Mostrar el registro sencillo del ítem
dc.creator | Andruchow, Esteban | |
dc.date.accessioned | 2024-12-23T13:21:44Z | |
dc.date.available | 2024-12-23T13:21:44Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513. | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.uri | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801 | |
dc.description | Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. | |
dc.description | Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. | |
dc.description.abstract | Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2). | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | American Mathematical Society | |
dc.relation | http://dx.doi.org/10.1090/proc/15568 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513 | |
dc.source.uri | https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/ | |
dc.subject | Projections | |
dc.subject | Geodesics of projections | |
dc.subject | Von Neumann algebras | |
dc.subject | Index for subfactors | |
dc.title | Geodesics of projections in von Neumann algebras | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |