its vertices should be understood as modulo |H|, e.g., h−1 = h|H|−1. We designate the ordering h0, h1, h2, . . . of traversing
H as clockwise, and the other counterclockwise.

Lemma 2.2. Given a hole H, we can in O(n + m) time either determine that H satisfies property P1, or produce a subgraph of G
that is in F . The sub-paths NH [v] for all vertices v can be found in the same time if property P1 is satisfied.

Proof. Since NH [hi] = {hi−1, hi, hi+1} for every 0 ≤ i < |H|, vertices on H will not concern us. For each v ∈ V (G)\H , we
mark vertices in NH [v] ‘‘a neighbor of v’’, and count the number. If it is 0 or |H|, then we return H and v as a C∗ or wheel
respectively. Otherwise, from any neighbor of v on H , we traverse clockwise and counterclockwise till the first vertices not
marked ‘‘a neighbor of v’’. If the total number of visited neighbors of v during this traversal is the same as |NH [v]|, then we
have the sub-pathNH [v], and v passes the test. Either all vertices have passed the test, whichmeans thatH satisfies property
P1, or we construct the subgraph of G that is in F as follows.

Let v be the vertex that failed the test. Let {hp2 , hp2+1, . . . , hp3} be the set of neighbors of v visited in the test; then
p3 − p2 + 1 < |NH [v]|, and neither of hp2−1 and hp3+1 is adjacent to v. We traverse H counterclockwise from hp2−1 and
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(a) A pair of vertices failing (i). (b) A pair of vertices failing (ii).

Fig. 4. The neighborhoods of a pair of adjacent vertices on H (Lemma 2.3).

clockwise from hp3+1 till the first neighbor(s) of v on H; let them be hp1 and hp4 respectively. Note that they possibly refer to
the same vertex, and this fact is irrelevant in our construction below. Nowwe have two nontrivial sub-paths, hp1hp1+1 . . . hp2
and hp3hp3+1 . . . hp4 , of H such that v is adjacent to their ends but none of their inner vertices. Without loss of generality,
assume 0 ≤ p1 < p2 ≤ p3 < p4 ≤ |H|; then p2 − p1 > 1 and p4 − p3 > 1.

If p2 − p1 > 3, then we return vhp3hp3+1 . . . hp4 and hp1+2 as a C∗. Likewise, if v ≁ hℓ for some ℓ with p2 + 1 < ℓ <
p1 − 1 + |H|, then we return vhp1hp1+1 . . . hp2 and hℓ as a C∗; note that this must hold true when v is adjacent to both
hp1−1 and hp2+1. In the following, 2 ≤ p2 − p1 ≤ 3, and we consider v ≁ hp1−1, while v ≁ hp2+1 follows by symmetry. If
p2 − p1 = 2, then we return • H ∪ {v} as a K2,3 when |H| = 4; • H ∪ {v} as a twin-C5 when |H| = 5 and |NH [v]| = 2;
• H ∪ {v} as an FIS-1 when |H| = 5 and |NH [v]| = 3; or • {hp1−2, hp1−1 . . . , hp2 , v} as a domino when |H| > 5. Otherwise,
p2 − p1 = 3, and we return • H ∪ {v} as a twin-C5 when |H| = 5; • H ∪ {v} as an FIS-2 when |H| = 6 and v ≁ hp2+1;
• vhp1hp1−1hp1−2 and hp2−1 as a C∗ when |H| = 6 and v ∼ hp2+1; or • vhp1hp1−1hp1−2 and hp2−1 as a C∗ when |H| > 6.

The test of a vertex v takes O(d(v)) time. Therefore, all vertices can be tested in O(n+m) time. For the vertex failing the
test, the indices p1, p2, p3, and p4 can be detected in O(|H| + d(v)) time. The rest of the construction takes O(|H|) time. This
concludes the proof. �

Now consider a hole H satisfying property P1. For every vertex v ∈ G, we assign canonical indices to the ends of the path
induced by NH [v] as follows.

Definition 1. Let H be a hole satisfying properties P1. For each vertex v ∈ G, we denote by first(v) and last(v)
respectively the indices of the counterclockwise and clockwise ends of the path induced by NH [v] on H satisfying

• −|H| < first(v) ≤ 0 ≤ last(v) < |H| if h0 ∈ NH [v]; or
• 0 < first(v) ≤ last(v) < |H|, otherwise.

It is possible that last(v) = first(v), when |NH [v]| = 1. In general, last(v)−first(v) = |NH [v]|−1, and v = hi or
v ∼ hi for each iwith first(v) ≤ i ≤ last(v). The indices first(v) and last(v) can be easily retrieved from Lemma 2.2.
With themwe can check the adjacency between v and any vertex hi ∈ H in constant time. Now consider property P2, which
is on the neighbors of more than one vertices on H .

Lemma 2.3. Given a hole H, we can in O(n + m) time either determine that H satisfies property P2, or produce a subgraph of G
that is in F .

Proof. We call first the algorithm of Lemma 2.2. We may assume that H satisfies property P1, and hence we have the 2n
indices last(v) and first(v) for all vertices.With themwe can check for each edge uv ∈ E(G)whether (i)NH [u]∩NH [v] ≠

∅, and (ii) if neither of NH [u] and NH [v] is a subset of the other, then precisely one of hfirst(u) and hlast(u) is in NH [v]. If all
edges pass the test, then H satisfies P2, and we are done. Otherwise, let uv be an edge that failed the test, and we construct
a subgraph of G that is in F as follows.

If NH [u] ∩ NH [v] = ∅ (i.e., the edge uv failed the test because of condition (i)), then neither of u and v can be in H .
The indices last(u), first(u) and last(v), first(v) partition H into four sub-paths, two of which are induced by NH [u]
and NH [v]. Denote by P1 and P2 the other two sub-paths; their ends are adjacent to u and v respectively, while their inner
vertices, if any, are adjacent to neither u nor v. See Fig. 4(a).

Assume first that both P1 and P2 are of length 1, then |H| = |NH [u]| + |NH [v]|. If u is adjacent to a single vertex hi in
H , (hence |NH [v]| ≥ 3,) then we return {hi, hi−1, hi+1, u, v} as a K2,3. A symmetric argument applies when |NH [v]| = 1. If
|NH [u]| = |NH [v]| = 2, then we return H ∪ {u, v} as a C6. It must be in some case above if |H| = 4, and henceforth we
assume |H| > 4. If u is adjacent to only hi and hi+1 in H , (hence |NH [v]| ≥ 3,) then we return {hi−1, hi, hi+1, hi+2, u, v} as
an FIS-1. A symmetric argument applies when |NH [v]| = 2. Now that both |NH [u]| and |NH [v]| are at least 3, we return
{u, v, hfirst(u), hlast(u), hfirst(v), hlast(v)} as a domino.

Assume now that, without loss of generality, the length of P2 is at least 2. We can return vuP1 and hlast(v)+1 (when both
|NH [u]| > 1 and |NH [v]| > 1) or vuP1 and hlast(v)+2 (when the length of P2 is larger than 3) as a C∗. A symmetric argument
applies when the length of P1 is larger than 3. In the remaining cases, we assume without loss of generality, |NH [u]| = 1,
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and the lengths of both paths P1 and P2 are at most 3. Consequently, |H\NH [v]| ≤ 5. If the length of P1 is at least 2, then
|H\NH [v]| ≥ 3. We return {u, v, hfirst(v)−1, hlast(v)+1} ∪ NH [v] as a Ď when |NH [v]| > 1. Now that |NH [v]| = 1, then
|H| ≤ 6, and we return • (H\NH [v]) ∪ {u, v} as a long claw when |H| = 6; • H ∪ {u, v} as a twin-C5 when |H| = 4; or
• H ∪ {u, v} as an FIS-2 when |H| = 5. In the final case, P1 has length 1, which means that neither u nor v is adjacent to
hfirst(u)−1. If v ∼ hfirst(u)−2, thenwe return {hfirst(u)−2, hfirst(u)−1, hfirst(u), hfirst(u)+1, u, v} as • an FIS-1when |H| = 4;
or • a twin-C5 when |H| > 4. If v ≁ hfirst(u)−2, then we return • H ∪ {u, v} as a domino when |H| = 4; or • (uvh1h0u) and
h−2 as a C∗ when |H| > 4.

In the following the edge uv failed the test because of condition (ii). Then v is adjacent all vertices in H\NH [u] as well as
hlast(u) and hfirst(u), and we can return uhlast(v)hlast(v)+1 · · · hfirst(v), which is a hole, and v as a wheel. See Fig. 4(b).

We can check each edge in constant time, and all edges in O(n + m) time. The subsequent construction of the subgraph
takes O(n) time. The proof is now complete. �

If both properties are satisfied by H , then the pattern of the four ends of NH [u] and NH [v] can be summarized as follows.
In the case that they are all distinct, if we traversing H from hfirst(u) to both directions, we must meet hfirst(v) in one of
them; in other words, we cannot meet both hlast(u) and hlast(v) before hfirst(v) (see Fig. 4). It is similar when some of them
coincide. Lemmas 2.2 and 2.3 imply that in a normal Helly circular-arc graph, every hole satisfies properties P1 and P2.

Since we have assumed that G is not chordal, we can call the algorithm of Tarjan and Yannakakis [22] to detect a hole
H . We then use the algorithms of Lemmas 2.2 and 2.3 to check whether the hole satisfies properties P1 and P2. A subgraph
of G that is in F , once detected, will terminate the recognition of the graph. Henceforth we may assume that H satisfies
properties P1 and P2. Let T := N[h0] and T := V (G)\T . As we have alluded to earlier, we want to duplicate T and append
them to ‘‘different sides of T ’’. One may be reminded that T should induce an interval graph, though we do not want to test
it at this moment. Each edge between v ∈ T and u ∈ T will be carried by only one copy of T , and this is determined by the
direction of this edge, which is specified as follows. Note that u is adjacent to either {hfirst(v), . . . , h−1} or {h1, . . . , hlast(v)}

but not both (property P2). The edge uv is said to be clockwise from T if u is adjacent to any hi with 1 ≤ i ≤ last(v), and
counterclockwise otherwise. Let Ec (resp., Ecc) denote the set of clockwise (resp., counterclockwise) edges from T , and let Tc
(resp., Tcc) denote the subsets of vertices of T that are incident to edges in Ec (resp., Ecc).

For example, {h−1, h0, h1} ⊆ T , where h−1 and h1 are in Tcc and Tc respectively, witnessed by h−2h−1 ∈ Ecc and h1h2 ∈ Ec.
Note that h−2 and h2 refer to the same vertex if H is a C4; hence, a vertex in T can be incident to edges both in Ecc and Ec.
Likewise, a vertex v ∈ T may belong to both Tcc and Tc; such a vertexmust be adjacent to both h−1 and h1. However, an edge
cannot be in both Ecc and Ec, i.e., {Ecc, Ec} partitions edges between T and T .

We have now all the details for the definition of the auxiliary graph f(G).

Definition 2. Let H be a hole satisfying properties P1 and P2 and let T := N[h0]. The vertex set of f(G) consists of
T ∪ L∪R∪{w}, where L and R are distinct copies of T , i.e., for each v ∈ T , there are a vertex vl in L and another vertex vr in R,
andw is a new vertex distinct from V (G). The edge set of f(G) consists ofwvl for every v ∈ Tcc, and for each edge uv ∈ E(G)

• an edge uv if neither u nor v is in T ;
• two edges ulvl and urvr if both u and v are in T ; or
• an edge uvl or uvr if uv ∈ Ec or uv ∈ Ecc respectively (v ∈ T and u ∈ T ).

Lemma 2.4. The numbers of vertices and edges of f(G) are upper bounded by 2n and 2m respectively. Given a hole H satisfying
properties P1 and P2, an adjacency list representation of f(G) can be constructed in O(n+m) time. In the same time, vertex sets
Tc , Tcc and edge sets Ec , Ecc can be produced.

Proof. The vertices of the auxiliary graphf(G) include T , two copies of T , andw. So the number of vertices is 2|T |+|T |+1 =

|V (G)| + |T | + 1 ≤ 2n. In f(G), there are two edges derived from every edge of G[T ] and one edge from every other edge of
G. All other edges are incident to w, and there are Tcc of them. Therefore, the number of edges is |E(G)|+ |E(G[T ])|+ |Tcc| ≤

|E(G)| + |E(G[T ])| + |Ecc| < 2m.
For the construction of f(G), we use the procedure described in Fig. 5. Step 1 adds vertex sets L and R (step 1.1) as well as

those edges induced by them (step 1.2.1), and finds the open neighborhood of T (step 1.2.2): after all vertices in T have been
scanned in step 1, N(T ) = NT . Step 2 scans edges between T and N(T ), and adds them to Ecc or Ec accordingly; meanwhile,
it also detects Tcc and Tc. Since u ≁ h0 and since H satisfies P2, first(v) and last(v) cannot be both 0, and u is adjacent to
some vertex in {hfirst(v), . . . , h−1} and {h1, . . . , hlast(v)}. On the other hand, by P1 and P2, u is adjacent to only one of the
two sets. In the first case, |H|+first(v) ≤ last(u), while in the second case, 0 < first(u) ≤ last(v). They are handled
by steps 2.1.1 and 2.1.2 respectively, which put the edge uv is in Ecc and Ec, and the vertex v is in Tcc and Tc accordingly. Also
in step 2, vertices of T are removed from the adjacency lists of N(T ). Steps 3 and 4 add vertex w and edges incident to it.
Step 5 cleans T and finishes the algorithm. The dominating steps are 1 and 2, each of which checks every edge at most twice,
and hence the total running time is O(n + m). This concludes the proof of the lemma. �

Note that H is mapped into an induced path whl
−1h

l
0h

l
1h2 · · · h−2hr

−1h
r
0h

r
1, denoted by PH . Because of properties P1 and

P2, the hole H can be viewed as the axis for vertices of G. Likewise, PH can be viewed as the axis for vertices of f(G). The
following are immediate from properties P1 and P2.
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Fig. 5. Procedure for constructing f(G) (Lemma 2.4).

Proposition 2.5. If H satisfies properties P1 and P2, then

(I) for every vertex v of f(G), the neighbors of v on PH induce a proper nonempty sub-path of PH ; and
(II) for any pair of adjacent vertices u, v of f(G), either one of NPH [u] and NPH [v] is a subset of the other, or precisely one end of

NPH [u] is contained in NPH [v].

In an interval model, each vertex v corresponds to a closed interval I(v) = [lp(v), rp(v)], where lp(v) < rp(v) are the
left endpoint and right endpoint of I(v) respectively. In a circular-arc model with perimeter ℓ, each vertex v corresponds to
a closed arc A(v) = [ccp(v), cp(v)], where 0 ≤ ccp(v), cp(v) < ℓ and ccp(v) ≠ cp(v). We say that ccp(v) and cp(v)
are counterclockwise endpoint and clockwise endpoint of A(v) respectively. It is worth noting that possibly cp(v) < ccp(v);
such an arc necessarily contains the point 0. In the rest of this section, we assume that a circular-arc model is always given
in the same direction with H , i.e., ccp(h1) is contained in A(h0). In general, for any vertex v, the endpoints ccp(v) and cp(v)
satisfy

ccp(v) ∈

cp(hfirst(v)−1), cp(hfirst(v))


⊂ A(hfirst(v)) (1)

and cp(v) ∈

ccp(hlast(v)), ccp(hlast(v)+1)


⊂ A(hlast(v)). (2)

For example, see the arc for v2 in Fig. 6(a), where first(v2) = −1 and last(v2) = 2.
The definition off(G) is motivated by the following lemma. Although it is already implied by Theorem 1.3, a constructive

proof is presented here in the hope that it may help elucidate f(G).

Lemma 2.6. Let f(G) be the auxiliary graph defined with a hole H satisfying properties P1 and P2. If G is a normal Helly circular-
arc graph, then f(G) is an interval graph.

Proof. Let A be a normal and Helly circular-arc model for G, and let p be the perimeter of the circle in the model. The union
of arcs for T , i.e.,


v∈T A(v), does not cover the circle. Wemay assume 0 ∈ A(h0) and there is no endpoint of any arc lying in

(ccp(h0), 0]; this can be achieved by rotating all arcs in A. As a consequence, 0 ∈ A(v) for every v ∈ Tcc. An interval model
for f(G) can be obtained from A by setting

• I(vl) := [ccp(v) − p, cp(v)] and I(vr) := [ccp(v), cp(v) + p] for v ∈ T and 0 ∈ A(v);
• I(vl) := [ccp(v), cp(v)] and I(vr) := [ccp(v) + p, cp(v) + p] for v ∈ T but 0 ∉ A(v);
• I(u) := [ccp(u), cp(u)] for u ∈ T ; and
• I(w) := [−p,maxx∈T cp(x) − p].

It is easy to use definition to verify that these intervals represent f(G). �
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(a) Part of a normal and Helly circular-arc model for G.

(b) An interval model for f(G) derived from (a).

Fig. 6. Illustration for Lemma 2.6.

Themain thrust of our recognition algorithmwill be a process that retrieves a circular-arcmodel forf(G) froman interval
model forG. This is nevertheless farmore involved than its opposite direction given in Lemma2.6. For example, in an interval
model provided by known recognition algorithms for interval graphs, arcs I(vl) and I(vr) may not have the same length,
and even they do, they may have different offsets from lp(vl

0) and lp(v
r
0). Even though the construction given in the proof

of Lemma 2.6 ensures that such an interval model always exists, it is not clear how to obtain it efficiently.

Theorem 2.7. Let f(G) be the auxiliary graph defined with a hole H satisfying properties P1 and P2. If f(G) is an interval graph,
then we can in O(n + m) time build a circular-arc model for G. Moreover, the model is normal.

Proof. By Lemma 2.4, f(G) has O(n) vertices and O(m) edges. Thus, we can in O(n + m) time build an interval model I for
f(G). Let 0 = rp(w) and a = maxu∈T rp(u). Without loss of generality, assume the path PH goes ‘‘from left to right’’ in I.
Then a > 0. We use I to construct a set of arcs for V (G) on a circle of perimeter a + ϵ (where ϵ is a small positive number
such that no endpoint of I lies in (a, a + ϵ]) as follows:

A(v) :=

[lp(vr), rp(vl)] if v ∈ Tcc,
I(vl) if v ∈ T\Tcc,
I(v) v ∈ T .

(3)

By property P1 and the definition of T , every u ∈ T is adjacent to H\{h0}; therefore, rp(hl
0) < lp(u) < rp(u) ≤ a. Note

that vl
∼ w and vr

∼ T for every v ∈ Tcc; as a result, lp(vl) < 0 if and only if lp(vr) < a if and only if v ∈ Tcc.
It remains to verify that the arcs given by (3) represent G, i.e., a pair of vertices u, v of G is adjacent if and only if A(u)

and A(v) intersect. This holds trivially when neither u nor v is in T , then A(u) ∩ A(v) = I(u) ∩ I(v). Hence, we may assume
without loss of generality that v ∈ T . Consider first that u is also in T , then u ∼ v in G if and only if ul

∼ vl in f(G).

• If both u, v ∈ Tcc, then both I(ul) and I(vl) contain 0, hence ul
∼ vl in f(G); on the other hand, noting rp(vl) < lp(vr)

and rp(ul) < lp(ur), both A(u) and A(v) contains the point 0 and thus intersect.
• If neither u nor v is in Tcc, then A(u) ∩ A(v) = I(ul) ∩ I(vl), which is nonempty if and only if u ∼ v in G.
• Otherwise, precisely one of u and v is in Tcc; without loss of generality, let it be v. Then lp(vl) < 0 < lp(ul), and u ∼ v

in G if and only if lp(ul) < rp(vl), which is equivalent to A(u) ∩ A(v) = [lp(ul), rp(vl)] ≠ ∅.

Consider now that u is not in T , and then u ∼ v in G if and only if either u ∼ vl or u ∼ vr in f(G). In the case u ∼ vl,
we have lp(vl) < rp(hl

0) < lp(u) < rp(vl), and then A(u) ∩ A(v) = [lp(u), rp(vl)] ≠ ∅. In the case u ∼ vr ,
we have lp(vr) < rp(u) ≤ a, and then A(u) ∩ A(v) = [lp(vr), rp(u)] ≠ ∅. On the other hand, if u ≁ v in G, then
lp(vl) < rp(vl) < lp(u) < rp(u) < lp(vr) < rp(vr), hence A(u) ∩ A(v) = ∅.
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Fig. 7. The recognition algorithm for normal Helly circular-arc graphs.

During the construction, each arc is scanned once; hence, the running time is O(n). We now argue that A is normal by
contradiction. Suppose that two arcs A(u) and A(v) inA cover the circle, then by (1) and (2), u is necessarily adjacent to both
hfirst(v) and hlast(v). But this contradicts the fact that H satisfies property P2. �

However, the circular-arcmodelA constructed in Theorem 2.7may not be Helly. It can be decided in linear timewhether
A is Helly, and if not, the algorithm of [15] can find in the same time three arcs that cover the circle. This case is handled by
the following lemma: note that any three arcs covering the model represent such a set U of vertices.

Lemma 2.8. Given a set U of three pairwise adjacent vertices such that H ⊆ N(U) and for each v ∈ U, both hlast(v) and hfirst(v)

are adjacent to at least two vertices of U, we can in O(n + m) time find a wheel that is a subgraph of G.

Proof. Let U = {x, y, z}. Since H satisfies P2, none of NH [x], NH [y], and NH [z] contains another as a subset: suppose,
e.g., NH [x] ⊆ NH [y], then both ends of NH [z] would be in NH [y]. Without loss of generality, assume that hlast(x) ∈ NH [y],
which implies hfirst(y) ∈ NH [x]. Then both hfirst(x) and hlast(y) are adjacent to z. The hlast(y)-hfirst(x) path in H whose
inner vertices are adjacent to neither x nor ymakes a hole with x, y. By assumption, z is adjacent to every vertex in the hole,
and thus we return this hole and z as a wheel. �

We are now ready to present the recognition algorithm in Fig. 7, and use it to prove Theorem 1.2.

Proof of Theorem 1.2. We use the algorithm described in Fig. 7. Steps 1 and 2 use the algorithms of [22] and [14]. Step 3
uses Lemmas 2.2 and 2.3. Steps 4–6 follow from Lemma 2.4, Theorem 1.3, and Theorem 2.7, respectively. Step 7 uses the
algorithm of [15] to verify whether the model A built in step 6 is Helly; if not, then it can detect three arcs whose union
covers the circle and calls Lemma 2.8. All these steps can be done in O(n + m) time. �

Themajor step of this recognition algorithm is to build an interval model for f(G), thereby considerably simpler than the
known algorithm [15]. It is worth noting that if we are after a recognition algorithm (with positive certificate only), then we
can simply return ‘‘NO’’ instead of a subgraph of G that is in F in the algorithm. In particular, we do not need Theorem 1.3,
and the correctness of returning ‘‘NO’’ in step 5 is ensured by Lemma 2.6. Therefore, the algorithm is already complete.

3. Proof of Theorem 1.3

Recall that the auxiliary graph f(G) is constructed with a hole H satisfying properties P1 and P2. In principle, any hole
satisfying them can be used, and any vertex in the hole can be the h0. But for the convenience of presentation of this section,
we require the special vertex h0 of the hole to satisfy some additional condition. If some vertex v is adjacent to four or more
vertices in H , i.e., last(v) − first(v) > 2, then v ∉ H , and we can use v to produce a strictly shorter hole, bypassing the
inner vertices of NH [v]. The condition that h0 cannot be bypassed as such is formalized as our third property:

(P3) For every vertex v, {h−1, h0, h1} ⊆ NH [v] if and only if NH [v] = {h−1, h0, h1}.

We point out that unlike properties P1 and P2 that are satisfied by all holes in a normal Helly circular-arc graph, P3 is only
satisfied by some holes, e.g., those with the smallest length in the graph. We need first a linear-time procedure for finding
such a hole.

Lemma 3.1. Given a hole H of a graph G, we can in O(n+m) time find either a hole H satisfying properties P1–P3, or a subgraph
of G that is in F .
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Fig. 8. Procedure for finding a hole satisfying properties P1–P3 (Lemma 3.1).

Fig. 9. Procedure for finding a subgraph of G that is in F (step 5 of Fig. 7).

Proof. We apply the procedure described in Fig. 8. Step 3 greedily searches for an inclusion-wise maximal NH [v] satisfying
first(v) ≤ −1 and 1 ≤ last(v). Initially, a = first(h0) = −1 and b = last(h0) = 1. Each iteration of step 3 checks an
unexplored vertex v in V (G)\H . If either condition of step 3.1 is satisfied, then NH [v] properly contains {ha, ha+1, . . . , hb},
and a and b are updated to be first(v) and last(v) respectively. Note that the values of a and b are non-increasing
and nondecreasing respectively. Thus, no previously explored vertex is adjacent to all of {ha, ha+1, . . . , hb}. After step 3, all
vertices have been explored, and the hole hhbhb+1 · · · ha satisfies P3. Step 4 then calls Lemmas 2.2 and 2.3 to check whether
this new hole satisfies properties P1 and P2 as well. If not, then they return a subgraph of G that is in F .

Steps 1 and 4 take O(n+m) time, while step 3 takes O(n) time (each vertex can be checked in O(1) time). It follows that
the running time of the procedure is O(n + m). �

This linear-time procedure can be called in place of step 3 of Fig. 7, and it does not impact the asymptotic time complexity
of the algorithm,which remains linear. Recall that Theorem1.3 is only called in step 5 of our recognition algorithm (Fig. 7). In
the rest of this section, we prove Theorem 1.3 assuming that H satisfies properties P1–P3, for which we apply the procedure
outlined in Fig. 9. In particular, it first checks whether Tcc and Tc both induce cliques. If either of them does not, then a
pair of nonadjacent vertices in it can be found in linear time, and the procedure calls Lemma 3.6.1 After that, it proceeds
to call Lemma 3.7 or 3.8 based on whether f(G) is chordal or not. Recall that if f(G) is not chordal, then the algorithm of
Tarjan and Yannakakis [22] can find a hole; and if it is chordal but not an interval graph, then the algorithm of Lindzey and
McConnell [14] can find a subgraph in Fig. 1, both running in linear time.

To prove Lemmas 3.6–3.8, we need some notation and simple facts. Each vertex x of f(G) different from w is uniquely
defined by a vertex of G. This vertex is denoted by φ(x), andwe say that x is derived from φ(x). For example, φ(vl) = φ(vr) =

v for v ∈ T . By abuse of notation, we will use the same letter for a vertex u ∈ T of G and the unique vertex of f(G) derived
from u; its meaning is always clear from the context. Therefore, φ(u) = u for u ∈ T , and in particular, φ(hi) = hi for
i = 2, . . . , |H| − 2. We can mark φ(x) for each vertex of f(G) during its construction. The function φ is generalized to a set
U of vertices that does not contain w, i.e., φ(U) = {φ(v) : v ∈ U}. We point out that possibly |φ(U)| ≠ |U|.

By the construction of f(G), if a pair of vertices x and y (different from w) is adjacent in f(G), then φ(x) and φ(y) must
be adjacent in G as well. The converse is not necessarily true, e.g., for any vertex v ∈ Tc and edge uv ∈ Ec, we have u ≁ vr ,
and for any pair of adjacent vertices u, v ∈ T , we have ul

≁ vr and ur
≁ vl. We say that a pair of vertices x, y of f(G) is

a broken pair if φ(x) ∼ φ(y) in G but x ≁ y in f(G). By definition, w does not participate in any broken pair, and at least
one vertex of a broken pair is in L ∪ R. Note that if a connected subgraph F of f(G) contains both vl and vr for some v ∈ T
(i.e., |F | > |φ(F)|), then if must contain two broken pairs.

Proposition 3.2. Let F be a connected subgraph of f(G) that does not contain w or both vl, vr for any v ∈ T . Then F is a (not
necessarily induced) subgraph of G[φ(F)], and they are isomorphic if and only if F contains no broken pairs.

1 Lemma 3.6 could also be called earlier, e.g., within the construction of f(G) (Fig. 5) and immediately following step 2where Tcc and Tc have been found.
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Fig. 10. Illustrations for Proposition 3.5(I).

Proof. If F is free of broken pairs, then the mapping φ also defines an isomorphism between F and G[φ(F)]. On the other
hand, if F contains a broken pair, then F has strictly less edges than G[φ(F)], and thus they cannot be isomorphic. �

By the definition of f(G), there is no edge between L and R; and for any v ∈ T , there is no vertex adjacent to both vl

and vr . In other words, for every v ∈ T , the distance between vl and vr is at least 3. By Proposition 2.5, every vertex in
hl
0, h

l
1 . . . hr

−1h
r
0 is adjacent to any vl-vr path of f(G) for any vertex v ∈ T . Therefore, the following is a direct consequence

of Lemma 2.8.

Corollary 3.3. Let f(G) be the auxiliary graph defined with a hole H satisfying properties P1 and P2, and let v ∈ T . Given a vl-vr

path of length three, we can in O(n + m) time find a wheel as a subgraph of G.

Noting that any induced path of length d between a broken pair x, y with x = vl or vr can be extended to a vl-vr path
with length d + 1, Proposition 3.2 and Corollary 3.3 have the following consequence.

Corollary 3.4. Let F ∈ F be a subgraph of f(G). If the diameter of F is 2, then we can in O(n + m) time find a subgraph of G
that is in F .

Recall that a net is a Ď on six vertices. The following proposition will be used in both Lemmas 3.6 and 3.8.

Proposition 3.5. (I) Let {c, u1, u2, u3} induce a claw where c has degree three. If there are other (not necessarily distinct)
vertices t1, t2, and t3 such that for each i ∈ {1, 2, 3}, the vertex ti is adjacent to ui but not c, then there is a subgraph in
F .

(II) Let {u1, u2, u3} induce a triangle. If there are three distinct vertices t1, t2, and t3 such that for each i ∈ {1, 2, 3}, the vertex ti
is only adjacent to ui in {u1, u2, u3}, then there is a subgraph in F .

Proof. (I) Note that some or all of t1, t2, and t3 may coincide or be adjacent, and for each pair of distinct i, j ∈ {1, 2, 3},
vertices ui and tj may or may not be adjacent. If t1 ∼ u2, then t1u1cu2 is a C4 (by assumption, t1 ≁ c and u1 ≁ u2). Based on
the adjacency between t3 and this hole (in particular, u1, u2, and t1), we are in one of the following cases; see the first row
of Fig. 10. Let X denote {c, u1, u2, u3, t1, t3} (here t2 is irrelevant).

• If t3 is nonadjacent to the hole t1u1cu2, then they make a C∗.
• If t3 is adjacent to only u1 or only u2, then X induces a domino (Fig. 10(a)).
• If t3 is adjacent to only t1, then X induces a twin-C5 (Fig. 10(b)).
• If t3 is adjacent to t1 and exactly one of u1, u2, then X induces an FIS-1 (Fig. 10(c)).
• If t3 is adjacent to both u1 and u2, then {u1, u2, u3, c, t3} induces a K2,3 (Fig. 10(d)). Note that this includes the case t1 = t3,

and the adjacency between t1 and t3 is irrelevant otherwise.

The situation is symmetrical if there is other pair of distinct i, j ∈ {1, 2, 3} such that ui ∼ tj. Moreover, one of them must
hold true if any two of t1, t2, and t3 coincide, e.g., t1 = t2 implies t1 ∼ u2. In the remaining cases, neither of them holds true,
and we consider the number of edges among the three distinct vertices t1, t2, and t3. See the second row of Fig. 10.

• If t1, t2, and t3 are pairwise nonadjacent, then {c, u1, u2, u3, t1, t2, t3} induces a long claw (Fig. 10(e)).
• If there is one edge among t1, t2, and t3, then there is a C∗

5 , e.g., t1u1cu2t2 and t3 when the edge is t1t2 (Fig. 10(f)).
• If there are two edges among t1, t2, and t3, then {c, u1, u2, u3, t1, t2, t3} induces an FIS-2 (Fig. 10(g)).
• If t1, t2, and t3 are pairwise adjacent, then {u1, u2, u3, t1, t2, t3} induces a net (Fig. 10(h)).

(II) We consider the number of edges among the three distinct vertices t1, t2, and t3. See Fig. 11.
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Fig. 11. Illustrations for Proposition 3.5(II).

• If t1, t2, and t3 are pairwise nonadjacent, then {u1, u2, u3, t1, t2, t3} induces a net (Fig. 11(a)).
• If there is one edge among t1, t2, and t3, then there is a C∗

4 , e.g., t1u1u2t2 and t3 when the edge is t1t2 (Fig. 11(b)).
• If there are two edges among t1, t2, and t3, then {u1, u2, u3, t1, t2, t3} induces an FIS-1 (Fig. 11(c)).
• If t1, t2, and t3 are pairwise adjacent, then {u1, u2, u3, t1, t2, t3} induces a C6 (Fig. 11(d)).

The proof is now complete. �

If G is a normal Helly circular-arc graph, then in a circular-arc model for G, all arcs for Tcc contain ccp(h0). Thus, Tcc
induces a clique; likewise, Tc also induces a clique. This observation is complemented by the following lemma.

Lemma 3.6. Given a pair of nonadjacent vertices u, v ∈ Tcc (or Tc), we can in O(n + m) time find a subgraph of G that is in F .

Proof. We prove the statement on Tcc, while a symmetrical argument applies to Tc. By definition, we can find edges
ux, vy ∈ Ecc, where x, y ∈ T . We have then three induced paths h0h1h2, h0ux, and h0vy. In the following only vertices
in these paths concern us; note that some or all of x, y, and h2 might coincide. By the definition of Tcc, both u and v are
adjacent to h−1. If they are adjacent to h1 as well, thenwe return the hole uh−1vh1 and h0 as a wheel. Hence, wemay assume
without loss of generality, v ≁ h1, and consider whether u ∼ h1. If u ≁ h1, then u, v, and h1 are pairwise nonadjacent.
Noting that h0 cannot be adjacent to any of x, y, and h2, we can call Proposition 3.5(I). If u ∼ h1, then h0, h1, and u make
a triangle. By property P3, NH [u] = {h−1, h0, h1}, and hence x ≠ h2. Since v ∈ T while x and h2 are not, they are distinct.
Noting that (i) v is adjacent to neither u nor h1; (ii) h2 is adjacent to neither h0 nor u; and (iii) x is adjacent to neither h0 nor
h1 (by the definition of Ecc, x ∼ h−1, and then by property P2, x ≁ h1), we can call Proposition 3.5(II). Edges ux and vy can
be found in O(n) time, and at most 7 vertices are checked subsequently; it thus takes O(n + m) time in total. �

We may assume hereafter that Tcc and Tc induce cliques. Let Lc = {vl
: v ∈ Tc} and Rcc = {vr

: v ∈ Tcc}, which are
vertices of L and R respectively that are adjacencies to T in f(G); both induce cliques. Recall that a vertex v is simplicial if
N[v] induces a clique. Since N(w) is nothing but the vertices in L derived from Tcc, it must be a clique of f(G). Therefore, w
is simplicial and participates in no holes.

Lemma 3.7. Given a hole C of f(G), we can in O(n + m) time find a subgraph of G that is in F .

Proof. Let us first take care of some trivial cases. If C is contained in T or L or R, then by the construction of f(G), the set
φ(C) of vertices induces a hole of G. This hole is either nonadjacent (when C ⊆ T ) or completely adjacent (when C ⊆ L or
C ⊆ R) to h0 in G, whereupon we can return φ(C) and h0 as a C∗ or wheel respectively. Since L and R are nonadjacent, one
of the cases above must hold true if C is disjoint from T . Henceforth we may assume that C intersects T and, without loss
of generality, L—noting that w is neither in the hole C nor used in the following argument, hence a symmetrical argument
applies when C intersects R.

Since Lc is a clique, and since no vertex in L\Lc is adjacent to T ∪ R, there are at most two vertices in C ∩ L, which have to
be in Lc. Let ul be a vertex in C ∩ L, and let a := last(u). Since H satisfies property P2, u cannot be adjacent to h−1, which
means a ≤ |H|−2. Let us use h′

0, h
′

1, h
′

2, . . . , h
′

|H|−2, h
′

|H|−1 as aliases for h
l
0, h

l
1, h2, . . . , h|H|−2, hr

|H|−1 in the rest of the proof.
The first case we consider is h′

a ∈ C . Note that a cannot be 1, as otherwise by property P2, the other neighbor of ul in C
is adjacent to h′

1, contradicting that C is a hole. Thus, 2 ≤ a ≤ |H| − 2, and uha ∈ Ec. Let x, y be the next two vertices of C
traversed from ul, ha, and let P be the y-ul path in C avoiding ha and x. If first(φ(y)) > a, then by Proposition 2.5, the length
of P is at least two and some inner vertex of P is adjacent to ha, which contradicts that C is a hole. Hence, first(φ(y)) < a;
as a result, last(φ(y)) < a, and by Proposition 2.5, x ∼ h′

a−1. We further traverse C from x, y to the first neighbor v of h′

a−2;
this vertex exists because ul

∼ h′

a−2 (noting a − 2 ≥ 0), and it might be x. We take the hole C (when v = ul or v ∼ ul) or
ulh′

ax · · · vh′

a−2 (otherwise). It makes a wheel of f(G) with h′

a−1, which enables us to call Corollary 3.4.
The second case is when no vertex in C is adjacent to hr

−1. Then C does not intersect R. We argue that C contains no broken
pairs. Suppose that {x, y} is a broken pair in C with x ∈ L, then φ(x) ∈ Tc ∩ Tcc. By property P3, first(φ(x)) = −1, but then
by property P2, y ∼ hr

−1, a contradiction. Therefore, C is free of broken pairs, and by Proposition 3.2, φ(C) is also a hole of
G. We call Lemma 2.2 to verify whether it satisfies property P1. If not, then we have a subgraph of G that is in F and we are
done. If C does not contain any neighbor of hl

−1, then we can return φ(C) and h−1 as a C∗. Otherwise, let x be a neighbor of
hl

−1 on C , which is in L. By property P3, last(φ(x)) = 1 and both neighbors of x in C are adjacent to hl
1. Therefore, h1 has at

least three neighbors on the hole φ(C), and we can use h1 to replace the inner vertices of Nφ(C)[h1] to obtain another hole of
G. This hole is nonadjacent to h−1, and hence we can return it and h−1 as a C∗.

In the remaining cases, h′
a ∉ C and C is adjacent to hr

−1. From ul we traverse C in both directions till the first neighbor(s)
of hr

−1, denoted by v, x respectively; note that if hr
−1 has only one neighbor in C , then both v and x refer to this vertex. If
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Fig. 12. The last case of the proof of Lemma 3.7.

v and x are distinct and nonadjacent, then we find a wheel of f(G) as follows. We find the last neighbor v′ of h′

a−1 from
the ul-v path (avoiding x) in C , and then the first neighbor v′′ of h′

a+1 from the v′-v subpath; their existence is ensured by
Proposition 2.5 and they may coincide. Likewise, from the u-x path (avoiding v) in C , we find last neighbor x′ of h′

a−1 and
then the first neighbor x′′ of h′

a+1 from the x′-x sub-path. Note that v′′ and x′′ have to be distinct and nonadjacent, but v′ and
x′ might coincide (when both are ul) or be adjacent (when one is ul and the other is not). Depending on the relation between
v′ and x′, either v′

· · · v′′h′

a+1x
′′
· · · x′h′

a−1 or v′
· · · v′′h′

a+1x
′′
· · · x′ is a hole. Every vertex in this hole is adjacent to h′

a, and thus
it makes a wheel with h′

a, and we can call Corollary 3.4. Now that v = x or v ∼ x. We find a sub-path P of C that connects
L and v or x as follows. If v or x is adjacent to a vertex in C ∩ L, then we take this edge as P . Otherwise, P is taken as the
path from ul to v or x that does not contain another vertex from L (recall that |C ∩ L| ≤ 2). Without loss of generality, let
it be the ul-v path. Let y and z be the next two vertices after v in C (note that x is either v or y). The extended path hl

0Ph
r
−1

contains a broken pair; hence, either we can call Corollary 3.3 (when there exists a broken pair of distance 2) or find a hole
of G with vertices from φ(P) ∪ {h0, h−1}; let it be C ′. We argue then that C ′ does not satisfy property P2, and hence we can
call Lemma 2.3 to find a subgraph of G that is in F . In particular, we consider the neighborhoods of φ(y) and φ(z) on C ′;
see Fig. 12. By the selection of the path P , the vertex y cannot be in L: the fact y ∈ L will imply that v = x and is adjacent to
both y and u, but this is impossible as C is a hole. For the same reason, z ≠ u. If y ∈ R, then it cannot be adjacent to hr

1, as
otherwise by properties P3,2, z must be adjacent to hr

−1, a contradiction. As a result, y participates in no broken pairs.

• We have seen y ∉ L. When y ∈ R, the vertex z can be in neither L (by the construction of f(G)) nor R (by the assumption
that only v and y in C can be adjacent to hr

−1). Thus, φ(y) and φ(z) cannot be both adjacent to h0 in G.
• There cannot be two adjacent vertices of f(G) that are adjacent to hl

−1 and hr
−1 respectively. Otherwise, at least one of

properties P1–P3 is invalidated. Therefore, y is not adjacent to hl
−1, while z ∼ hl

−1 and y ∼ hr
−1 cannot be both true. Thus,

φ(y) and φ(z) cannot be both adjacent to h−1 in G.
• Since z ≠ u and since C is a hole, no inner vertex of P is nonadjacent to y; on the other hand, y participates in no broken

pairs. Therefore, φ(y) can only be adjacent to φ(v) in φ(P).

In summary, the neighborhoods of φ(y) and φ(z) on φ(C) are disjoint; hence, φ(C) does not satisfy property P2. This
concludes the proof. �

In the restf(G)will be chordal, and thuswehave aminimal non-interval subgraph F off(G) that is chordal. This subgraph
is isomorphic to some graph in Fig. 1, on which we use the following notation. It is immediate from Fig. 1 that each of them
contains precisely three simplicial vertices (squared vertices), which are called terminals, and others (round vertices) are
non-terminal vertices. It is easy to verify that (a) the distance between a pair of non-terminal vertices is at most 2; and
(b) between any pair of terminals there is a path avoiding the closed neighborhood of the other terminal. The vertices in F
are labeled as in Fig. 1. To reduce the cases we need to consider in dealing with these graphs, we will heavily exploit their
symmetry. Two pairs {x1, y1} and {x2, y2} are symmetrical in F if there is an automorphism of F that maps x1 and y1 to x2 and
y2 respectively.

• The diameter of a long claw is 4. There are three symmetric pairs of vertices of distance 4, and there are six symmetric
pairs of vertices of distance 3.

• The diameter of a whipping top is 3. There are two symmetric pairs of vertices of distance 3.
• The diameter of a net is 3. There are three symmetric pairs of vertices of distance 3.
• The diameter of a Ď on at least seven vertices is 4. There is only one pair of distance 4. There are four pairs of vertices of

distance 3, where {t1, t3} and {t2, t3} are symmetric, while {t1, u2} and {t2, u1} are symmetric.

Lemma 3.8. Let f(G) be chordal. Given a subgraph F of f(G) in Fig. 1, we can in O(n+m) time find a subgraph of G that is inF .

Proof. Recall that w is simplicial in f(G). If w is contained in F , then it is simplicial in F as well, which means that it is a
terminal of F , and has at most two neighbors in F . We consider first the case that (a) w has two distinct neighbors ul and vl

in F (note then u, v ∈ Tcc), and (b) no vertex in T is adjacent to both u and v in G. By the definition of Tcc, we can find two
distinct vertices x, y ∈ T such that ux, vy ∈ Ecc. By assumption, u ≁ y and v ≁ x in G. As a result, x and y are nonadjacent
in G; otherwise, urvryx is a hole of f(G), which contradicts the assumption that f(G) is chordal. We apply the procedure
described in Fig. 13.

We now verify the correctness of the procedure. Both u and v are adjacent h−1 in G, and hence according to property P3,
last(u) and last(v) are either 0 or 1. By property P2, x ≁ hlast(u). Step 1 considers the case when x ∼ hlast(u)+1, then
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Fig. 13. Procedure for Lemma 3.8.

Fig. 14. Structures used in the proof of Lemma 3.8 (not all edges of the graph are presented).

xuh0h1 or xuh1h2 is a hole of G, depending on last(u) is 0 or 1. On the hole xuh1h2, only u and h1 can be adjacent to v, and
they are nonadjacent to y; therefore, the hole does not satisfy property P2. Likewise, on the hole xuh0h1, only u and h0 can be
adjacent to v but not y, while h1 can be adjacent to only one of v and y. Thus, Lemma 2.3 will find a subgraph in F . The case
when y ∼ hlast(v)+1 can be dealt with in a similar way. Now that x ≁ hlast(u)+1 and y ≁ hlast(v)+1, if last(u) = last(v),
then {x, u, y, v, hlast(v), hlast(v)+1} induces a net; this justifies step 2. If the procedure has passed step 2, then last(u)must
be different from last(v); recall that they have to be either 0 or 1, and hence there are only two possible cases. Steps 3
and 4 deal with the case last(u) = 1 and last(v) = 0, and the other case can be dealt with in a symmetric way. If
v ∼ h2, then vh0h1h2 is a hole, and no vertex on it is adjacent to x; this justifies step 3. For step 4, note that by properties
P3, first(u) = −1, and by the definition of Ecc and property P2, x ∼ h−1. This concludes the correctness of the procedure
(see Fig. 14).

In the remaining cases, if w ∈ F and |NF (w)| = 2, then we can find a vertex w′
∈ T such that w′ is adjacent to vr for

both vl
∈ NF (w). By construction, w′ cannot be adjacent to NF (w), and thus the distance between w and w′ is at least 2. We

extend φ by defining φ(w) = w′. If w′ is adjacent to some vertex x in F (it must be the case when w′
∈ F ), then {w, x} can

be viewed similar as a broken pair: they are not adjacent in f(G) but φ(w) and φ(x) are adjacent in G.
If F contains neither a broken pair nor any neighbor of w′, then φ(F) is isomorphic to F and we are done. Therefore, we

assume at least one of them exists. We consider the shortest distance of a broken pair in F , or the shortest distance between
w and NF (w

′) in F ; let d be the smaller of them. Note that given such a path of length d in F , we can find an ul-ur path of
length d+1 for some vertex u ∈ T . In particular, let ul be the second vertex of aw-x path of length d, where x ∼ w′, then the
path can be obtained by removingw and appendingw′, ur after x. By the construction of f(G), we have d > 1. If d = 2, then
there is a ul-ur path P of length 3, which enables us to call Corollary 3.3. On the other hand, the diameter of the subgraph F
is at most four. Therefore, in the following we assume that d is either 3 or 4. If there is a broken pair {x, y}, then one of x and
y must be a terminal of F ; we may assume that x is a terminal of F . It should be noted that w′ itself might be in F , just as F
may contain both ul and ur for some u ∈ T ; this can only happen when d = 3 and the diameter of F is 4.

If F is a long claw, then its four non-terminal vertices are derived froma clawofG. The other three vertices are nonadjacent
to c; thus, we can call Proposition 3.5(I). If F is a whipping top, then φ(F) has the same cardinality as F . Theremight be one or
two edgesφ(t1) φ(t3) and/orφ(t2) φ(t3). We have a domino and a C∗

4 respectively. If F is a Ě, then F has at least seven vertices
(the diameter of a tent is 2). The pair must be {t1, t2}. Let P be the t1-t2 path in F − N[t3]. We can return φ(P) and φ(t3)
as a C∗. If F is a net, then its three non-terminal vertices are derived from a triangle of G, each having a distinct neighbor.
Thus, we can call Proposition 3.5(II). In the rest, F is a Ď on at least seven vertices. If d = 3, then we consider the pairs {t1, t3}
and {t1, u2}. (Other cases are handled in a similar way and are omitted.) First, let it be {t1, t3}, and let P be the path t1u1u3t3.
Based on the adjacency between φ(t2) and vertices in φ(P), one of the following holds true.

• If φ(t2) is nonadjacent to the hole induced by φ(P), then we return φ(P) and φ(t2) as a C∗ (Fig. 15(a)).
• If φ(t2) is adjacent to only φ(t3) or φ(u1), then we get a domino (Fig. 15(b)).
• If φ(t2) is adjacent to only φ(t1), then we get a twin-C5 (Fig. 15(c)).
• If φ(t2) is adjacent to φ(t1) and precisely one of {φ(t3), φ(u1)}, then we get an FIS-1 (Fig. 15(d)).
• If φ(t2) is adjacent to both φ(t3) and φ(u1), then we get a K2,3 (Fig. 15(e)). Here the adjacency between φ(t2) and φ(t1) is

immaterial.
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(a) Hole φ(t1, u1, u3, t3) and
φ(t2) make a C∗ .

(b) φ(t1, u1, t3, u3, u2, t2) makes a domino. (c) φ(t1, u1, t3, u3, u2, t2)
makes a twin-C5 .

(d) φ(t1, u1, t3, u3, u2, t2)
makes an FIS-1.

(e) φ(u1, t3, u3, u2, t2) makes a
K2,3 (t1 is irrelevant here).

Fig. 15. F is a Ď on at least 7 vertices (dashed edges are in G only).

Second, consider the pair {t1, u2}. If φ(t1)φ(t3) ∈ E(G) as well, then φ({t1, u1, u3, t3, u2}) makes a K2,3; otherwise, let P be
the t1-u2 path in F − N[t3], we can return φ(P) and φ(t3) as a C∗. Now d = 4, φ(F) has the same number of vertices as F .
The only pair is {t1, t2}, and there is thus a C∗. �

4. A recognition algorithm for proper Helly circular-arc graphs

Proper Helly circular-arc graphs are a subset of normal Helly circular-arc graphs: if a circular-arc model is both proper
and Helly, then it is normal as well. Indeed, a normal Helly circular-arc graph is a proper Helly circular-arc graph if and only
if it is claw-free. Therefore, for the recognition of proper Helly circular-arc graphs, we may run the algorithm presented in
previous sections first, and in the case that the input graph is a normal Helly circular-arc graph, check whether it contains a
claw. But there is yet a simpler way that does not need to call the recognition algorithm for interval graphs.

We start from recalling the forbidden subgraph characterization of proper Helly circular-arc graphs.

Theorem 4.1 ([15,23]). A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W4, W5, C6, or C∗

ℓ .

A technical remark is worth here. What was characterized by Lin et al. [15, Corollary 5] is actually the proper circular-
arc graphs that are not proper Helly circular-arc graphs: they must contain a W4 or tent. On the other hand, Tucker [23]
had characterized the forbidden induced subgraphs of proper circular-arc graphs, which include, aside from those stated in
Theorem 4.1 (claw, net, W5, C6, and C∗

ℓ for ℓ ≥ 4), C2ℓ and C∗

2ℓ−1 for ℓ ≥ 4. To see Theorem 4.1, note that for ℓ ≥ 4, both C2ℓ

and C∗

2ℓ−1 contain aW4. Let FP denote the set of claw, net, tent,W4,W5, C6, and C∗

ℓ . A quick glance tells us that any graph in
F but not inFP contains a claw. Therefore, given a subgraph of G inF , it is straightforward to retrieve a subgraph of G inFP.

Since proper interval graphs are {claw, net, tent, Cℓ}-free graphs [21,25], it follows from Theorem 4.1 that if a proper
Helly circular-arc graph is chordal, then it is a proper interval graph. Therefore, for the recognition of proper Helly circular-
arc graphs, we are also focused on non-chordal graphs. We find a hole that satisfies properties P1–P3, and build the
auxiliary graph f(G). It is easy to verify that f(G) contains a claw if and only if G contains a claw. Thus, if the graph G
has passed previous test, its recognition reduces to the recognition of a proper interval graph. To make it certifying, we
adapt Theorems 1.3 and 2.7 as follows. We use the well-known fact that every proper interval graph has a unit interval
model as well [21].

Theorem 4.2. Let f(G) be the auxiliary graph defined with a hole H satisfying properties P1–P3. If f(G) is a proper interval
graph, then we can in O(n + m) time build a circular-arc model for G that is normal and proper.

Proof. We can in O(n+m) time build a unit interval model I for f(G). Let 0 = rp(w) and a = maxu∈T rp(u). Without loss
of generality, assume the path PH goes ‘‘from left to right’’ in I. Then lp(hl

0) > 0 and a > rp(hl
0) > 1. We modify I such

that for each pair of vertices u, v ∈ Tcc,

lp(ul) < lp(vl) if and only if lp(ur) < lp(vr). (4)

Let u, v be pair of vertices in Tcc such that lp(ur) < lp(vr) but lp(ul) > lp(vl). We argue that (i) there cannot be any
interval with right endpoint in [lp(vl), lp(ul)], and (ii) there cannot be any interval with left endpoint in [rp(vl), rp(ul)].
Suppose to the contradiction of (i), lp(vl) < rp(x) < lp(ul) for some x. If x = w, then there must be some vertex y ∈ T
such that yv ∈ Ecc. But then y is adjacent to vr but not ur in f(G), and it is impossible that lp(ur) < lp(vr). Otherwise,
x ∈ L, and there is a corresponding vertex x′

∈ R. Then φ(x) is adjacent to h−1, v but not u, and it is again impossible that
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(a) A proper Helly circular-arc graph. (b) f(G) and a unit interval model.

Fig. 16. A proper Helly circular-arc graph G and a unit interval model for f(G). Since rp(hl
1) − rp(hl

0) < 1 < rp(u1) − rp(ul
0), it follows that

rp(ul
0) − rp(hl

0) < rp(u1) − rp(hl
1). By repeating this argument we can conclude rp(ul

1) − rp(hl
0) < rp(ur

1) − rp(hr
0).

Fig. 17. The recognition algorithm for proper Helly circular-arc graphs.

lp(ur) < lp(vr). The case (ii) can be refuted in a similar way. Therefore, we can switch I(ul) and I(vl). Repeating this we
can find a modified model that satisfies (4) and represents f(G).

We use I to construct a set of arcs for V (G) on a circle of perimeter a + ϵ (where ϵ is a small positive number such that
no endpoint of I lies in (a, a + ϵ]) as follows:

A(v) :=

[lp(vr), rp(vl)] if v ∈ Tcc,
I(vl) if v ∈ T\Tcc,
I(v) v ∈ T .

(5)

The construction is the same as that used in Theorem 4.2. A word-by-word copy of the proof in Theorem 4.2 will show
that A is a normal circular-arc model for G. We now verify A is proper, i.e., no arc in it contains another arc. Let u, v be
any two vertices of G. First, if both are in Tcc, then it follows from (4). If neither is in Tcc, then A(u) = I(u) and A(v) = I(v).
Otherwise, assume that u is in Tcc and v is not. Since A(v) does not contain 0, it cannot contains A(u); on the other hand,
since both [lp(ur), b) and [0, rp(ul)] is shorter than the unit length, A(u) cannot contain A(v) that has length 1. �

One may wonder whether we can always arrange the intervals such that for each v ∈ T , the intervals I(vl) and I(vr)
can have the same position related to I(hl

0) and I(hr
0) respectively. The answer is no. See, for example, Fig. 16. From such

an interval model, if it would exist, the circular-arc model constructed by Theorem 4.1 should always be a unit circular-arc
model. But we know that some proper (Helly) circular-arc graphs have no unit (and Helly) circular-arc models. Indeed, the
eight-vertex proper Helly circular-arc graph G given in Fig. 16(a) is actually the CI(4, 1) graph defined by Tucker [23], which
is not a unit circular-arc graph; see also [15].

Lemma 4.3. Given a minimal subgraph of f(G) that is not a proper interval subgraph, we can in O(n+m) time find a subgraph
of G in FP .

Proof. Let F be the subgraph off(G). If F is a claw, thenwe call Corollary 3.4; otherwisewe call the algorithmof Theorem1.3.
Either the returned subgraph is in FP, or we can find a claw from it. �

We point out that Lemma 4.3 can be argued in a direct way, without calling the algorithm of Theorem 1.3, and it is far
simpler than what we have done in Section 3. On the one hand, there cannot be a vertex in both Tc and Tcc. On the other
hand, we do not need take care of long claws, Ďs, and Ěs.

We are now ready to present the certifying recognition algorithm for proper Helly circular-arc graphs in Fig. 17, from
which Theorem 1.4 follows.



Y. Cao et al. / Discrete Applied Mathematics 216 (2017) 67–83 83

Acknowledgments

We are grateful to one anonymous referee for her/his careful reading and helpful suggestions, in particular for pointing
out flaws in a preliminary version and suggesting a better proof for Lemma 2.3.

The first author’s research was partially supported by the Hong Kong Research Grants Council (RGC) under grant PolyU
252026/15E, theNational Natural Science Foundation of China (NSFC) under grant 61572414, and theHongKong Polytechnic
University (PolyU) under grant 4-ZZEZ. He also acknowledges the support from the European Research Council (ERC) under
grant 280152 and the Hungarian Scientific Research Fund (OTKA) under grant NK105645 at an early stage of this project,
when he was a postdoctoral research fellow at Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI). The second and third authors’ research was partially supported by CONICET PIP 11220120100450CO and
ANPCyT PICT 2012-1324 grants.

References

[1] Yixin Cao, Linear recognition of almost interval graphs, 2014. arXiv:1403.1515.
[2] Yixin Cao, Direct and certifying recognition of normal Helly circular-arc graphs in linear time, in: Jianer Chen, John Hopcroft, Jianxin Wang (Eds.),

Frontiers in Algorithmics - FAW 2014, in: LNCS, vol. 8497, Springer, 2014, pp. 13–24. http://dx.doi.org/10.1007/978-3-319-08016-1_2.
[3] Xiaotie Deng, Pavol Hell, Jing Huang, Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs, SIAM J. Comput.

25 (2) (1996) 390–403. http://dx.doi.org/10.1137/S0097539792269095.
[4] Guillermo Durán, Luciano N. Grippo, Martín D. Safe, Structural results on circular-arc graphs and circle graphs: A survey and the main open

problems, Discrete Appl. Math. 164 (2) (2014) 427–443. LAGOS’11: Sixth Latin American Algorithms, Graphs, and Optimization Symposium, Bariloche,
Argentina—2011. http://dx.doi.org/10.1016/j.dam.2012.12.021.

[5] Mathew C. Francis, Pavol Hell, Juraj Stacho, Forbidden structure characterization of circular-arc graphs and a certifying recognition algorithm,
in: Piotr Indyk (Ed.), Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2015, pp. 1708–1727.
http://dx.doi.org/10.1137/1.9781611973730.114.

[6] Luciano N. Grippo, Martín D. Safe, On circular-arc graphs having a model with no three arcs covering the circle. CLAIO-SBPO 2012, Rio de Janeiro -
Brazil, September, 24–28 2012. arXiv:1402.2641.

[7] Hugo Hadwiger, Hans Debrunner, Victor Klee, Combinatorial Geometry in The Plane. Athena series. Holt, Rinehart and Winston, London, 1964.
[8] Pinar Heggernes, Dieter Kratsch, Linear-time certifying recognition algorithms and forbidden induced subgraphs, Nordic J. Comput. 14 (1–2) (2007)

87–108.
[9] Wen-Lian Hsu, Jeremy Spinrad, Independent sets in circular-arc graphs, J. Algorithms 19 (2) (1995) 145–160. http://dx.doi.org/10.1006/jagm.1995.

1031.
[10] Haim Kaplan, Yahav Nussbaum, Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs, Discrete Appl. Math.

157 (15) (2009) 3216–3230. http://dx.doi.org/10.1016/j.dam.2009.07.002.
[11] Haim Kaplan, Yahav Nussbaum, A simpler linear-time recognition of circular-arc graphs, Algorithmica 61 (3) (2011) 694–737. http://dx.doi.org/10.

1007/s00453-010-9432-y.
[12] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, Jeremy P. Spinrad, Certifying algorithms for recognizing interval graphs and permutation graphs,

SIAM J. Comput. 36 (2) (2006) 326–353. A preliminary version appeared in SODA 2003. http://dx.doi.org/10.1137/S0097539703437855.
[13] Cornelis G. Lekkerkerker, J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45–64.
[14] Nathan Lindzey, Ross M. McConnell, On finding Tucker submatrices and Lekkerkerker-Boland subgraphs, in: Andreas Brandstädt, Klaus Jansen,

Rüdiger Reischuk (Eds.), Revised Papers of the 39th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2013, in: LNCS,
vol. 8165, 2013, pp. 345–357. http://dx.doi.org/10.1007/978-3-642-45043-3_30.

[15] Min Chih Lin, Francisco J. Soulignac, Jayme L. Szwarcfiter, Normal Helly circular-arc graphs and its subclasses, Discrete Appl. Math. 161 (7–8) (2013)
1037–1059. http://dx.doi.org/10.1016/j.dam.2012.11.005.

[16] Min Chih Lin, Francisco J. Soulignac, Jayme L. Szwarcfiter, The clique operator on circular-arc graphs, Discrete Appl. Math. 158 (12) (2010) 1259–1267.
http://dx.doi.org/10.1016/j.dam.2009.01.019.

[17] Min Chih Lin, Jayme L. Szwarcfiter, Characterizations and recognition of circular-arc graphs and subclasses: A survey, Discrete Math. 309 (18) (2009)
5618–5635. http://dx.doi.org/10.1016/j.disc.2008.04.003.

[18] RossM.McConnell, Linear-time recognition of circular-arc graphs, Algorithmica 37 (2) (2003) 93–147. http://dx.doi.org/10.1007/s00453-003-1032-7.
[19] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, Pascal Schweitzer, Certifying algorithms, Comput. Sci. Rev. 5 (2) (2011) 119–161.

http://dx.doi.org/10.1016/j.cosrev.2010.09.009.
[20] Terry A. McKee, Restricted circular-arc graphs and clique cycles, Discrete Math. 263 (1–3) (2003) 221–231. http://dx.doi.org/10.1016/S0012-

365X(02)00578-2.
[21] Fred S. Roberts, Indifference graphs, in: Frank Harary (Ed.), Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., 1968),

Academic Press, New York, 1969, pp. 139–146.
[22] Robert Endre Tarjan, Mihalis Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and

selectively reduce acyclic hypergraphs, SIAM J. Comput. 13 (3) (1984) 566–579. With Addendum in the same journal, 14(1):254–255, 1985.
http://dx.doi.org/10.1137/0213035.

[23] Alan C. Tucker, Structure theorems for some circular-arc graphs, Discrete Math. 7 (1–2) (1974) 167–195. http://dx.doi.org/10.1016/S0012-
365X(74)80027-0.

[24] Alan C. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math. 29 (3) (1975) 493–502. http://dx.doi.org/10.1137/0129040.
[25] Gerd Wegner, Eigenschaften der Nerven homologisch-einfacher Familien im Rn (Ph.D. thesis), Universität Göttingen, 1967.

http://arxiv.org/1403.1515
http://dx.doi.org/10.1007/978-3-319-08016-1_2
http://dx.doi.org/10.1137/S0097539792269095
http://dx.doi.org/10.1016/j.dam.2012.12.021
http://dx.doi.org/10.1137/1.9781611973730.114
http://arxiv.org/1402.2641
http://refhub.elsevier.com/S0166-218X(15)00430-8/sbref7
http://refhub.elsevier.com/S0166-218X(15)00430-8/sbref8
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1006/jagm.1995.1031
http://dx.doi.org/10.1016/j.dam.2009.07.002
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1007/s00453-010-9432-y
http://dx.doi.org/10.1137/S0097539703437855
http://refhub.elsevier.com/S0166-218X(15)00430-8/sbref13
http://dx.doi.org/10.1007/978-3-642-45043-3_30
http://dx.doi.org/10.1016/j.dam.2012.11.005
http://dx.doi.org/10.1016/j.dam.2009.01.019
http://dx.doi.org/10.1016/j.disc.2008.04.003
http://dx.doi.org/10.1007/s00453-003-1032-7
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1016/S0012-365X(02)00578-2
http://dx.doi.org/10.1016/S0012-365X(02)00578-2
http://dx.doi.org/10.1016/S0012-365X(02)00578-2
http://refhub.elsevier.com/S0166-218X(15)00430-8/sbref21
http://dx.doi.org/10.1137/0213035
http://dx.doi.org/10.1016/S0012-365X(74)80027-0
http://dx.doi.org/10.1016/S0012-365X(74)80027-0
http://dx.doi.org/10.1016/S0012-365X(74)80027-0
http://dx.doi.org/10.1137/0129040
http://refhub.elsevier.com/S0166-218X(15)00430-8/sbref25

	Forbidden induced subgraphs of normal Helly circular-arc graphs: Characterization and detection
	Introduction
	The recognition algorithm
	Proof of Theorem 1.3
	A recognition algorithm for proper Helly circular-arc graphs
	Acknowledgments
	References


