dc.creator |
Bonomo, Flavia |
|
dc.creator |
Brešar, Boštjan |
|
dc.creator |
Grippo, Luciano Norberto |
|
dc.creator |
Milanič, Martin |
|
dc.creator |
Safe, Martín D. |
|
dc.date.accessioned |
2024-07-16T17:07:07Z |
|
dc.date.available |
2024-07-16T17:07:07Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Bonomo, F. et al. (1-2018). Domination parameters with number 2: interrelations and algorithmic consequences. Discrete Applied Mathematics, 235, 23-50. |
|
dc.identifier.issn |
0166-218X |
|
dc.identifier.uri |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588 |
|
dc.description |
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina |
|
dc.description |
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
|
dc.description |
Fil:Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
|
dc.description |
Fil: Safe, Martín M. Universidad Nacional del Sur. Departamento de Matemática; Argentina. |
|
dc.description |
Fil: Brešar, Boštjan. University of Maribor. Faculty of Natural Sciences and Mathematics; Slovenia. |
|
dc.description |
Fil: Milanič, Martin. University of Primorska; Eslovenia. |
|
dc.description.abstract |
In this paper, we study the most basic domination invariants in graphs, in which number 2
is intrinsic part of their definitions. We classify them upon three criteria, two of which give
the following previously studied invariants: the weak 2-domination number, γw2(G), the
2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination
number, γ×2(G), the total{2}-domination number, γt{2}(G), and the total double domination
number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined.
The third criterion yields rainbow versions of the mentioned six parameters, one of which
has already been well studied, and three other give new interesting parameters. Together
with a special, extensively studied Roman domination, γ R(G), and two classical parameters,
the domination number, γ (G), and the total domination number, γt(G), we consider 13
domination invariants in graphs. In the main result of the paper we present sharp upper
and lower bounds of each of the invariants in terms of every other invariant, a large majority
of which are new results proven in this paper. As a consequence of the main theorem we
obtain new complexity results regarding the existence of approximation algorithms for the
studied invariants, matched with tight or almost tight inapproximability bounds, which
hold even in the class of split graphs |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Elsevier Science BV |
|
dc.relation |
http://dx.doi.org/10.1016/j.dam.2017.08.017 |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
Discrete Applied Mathematics. (1-2018); 235: 23-50 |
|
dc.source.uri |
https://linkinghub.elsevier.com/retrieve/pii/S0166218X17304031 |
|
dc.subject |
Graph domination |
|
dc.subject |
Total domination |
|
dc.subject |
Rainbow domination |
|
dc.subject |
2-domination |
|
dc.subject |
Integer domination |
|
dc.subject |
Double domination |
|
dc.subject |
Split graph |
|
dc.subject |
Approximation algorithm |
|
dc.subject |
Inapproximability |
|
dc.subject |
Matemática Aplicada |
|
dc.subject |
Matemática Pura |
|
dc.title |
Domination parameters with number 2 : interrelations and algorithmic consequences |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:ar-repo/semantics/artículo |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|