Mostrar el registro sencillo del ítem
dc.creator | Gómez, Nicolás D. | |
dc.creator | Azcárate, M. Laura | |
dc.creator | Codnia, Jorge | |
dc.creator | Cobos, Carlos J. | |
dc.date.accessioned | 2025-07-11T17:49:09Z | |
dc.date.available | 2025-07-11T17:49:09Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Gómez, N. D., Azcárate, M. L., Codnia, J. y Cobos, C. J. (2017). Quantum chemical and kinetic study of the CCl2 self-recombination reaction. Computational and Theoretical Chemistry, 1121, 1-10. | |
dc.identifier.issn | 2210-271X | |
dc.identifier.uri | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2313 | |
dc.description | Revista con referato | |
dc.description | Fil: Codnia, Jorge. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. | |
dc.description | Fil: Codnia, Jorge. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina. | |
dc.description | Fil: Gómez, Nicolás D. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina. | |
dc.description | Fil: Azcárate, M. Laura. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina. | |
dc.description.abstract | . | |
dc.description.abstract | The temperature and pressure dependencies of the rate constant of the recombination reaction CCl2 + CCl2 +M?C2Cl4+M have been theoretically studied between 300 and 2000 K. Quantum-chemical calculations were employed to characterize relevant parts of the potential energy surface of this process. The limiting rate constants were analyzed using the unimolecular reaction theory. The resulting low pressure rate constant can be represented as k0 = [Ar] 3.5 10 23 (T/300 K) 8.7 exp( 1560 K/T) cm3 molecule 1 s 1. The high pressure rate constants derived from a simplified statistical adiabatic channel model (SSACM) and from a SACM combined with classical trajectory calculations (SACM/CT) are k1 = (1.7 ± 1.0) 10 12 (T/300)0.8 ± 0.1 cm3 molecule 1 s 1 and k1 = (5.4 ± 3.0) 10 13(T/300)0.7 ± 0.1 cm3 molecule 1 s 1. The falloff curves were represented in terms of these limiting rate constants. Reported experimental results are satisfactorily described with the present model. The calculations indicate that the CCl2 + CCl2 reaction proceeds via the stabilization of C2Cl4, with a contribution of the C2Cl3 +Cl? C2Cl4 reaction, and at sufficiently high temperatures the channel CCl2 + CCl2 --> C2Cl2 + 2Cl becomes relevant. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier | |
dc.relation | http://dx.doi.org/10.1016/j.comptc.2017.10.004 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Computational and Theoretical Chemistry. Dic. 2017; 1121: 1-10 | |
dc.source.uri | https://www.sciencedirect.com/journal/computational-and-theoretical-chemistry/vol/1121/suppl/C | |
dc.subject | CCl2 | |
dc.subject | C2Cl4 | |
dc.subject | Quantum-chemical calculations | |
dc.subject | Statistical adiabatic channel model/classical | |
dc.subject | Trajectory calculations | |
dc.subject | Recombination reactions | |
dc.subject.classification | Ciencias Físicas | |
dc.title | Quantum chemical and kinetic study of the CCl2 self-recombination reaction | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion |