Experimental analysis of density fingering instability modified by precipitation

Show simple item record

dc.creator Binda, Leonardo David
dc.creator D'Onofrio, Alejandro Gustavo
dc.creator Zalts, Anita
dc.creator El Hasi, Claudio
dc.date.accessioned 2025-08-07T16:28:34Z
dc.date.available 2025-08-07T16:28:34Z
dc.date.issued 2017
dc.identifier.citation Binda, L. D., Zalts, A., El Hasi, C. y D'Onofrio, A. G. (2017). Experimental analysis of density fingering instability modified by precipitation. Chaos, 27(5), 053111.
dc.identifier.issn 1054-1500
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2371
dc.description Revista con referato
dc.description Fil: D'Onofrio, Alejandro Gustavo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: D'Onofrio, Alejandro Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina.
dc.description Fil: D'Onofrio, Alejandro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.description Fil: Binda, Leonardo David. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Zalts, Anita. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description.abstract We analyze the effect of precipitate formation on the development of density induced hydrodynamic instabilities. In this case, the precipitate is BaCO3, obtained by reaction of CO2 with aqueous BaCl2. CO2(g) dissolution increases the local density of the aqueous phase, triggering Rayleigh–Taylor instabilities and BaCO3 formation. It was observed that at first the precipitate was formed at the finger front. As the particles became bigger, they began to fall down from the front. These particles were used as tracers using PIV technique to visualize the particle streamlines and to obtain the velocity of that movement. This falling produced a downward flow that might increase the mixing zone. Contrary to expectations, it was observed that the finger length decreased, indicating that for the mixing zone development, the consumption of CO2 to form the precipitate is more important than the downward flow. The mixing zone length was recovered by increasing the availability of the reactant (higher CO2 partial pressure), compensating the CO2 used for BaCO3 formation. Mixing zone development rates reached constant values at shorter times when the precipitate is absent than when it is present. An analysis of the nonlinear regime with and without the precipitate is performed.
dc.format application/pdf
dc.language eng
dc.publisher American Institute of Physics
dc.relation http://dx.doi.org/10.1063/1.4983670
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Chaos. May. 2017; 27(5): 053111
dc.source.uri https://pubs.aip.org/aip/cha/issue/27/5
dc.subject Instabilities
dc.subject CO2
dc.subject Hele-Shaw
dc.subject Precipitation
dc.subject.classification Ciencias Químicas
dc.title Experimental analysis of density fingering instability modified by precipitation
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics