Quantum chemical and kinetic study of the CCl2 self-recombination reaction

Show simple item record

dc.creator Gómez, Nicolás D.
dc.creator Azcárate, M. Laura
dc.creator Codnia, Jorge
dc.creator Cobos, Carlos J.
dc.date.accessioned 2025-07-11T17:49:09Z
dc.date.available 2025-07-11T17:49:09Z
dc.date.issued 2017
dc.identifier.citation Gómez, N. D., Azcárate, M. L., Codnia, J. y Cobos, C. J. (2017). Quantum chemical and kinetic study of the CCl2 self-recombination reaction. Computational and Theoretical Chemistry, 1121, 1-10.
dc.identifier.issn 2210-271X
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2313
dc.description Revista con referato
dc.description Fil: Codnia, Jorge. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Codnia, Jorge. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
dc.description Fil: Gómez, Nicolás D. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
dc.description Fil: Azcárate, M. Laura. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
dc.description.abstract .
dc.description.abstract The temperature and pressure dependencies of the rate constant of the recombination reaction CCl2 + CCl2 +M?C2Cl4+M have been theoretically studied between 300 and 2000 K. Quantum-chemical calculations were employed to characterize relevant parts of the potential energy surface of this process. The limiting rate constants were analyzed using the unimolecular reaction theory. The resulting low pressure rate constant can be represented as k0 = [Ar] 3.5 10 23 (T/300 K) 8.7 exp( 1560 K/T) cm3 molecule 1 s 1. The high pressure rate constants derived from a simplified statistical adiabatic channel model (SSACM) and from a SACM combined with classical trajectory calculations (SACM/CT) are k1 = (1.7 ± 1.0) 10 12 (T/300)0.8 ± 0.1 cm3 molecule 1 s 1 and k1 = (5.4 ± 3.0) 10 13(T/300)0.7 ± 0.1 cm3 molecule 1 s 1. The falloff curves were represented in terms of these limiting rate constants. Reported experimental results are satisfactorily described with the present model. The calculations indicate that the CCl2 + CCl2 reaction proceeds via the stabilization of C2Cl4, with a contribution of the C2Cl3 +Cl? C2Cl4 reaction, and at sufficiently high temperatures the channel CCl2 + CCl2 --> C2Cl2 + 2Cl becomes relevant.
dc.format application/pdf
dc.language eng
dc.publisher Elsevier
dc.relation http://dx.doi.org/10.1016/j.comptc.2017.10.004
dc.rights info:eu-repo/semantics/openAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Computational and Theoretical Chemistry. Dic. 2017; 1121: 1-10
dc.source.uri https://www.sciencedirect.com/journal/computational-and-theoretical-chemistry/vol/1121/suppl/C
dc.subject CCl2
dc.subject C2Cl4
dc.subject Quantum-chemical calculations
dc.subject Statistical adiabatic channel model/classical
dc.subject Trajectory calculations
dc.subject Recombination reactions
dc.subject.classification Ciencias Físicas
dc.title Quantum chemical and kinetic study of the CCl2 self-recombination reaction
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics