Geodesics of projections in von Neumann algebras

Mostrar el registro sencillo del ítem

dc.creator Andruchow, Esteban
dc.date.accessioned 2024-12-23T13:21:44Z
dc.date.available 2024-12-23T13:21:44Z
dc.date.issued 2021
dc.identifier.citation Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513.
dc.identifier.issn 0002-9939
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801
dc.description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
dc.description.abstract Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).
dc.format application/pdf
dc.language eng
dc.publisher American Mathematical Society
dc.relation http://dx.doi.org/10.1090/proc/15568
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513
dc.source.uri https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/
dc.subject Projections
dc.subject Geodesics of projections
dc.subject Von Neumann algebras
dc.subject Index for subfactors
dc.title Geodesics of projections in von Neumann algebras
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en Repositorio


Listar

Mi cuenta

Estadísticas