Canonical sphere bundles of the Grassmann manifold

Show simple item record

dc.creator Andruchow, Esteban
dc.creator Chiumiento, Eduardo Hernán
dc.creator Larotonda, Gabriel Andrés
dc.date.accessioned 2024-12-23T13:21:47Z
dc.date.available 2024-12-23T13:21:47Z
dc.date.issued 2019
dc.identifier.citation Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203.
dc.identifier.issn 0046-5755
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.
dc.format application/pdf
dc.language eng
dc.publisher Springer
dc.relation http://dx.doi.org/10.1007/s10711-019-00431-7
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Geometriae Dedicata. Feb. 2019; 203(1): 179-203
dc.source.uri https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst
dc.subject Finsler metric
dc.subject Flag manifold
dc.subject Geodesic
dc.subject Projection
dc.subject Riemannian metric
dc.subject Sphere bundle
dc.title Canonical sphere bundles of the Grassmann manifold
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics