Domination parameters with number 2 : interrelations and algorithmic consequences

Show simple item record

dc.creator Bonomo, Flavia
dc.creator Brešar, Boštjan
dc.creator Grippo, Luciano Norberto
dc.creator Milanič, Martin
dc.creator Safe, Martín D.
dc.date.accessioned 2024-07-16T17:07:07Z
dc.date.available 2024-07-16T17:07:07Z
dc.date.issued 2018
dc.identifier.citation Bonomo, F. et al. (1-2018). Domination parameters with number 2: interrelations and algorithmic consequences. Discrete Applied Mathematics, 235, 23-50.
dc.identifier.issn 0166-218X
dc.identifier.uri http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588
dc.description Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
dc.description Fil:Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.description Fil: Safe, Martín M. Universidad Nacional del Sur. Departamento de Matemática; Argentina.
dc.description Fil: Brešar, Boštjan. University of Maribor. Faculty of Natural Sciences and Mathematics; Slovenia.
dc.description Fil: Milanič, Martin. University of Primorska; Eslovenia.
dc.description.abstract In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total{2}-domination number, γt{2}(G), and the total double domination number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γ R(G), and two classical parameters, the domination number, γ (G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs
dc.format application/pdf
dc.language eng
dc.publisher Elsevier Science BV
dc.relation http://dx.doi.org/10.1016/j.dam.2017.08.017
dc.rights info:eu-repo/semantics/openAccess
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source Discrete Applied Mathematics. (1-2018); 235: 23-50
dc.source.uri https://linkinghub.elsevier.com/retrieve/pii/S0166218X17304031
dc.subject Graph domination
dc.subject Total domination
dc.subject Rainbow domination
dc.subject 2-domination
dc.subject Integer domination
dc.subject Double domination
dc.subject Split graph
dc.subject Approximation algorithm
dc.subject Inapproximability
dc.subject Matemática Aplicada
dc.subject Matemática Pura
dc.title Domination parameters with number 2 : interrelations and algorithmic consequences
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics