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In this article we introduce the notion of weak harmonic labeling of a graph, a generalization 
of the concept of harmonic labeling defined recently by Benjamini, Cyr, Procaccia and 
Tessler that allows extension to finite graphs and graphs with leaves. We present various 
families of examples and provide several constructions that extend a given weak harmonic 
labeling to larger graphs. In particular, we use finite weak models to produce new examples 
of (strong) harmonic labelings. As a main result, we provide a characterization of weakly 
labeled graphs in terms of harmonic subsets of Z and exhibit quantitative evidence of the 
efficiency of this method for computing all weakly labeled finite graphs as opposed to an 
exhaustive search calculation. In particular, we characterize harmonically labeled graphs as 
defined by Benjamini et al. We further extend the definitions and main results to the case 
of multigraphs and total labelings.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The notion of harmonic labeling of an infinite (simple) graph was introduced recently by Benjamini, Cyr, Procaccia and 
Tessler in [1]. If G = (V , E) is an infinite graph of bounded degree then an harmonic labeling of G is a bijective function 
� : V →Z such that

�(v) = 1

deg(v)

∑
{v,w}∈E

�(w) (1)

for every v ∈ V . In [1] the authors provide some examples of harmonic labelings and prove the existence of such labelings 
for regular trees and the lattices Zd and the non-existence for cylinders G ×Z for non-trivial G . Graph labeling is a widely 
developed topic and has a broad range of applications (see, e.g., [2–4]).

Harmonically labelable graphs seem to have a rather restrictive configuration. Particularly, these graphs do not have 
leaves (vertices of degree 1) since there are no one to one functions verifying harmonicity on such vertices. This actually 
turns out to be the main obstacle for a generalization of this concept to the context of finite graphs, which is a natural 
extension taking into account the fruitful link between harmonic functions and geometric properties of finite graphs (see 
e.g. [5, §4]). Furthermore, finite examples might be useful as local models to produce new harmonically labeled (infinite) 
graphs.
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In this paper we propose a two-way generalization of the notion of harmonic labeling, introducing the concept of weak 
harmonic labeling. On one hand, we require satisfying equation (1) only for v ∈ V \ S , where S is the set of leaves of G . On 
the other hand, we let the function � be a bijection with an integer interval I (finite or infinite). These conditions permit a 
straightforward extension of harmonic labelings to the finite setting. This results in a more general structure which provides 
a far wider theory, which was one of the ambitions in [1].

We present several examples of weak harmonic labelings and show the non-existence of this type of labelings for various 
families of (finite and infinite) graphs. We further introduce constructions to obtain new examples from given ones. In 
particular, we define the notion of inner cylinder and a way to extend any weakly labeled finite graph into an infinite 
one. We use weak finite models to construct new families of harmonic labelings. In particular, we exhibit a non-numerable 
collection of harmonically labeled graphs, which additionally contains an infinite number of examples spanned by finite sets 
of vertices. This answers a question raised in [1] about the existence of connected graphs different from Z which admit an 
harmonic labeling spanned by a finite set (see Remark 3.6).

The main result of this article is the characterization of weakly labeled graphs in terms of certain families of collections 
of finite subsets of Z called harmonic subsets. Since the statement of this result without many preliminary conventions 
would be too lengthy, the reader is invited to turn to Lemma 4.3 and Theorem 4.6 for a first impression. In particular, 
we obtain a characterization of harmonically labeled graphs (as defined in [1]) in terms of the aforementioned harmonic 
subsets (Corollary 4.7). The method to compute all weakly labeled graphs of n vertices derived from this characterization 
is far more efficient than testing the number of all possible n-vertex graphs G = (V , E) and all possible bijective maps of 
an integer interval of size n onto V (see Section 5). This technique is used to find all weakly labeled graphs of up to (and 
including) ten vertices.

All the definitions and results of weak harmonic labelings can be extended to the case of multigraphs (or total labelings) 
in a straightforward way. We prove the version for multigraphs of Theorem 4.6 and exhibit an algorithm that produces a 
total weak harmonic labeling from a given admissible labeling (see Algorithm 5).

The paper is organized as follows. In Section 2 we introduce the concept of harmonic labeling and exhibit several exam-
ples of (families) of weakly labeled (finite and infinite) graphs. In Section 3 we present two constructions to obtain a new 
labelings from a given one and we use finite models of weakly labeled graphs to construct new families of harmonically la-
beled graphs. In Section 4 we prove the characterization of weakly labeled graphs (and, in particular, of harmonic labelings) 
in terms of families of collections of harmonic subsets of Z. In Section 5 we provide quantitative evidence of the computa-
tional advantage of using the main characterization to find weakly labeled graphs and exhibit the list of all possible weakly 
labeled graphs up to (and including) ten vertices. In Section 6 we extend the definitions and main results of the theory to 
the case of multigraphs and total labelings. Finally, Section 7 proposes a list of open problems and future directions for this 
theory.

2. Weak harmonic labelings of simple graphs

All graphs considered have bounded degree and connected components of at least three vertices (see Remark 2.6). For a simple 
graph G we write V G for its set of vertices and EG for its set of edges. We put v ∼ w if v and w are adjacent and we 
let NG (v) = {v} ∪ {w : w ∼ v} ⊂ V G denote the closed neighborhood of v . Throughout, SG will denote the set of leaves 
(vertices of degree 1) of G and I will denote a generic integer interval (a set of consecutive integers).

Remark 2.1. Note from the above considerations that, for any G , v ∼ w implies {v, w} ∩ (V G \ SG) 	= ∅.

Definition 2.2. A weak harmonic labeling of a graph G (simply weak labeling in this context) is a bijective function � : V G → I
such that

�(v) = 1

deg(v)

∑
w∼v

�(w) ∀v ∈ V G \ SG . (2)

When we want to explicitate the interval of the labeling, we shall refer to it as a weak harmonic labeling onto I .

As mentioned earlier, the relativeness to V G \ SG of the harmonicity property is natural as there cannot be one to one 
functions with harmonic leaves. Harmonic labelings are particular cases of weak harmonic labelings since harmonically 
labelable infinite graphs have no leaves. More precisely, a weak harmonic labeling onto I is an harmonic labeling if and 
only if I =Z and SG = ∅.

Remark and Convention 2.3. Since a function � satisfies equation (2) if and only if ±� +k satisfies it for any k ∈Z, we shall 
not distinguish between labelings obtained from translations or invertions. Thus, we make the convention that in the case 
I 	= Z we shall normalize all labelings to the intervals [0, |V G | − 1] ∩ Z = {k ∈ Z : 0 ≤ k ≤ |V G | − 1} or [0, ∞) ∩Z = {k ∈
Z : k ≥ 0}.
2
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Fig. 1. Weak harmonic labeling on Pn and K1,n .

Fig. 2. Some examples of weakly labeled finite (connected) graphs (taken from Table 4 in Section 5).

The simplest examples of weakly labeled finite graphs are the paths Pn and the stars K1,n for even n (Fig. 1). Paths can 
be extended either to ∞ or to both −∞ and ∞ to obtain a weak harmonic labeling onto [0, ∞) ∩Z or Z respectively. In 
the latter, we obtain the trivial harmonically labeled graph Z. More examples of weakly labeled finite graphs are shown 
in Figs. 2 and 3, where particularly it can be verified that a given graph can admit more than one weak harmonic labeling 
(see e.g. Fig. 2 (top)). Note that Pn and K1,n (n even) are extremal cases of the collection pictured in Fig. 3 (top). The 
non-acyclic family in Fig. 3 (bottom), which can be inferred from the examples computed in Section 5, can be trivially 
extended to labelings onto [0, ∞) ∩Z and Z. In the latter, we obtain again an harmonic labeling. Furthermore, adding the 
edges {{2k − 1, 2k + 1} | k ∈ Z} produces another such labeling. These two examples are different from all those presented 
in [1], which evidences how new examples of harmonic labelings can be deduced from finite weakly labeled ones. We shall 
present more examples obtained in this fashion in the next section.

Note that the minimum and maximum values of a weak harmonic labeling over a finite G must take place on leaves, so 
any finite graph with less than two leaves does not admit weak harmonic labelings. This is the analogue result that non-
constant harmonic functions have at least two poles (see e.g. [5, §4]). In particular, cycles, complete graphs Kn with n ≥ 3, 
complete bipartite graphs Kn,m with n, m ≥ 2 and cylinders G × Pn for n ≥ 2 and any G do not admit a weak harmonic 
labeling. It is not hard to characterize finite graphs with maximum and minimum number of leaves which admit this type 
of labeling.

Lemma 2.4. Let G be an n-vertex graph which admits a weak harmonic labeling.
3
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Fig. 3. Top: A collection of weakly labeled graphs for m, n, k ∈Z≥0, m ≥ 1, n odd and 0 ≤ k ≤ (n−1)m
2 . The graphs Pn and K1,n (n even) are extremal cases 

of this family for m = 1. Bottom: A family of weakly labeled finite graphs than can additionally be extended to weakly labeled graphs onto [0, ∞) ∩Z and 
Z.

(1) G has two leaves if and only if G = Pn.
(2) G has n − 1 leaves if and only if n is even and G = K1,n.

Proof. We prove the direction of (1), which is the only non-trivial implication. Let � : V G → I be a weak harmonic labeling 
of G and denote by vi the vertex labeled i. We may assume n ≥ 4. By the remarks in the previous paragraph about the 
maximum and minimum values of weak labelings, v0 and vn are the leaves of G . Since the vertex v1 /∈ SG then v1 ∼ v0. 
Now

deg(v1) =
∑

w∼v1

�(w) ≥
∑

w∼v1
w 	=v0

2 = 2(deg(v1) − 1),

from where deg(v1) = 2. Therefore, NG(v1) = {v0, v2}. The same argument shows that NG(vn−1) = {vn−2, vn}. Assume 
inductively that NG (vi) = {vi−1, vi+1} for 0 < i < k < n − 1. Then

deg(vk)k =
∑

w∼vk

�(w) ≥ (k − 1) +
∑

w∼vk
w 	=vk−1

(k + 1) = k − 1 + (k + 1)(deg(vk) − 1),

and deg(vk) ≤ 2. This proves that NG (vk) = {vk−1, vk+1} and hence G = Pn . �
Remark 2.5. Recall that the Laplacian of a finite graph G is the operator LG = D − A ∈ Zn×n where A is the adjacency 
matrix of G and D is the diagonal degree matrix. If we let L̃G denote the operator obtained from LG by removing the rows 
corresponding to leaves (the reduced Laplacian of G) then G admits a weak harmonic labeling if and only if there exists a 
permutation σ ∈ Sn such that σ(0, . . . , n − 1) ∈ ker(L̃G).

Remark 2.6. The case of general graphs (dropping the restriction of connected components of more than two vertices) gives 
rise to uninteresting examples as these components are “invisible” to the requirement of harmonicity and can be used to 
complete partial one-to-one labelings. Note however that, even with our initial requirements, weakly labeled non-connected 
graphs have many superfluous examples, trivially built from connected ones. For example, given a finite graph G and a weak 
labeling � : V G → [0, n − 1] ∩Z, if we let H = ∨

1≤i≤k Gi be the disjoint union of k ∈ N copies of G then we can define a 
weak harmonic labeling �H : H → [0, kn − 1] ∩Z as follows:

�H (v) = �(v) + (i − 1)n, if v ∈ V Gi .

3. Harmonic labelings from finite weak models

More complex weakly labeled (finite and infinite) graphs can be built up from simpler finite examples. Some of these 
graphs can be inferred from the structure of the finite model and some can be constructed by performing unions and 
considering cylinders on them. In many cases, we shall obtain (new) harmonically labeled graphs.
4



P. Bonucci and N. Capitelli Discrete Mathematics 345 (2022) 112816
Fig. 4. Extending weak harmonic labelings through coalescence.

3.1. Coalescence and inner cylinders

We first show two constructions that produce new weakly labeled (finite and infinite) graphs from a finite weak model. 
Particularly, these constructions provide a way to produce infinitely many weak harmonic labelings onto [0, ∞) ∩Z and Z.

For simple graphs G, H and v ∈ V G and w ∈ V H we let G ·w
v H denote the graph obtained from G ∪ H by identifying the 

vertex v with the vertex w (this is sometimes referred by some authors as the coalescence between G and H at vertices v
and w).

Lemma 3.1. Let �G : V G → [0, n −1] ∩Z and �H : V H → I , I = [0, m −1] ∩Z or [0, ∞) ∩Z be weak harmonic labelings on graphs G
and H respectively. Let vi ∈ V G be the vertex labeled i in G (0 ≤ i ≤ n − 1) and w j ∈ V H be the vertex labeled j in H (0 ≤ j ≤ m − 1). 
If the sole vertex v adjacent to vn−1 in G and the sole vertex w adjacent to w0 in H satisfy �G(v) + �H (w) = n − 1 then there exists 
a weak harmonic labeling of G ·w0

vn−1 H.

Proof. The desired weak harmonic labeling � over G ·w0
vn−1 H is given

�(u) =
{

�G(u) u ∈ G

�H (u) + n − 1 u ∈ H . �
Fig. 4 shows a particular example of extending a weakly labeled graph by coalescence.

Note that the construction of Lemma 3.1 can be iterated to produce infinitely many new examples (both finite and 
infinite). Furthermore, any weakly labeled graph can be extended to a new (finite or infinite) weakly labeled graph since 
the family of bipartite complete graphs {K1,n : n even} has a member of average k for each k ∈ N . In some cases, we can 
“complete” these infinite weakly labeled examples to harmonic labelings. Fig. 5 shows three harmonically labeled graphs 
produced from the coalescence of infinite copies of K1,n for n = 4, 6, 8.

The other aforementioned construction, which produces exclusively weak harmonic labelings onto Z, is based on the 
notion of inner cylinder of a graph.

Definition 3.2. Given a graph G , we define the inner cylinder of G as the graph G×̆Z such that:

• V G×̆Z = {(v, i) : v ∈ V G , i ∈Z}
• (v, i) ∼ (w, j) if and only if (i = j and {v, w} ∈ EG ) or (v = w ∈ V G \ SG and i = j + 1 or i = j − 1).

Interestingly, examples of weak harmonic labelings onto Z can be produced from any finite example as the following 
lemma shows.

Lemma 3.3. A weak harmonic labeling on a finite graph G induces a weak harmonic labeling onto Z on G×̆Z.

Proof. Write |V G | = n and let � : V G → [0, n − 1] ∩Z be a weak harmonic labeling. Then, the claimed labeling �′ : V G×̆Z →
Z over G×̆Z is given by

�′(v,k) = �(v) + kn. �
Fig. 6 (top) shows examples of weak harmonic labelings onto Z defined using this construction. Similarly to the case 

of coalescence, in some cases we can extend these weak infinite examples to harmonic labelings. For instance, the weak 
harmonic labelings of K1,2×̆Z and K1,4×̆Z given in Lemma 3.3 can be extended to the harmonic labelings shown in Fig. 6
(bottom). Note that we have produced two new harmonically labeled graphs from the (same) weak labeling of K1,4 ; namely, 
Fig. 5 (top) and Fig. 6 (bottom right).
5
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Fig. 5. Harmonic labelings obtained by completing a coalescence of infinite copies of K1,4 (top), K1,6 (middle) and K1,8 (bottom), where the edges of the 
original weakly labeled graphs are shown in cyan. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.2. Labelings inferred from finite models

The weakly labeled graph in Fig. 3 (bottom) is a particular case of the family portrayed in Fig. 7, which we call Ck,h . We 
note that this collection can too be extended to [0, ∞) ∩ Z and Z, and that this last extension produces an harmonically 
labeled graph, Ck,∞ . Formally, V Ck,∞ =Z and ECk,∞ = {{a, b} : b = a − 1, a + 1, a + k, a − k}. This new example of harmonic 
labeling is indeed part of a far more general family. Note that for b � a we can add the edges (s +1)(b −a) +a ∼ s(b −a) +a
for each s ∈Z and obtain a new harmonically labeled graph (see Fig. 8). We can repeat this process to the newly generated 
example to obtain infinitely many new ones (a different for each edge selected for addition and each k). We make this 
construction precise next.

Let B = {(i, k) : k > 1 and 0 ≤ i ≤ k − 1}. For any (finite or infinite) subset B of B we form the graph P B obtained from 
(the harmonically labeled graph) Z by adding the edges {(s + 1)k + i, sk + i} for every s ∈Z for each (i, k) ∈ B . We call B a 
base for P B and we write P B = 〈x : x ∈ B〉 (the elements of B are the spanning edges of P B ). We picture a concrete example 
in Fig. 9.

Proposition 3.4. For any B ⊂ B, P B is an harmonically labeled graph. Furthermore, P B = P B ′ if and only if B = B ′ .

Proof. First of all, we note that the set of edges added by different pairs (i, k) and (i′, k′) are disjoint. Indeed, the system{
sk + i = s′k′ + i′

(s + 1)k + i = (s′ + 1)k′ + i′

has unique solution s = s′ , k = k′ and i = i′ for 0 ≤ i, i′ ≤ k −1. So it suffices to show that if a vertex v is harmonically labeled 
then adding the edges {(s + 1)k + i, sk + i} to a P B ′ corresponding to a single member (i, k) ∈ B \ B ′ keeps v harmonic. This 
is clear if the vertex v is not incident to any of the added edges. Otherwise, v has new adjacent vertices labeled �(v) − k
and �(v) + k. Therefore∑

w∼v∈P B′
�(w) + (�(v) − k) + (�(v) + k) = (deg(v) + 2)�(v),

which proves the claim. Finally, by the previous remarks, every edge is exclusive of a given (i, k) with k ≥ 2 and 0 ≤ i ≤ k −1. 
Therefore, P B = P B ′ if and only if B = B ′ . �
6
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Fig. 6. Top. The weak harmonic labeling induced in the inner cylinder of K1,2 (left) and K1,4 (right). Bottom. Harmonic labeling from the weak labeling of 
K1,2×̆Z (left) and K1,4×̆Z (right). The cyan colored edges represent added edges to the original weak labelings.

Corollary 3.5. The collection P = {P B : B ⊂ B} is a non-numerable family of harmonically labeled graphs.

Some of the previously presented examples actually belong to the collection P . For example, Ck,∞ = 〈(0, k)〉 and 
K1,2×̆Z = 〈(1, 3)〉. However, K1,4×̆Z is not one of these graphs.

Remark 3.6. A set V ′ ⊂ V G is said to be a labeling spanning set if the values of a labeling � on the vertices of V ′ completely 
determine the labeling of G (by the harmonic property). In [1, §6, Open Problem 1] the authors ask which connected graphs 
other than Z admit an harmonic labeling spanned by a finite set. We claim that the members 〈(0, k)〉 of PB for any k ∈Z
are finitely spanned by vertices labeled 0 and 1. Indeed, these two labels trivially determine all labels from 0 to k. The 
labels xk+1, xk+2, . . . , x2k pictured in Fig. 10 are solutions of the system⎛

⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 1
2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0
...

...
... . . .

...
...

...

0 0 0 . . . −1 2 −1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

xk+1
xk+2
xk+3

...

x2k

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

3k + 1
k
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

whose matrix is non-singular for every k ∈Z. The claim is then settled by an inductive argument.

4. A characterization of weak harmonic labelings

In this section we characterize weakly labeled graphs in terms of certain collection of sets of integers which we call 
harmonic subsets of Z.
7
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Fig. 7. The family Ck,h of non-acyclic weakly labeled graphs which generalizes the family of Fig. 3 (bottom).

Fig. 8. New harmonic labeling from Ck,∞ .

Fig. 9. The harmonically labeled graph 〈(0,2), (1,3), (3,5)〉 (in cyan, the spanning edges).

Fig. 10. The harmonic labeling of 〈(0,k)〉 is finitely spanned by {0,1} for every k ∈Z.

Definition 4.1. Given a non-empty finite subset A ⊂Z we let

av(A) = 1

|A|
∑
k∈A

k.

Here |A| denotes the cardinality of A. We say that A is an harmonic subset of Z if av(A) ∈ A.
8
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Remark 4.2. Note that every unit subset of Z is harmonic; we call them trivial harmonic subsets. Also, there are no two-
element harmonic subsets of Z. Therefore, any non-trivial harmonic subset of Z has at least three elements.

We shall show that certain collections of harmonic subsets of Z characterize weakly labeled graphs. For this, we consider 
pairs (G, �) of a graph G and a weak harmonic labeling � over G . Define an isomorphism between two weakly labeled graphs 
(G, �) and (G ′, �′) as a graph isomorphism f : G → G ′ such that �′( f (v)) = �(v) for every v ∈ V G . We let G denote the 
quotient set of pairs (G, �) under the isomorphism relation.

Given (G, �) ∈ G we consider the collection

A(G,�) = {Av : v ∈ V G \ SG}
where Av = {�(w) : w ∈ NG(v)}. It is easy to see that A(G,�) is a well-defined collection of non-trivial harmonic subsets of 
Z such that av(Av ) = �(v). In particular, Av 	= Au if v 	= u. Also, this collection is finite if and only if G is finite. Furthermore, 
the collection A(G,�) satisfies the following conditions (whose easy verification are left to the reader).

Lemma 4.3. Let A be the collection A(G,�) of harmonic subsets of Z defined as above. For A, B ∈A, we have:

(P1)
⋃

C∈A C is an integer interval.
(P2) av(A) 	= av(B) if A 	= B.
(P3) If t ∈ A ∩ B, A 	= B, then there exists C ∈A such that av(C) = t.
(P4) If av(A) ∈ B then av(B) ∈ A.

Note that (P2) implies that the t in (P3) is unique. Actually, (P2) is covered by requesting the unicity of t in (P3). However, 
we state it in this form for computational reasons that will become evident later.

The main result of this section is that properties (P1) through (P4) of Lemma 4.3 characterize weak harmonic labelings, 
in the sense that (G, �) �→ A(G,�) is a bijection between G and the class H of collections of non-trivial harmonic subsets of 
Z satisfying (P1) through (P4). Furthermore, if GI ⊂ G is the subset of pairs (G, �) for which � is a weak harmonic labeling 
onto I and HI ⊂H is the class of collections A for which 

⋃
C∈A C = I then the bijection takes GI onto HI .

Note that the map (G, �) �→ A(G,�) sends elements of GI to HI by Remark 2.1. We next build the inverse map HI → GI . 
Let A = {Ai}i∈ J ∈HI . We define the associated graph GA as follows:

• V GA = I
• i ∼ j ⇔ (there exists a t such that i = av(At) and j ∈ At ) or (there exists a t such that j = av(At) and i ∈ At ).

Furthermore, we define a vertex labeling �A : V GA → I by �A(i) = i. Lemma 4.4 and Corollary 4.5 below prove that 
(GA, �A) ∈ GI .

Lemma 4.4. With the notations as above, i ∈ V GA \ SGA if and only if ∃ t ∈ J such that i = av(At). Furthermore, this t is unique and 
NGA (i) = At .

Proof. If i ∈ V GA \ SGA then there exist j1 	= j2 such that j1, j2 ∈ NGA (i). If i 	= av(At) for every t then ∃ t1, t2 such that 
j1 = av(At1 ), j2 = av(At2 ) and i ∈ At1 ∩ At2 . But then (P3) implies the existence of t such that i = av(At), contradicting our 
assumption.

Suppose now that i = av(At) for some t . In particular, i ∈ At . By Remark 4.2, there exist j1, j2 ∈ At non-equal such that 
j1, j2 	= av(At). Thus j1, j2 ∈ NGA (i) by the definition of adjacency in GA and hence i ∈ V GA \ SGA .

The uniqueness of t is a direct consequence of (P2). Now, if j ∈ NGA (i) then either (there exists s such that 
i = av(As) and j ∈ As) or (there exists s such that j = av(As) and i ∈ As). In the first case s = t by unicity. In the latter, 
(P4) implies that j = av(As) ∈ At . In any case j ∈ At , which proves NGA(i) ⊂ At . Now, if j ∈ At then i ∼ j by the definition 
of adjacency of GA . Hence, j ∈ NGA (i). �
Corollary 4.5. With the notations as above, �A is a weak harmonic labeling over GA.

Proof. If i ∈ VA \ SA , let t be such that i = av(At). Then

�A(i) = i = av(At) = 1

|At |
∑
k∈At

k = 1

|NGA(i)|
∑

k∈NGA (i)

k = 1

deg(i) + 1

∑
k∼i
k=i

�A(k). �

Theorem 4.6. The maps (G, �) �→A(G,�) and A �→ (GA, �A) are mutually inverse.
9
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Proof. Define the function f : (G, �) → (GA(G,�)
, �A(G,�)

) as f (v) = �(v). We will show that f is a graph isomorphism 
between G and GA(G,�)

and that �A(G,�)
( f (v)) = �(v). Since � is a weak harmonic labeling then f is a bijection between V G

and I , so it suffices to show that v ∼ w if and only if f (v) ∼ f (w). Now, if v ∼ w then either v or w must belong to the 
set of non-leaves of G (Remark 2.1). Assume v ∈ V G \ SG . Then, by definition of A(G,�) it exists Av with av(Av) = �(v). Also, 
since v ∼ w then w ∈ NG(v) and hence �(w) ∈ Av . Therefore �(v) ∼ �(w); that is, f (v) ∼ f (w).

Now, suppose f (v) ∼ f (w). Then �(v) ∼ �(w) in GA(G,�)
. Then, either (there exists u ∈ V G \ SG such that �(v) = av(Au)

and �(w) ∈ Au) or (there exists x ∈ V G \ SG such that �(w) = av(Ax) and �(v) ∈ Ax). Without loss of generality we may 
assume the first case happens. Since � is a bijection then w must belong to NG (v). Hence w ∼ v . This proves that G is 
isomorphic to GA(G,�)

.
Finally, from the definition of �A(G,�)

:

�A(G,�)
( f (v)) = f (v) = �(v),

which concludes the proof that (G, �) �→ A(G,�) �→ (GA(G,�)
, �A(G,�)

) is the identity.

We now prove that A �→ (GA, �A) �→ A(GA,�A) is the identity. Define g : A → A(GA,�A) as follows: g(At) = Ãi where 
i ∈ V GA \ SGA is such that i = av(At) (Lemma 4.4). Note that g is one to one by (P2) and the fact that i 	= j implies Ãi 	= Ã j
in A(GA,�A) (see properties of A(G,�) before Lemma 4.3). Also, Lemma 4.4 implies that g is onto. Since �A(s) = s and 
At = NGA (i) (again by Lemma 4.4) then Ãi = {�A(s) : s ∈ NGA (i)} = NGA (i) = At . �

We shall exhibit evidence in the next section that Theorem 4.6 provides a more efficient way to compute weak harmonic 
labelings of finite graphs than an exhaustive search calculation.

If we now let G̃Z ⊂ GZ denote the set of pairs (G, �) for which SG = ∅ then G̃Z is the set of harmonically labeled 
graphs as defined in [1]. From Theorem 4.6 we obtain the following characterization of harmonic labelings.

Corollary 4.7. Let G be a graph and � : V G →Z. Then � is an harmonic labeling of G if and only if SG = ∅ and A(G,�) satisfies:

(ZP1) For every k ∈Z there exists C ∈A(G,�) such that av(C) = k.
(ZP2) av(A) 	= av(B) if A 	= B.
(ZP3) If av(A) ∈ B then av(B) ∈ A.

Proof. The result follows from Theorem 4.6 by noting that P1 transforms into ZP1 and that P3 is covered by ZP1. �
Remark 4.8. Weakly labeled connected graphs can also be entirely characterized in terms of harmonic subsets of Z. It 
suffices to add the following property to those of Lemma 4.3:

(P5) There exists a sequence Ai1 , . . . , Air ⊂A such that Ai1 = A, Air = B and av(Ai j ) ∈ Ai j+1 for 1 ≤ j ≤ r − 1.

It is straightforward to see that (G, �) (resp. GA) is connected if and only if A(G,�) (resp. A) satisfies (P5).

5. On computing weakly labeled finite graphs

The characterization given in Theorem 4.6 provides a much less costly method to compute all weakly labeled graphs of 
n + 1 vertices than testing the finite number of all possible graphs and all possible bijective maps from V G to [0, n] ∩Z. We 
shall provide evidence to this assertion in the present section.

Let Hn represent the set of non-trivial harmonic subsets of [0, n] ∩ Z. Property (P2) in Lemma 4.3 grants a restriction 
which can be used to significantly reduce the collections of harmonic subsets of [0, n] ∩Z to be considered (in comparison 
to the powerset of Hn). Indeed, since the averages of the sets cannot be repeated one may form collections by picking at 
most one set for each possible average. If we let hk denote the number of non-trivial harmonic subsets of [0, n] ∩ Z of 
average k (1 ≤ k ≤ n − 1) then the number of possible (non-trivial) collections of this type is

γn =
n−1∏
k=1

(hk + 1) − 1.

Let �n represent the set of collections of harmonic subsets of [0, n] ∩Z satisfying (P2) (so γn = |�n|). Table 1 shows the 
number of non-trivial harmonic subsets of [0, n] ∩Z grouped by average (needed to compute γn) and Table 2 (left) shows 
the ratio between γn and the number 2(n+1

2 ) of possible graphs of n + 1 vertices bijectively labeled with [0, n] ∩Z for the 
first positive integers. The latter evidences that the size of the input data to be analyzed for an harmonicity condition is 
vastly smaller if we use the characterization provided in Theorem 4.6.

Now, it is not hard to see that the time cost of computing Hn with its elements sorted according to their average is under 
(n + 1)22n+1, where we assume comparisons, assignments, variable reading and basic operations have a constant run time 
10
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Table 1
Number of non-trivial harmonic subsets of [0, n] ∩Z disaggregated by average: for each n, the ith entry in the 
(n − 1)-tuple on the second column is the number of non-trivial harmonic subsets of [0, n] ∩Z with average i.

n Average distribution γn

3 [1,1] 3
4 [1,3,1] 15
5 [1,4,4,1] 99
6 [1,4,9,4,1] 999
7 [1,4,12,12,4,1] 16899
8 [1,4,14,25,14,4,1] 584999
9 [1,4,15,37,37,15,4,1] 36966399
10 [1,4,15,46,75,46,15,4,1] 4297830399
11 [1,4,15,52,117,117,52,15,4,1] 1001280409599
12 [1,4,15,55,154,235,154,55,15,4,1] 455188643839999
13 [1,4,15,57,183,379,379,183,57,15,4,1] 421016185077759999
14 [1,4,15,58,204,525,759,525,204,58,15,4,1] 787475029337190399999
15 [1,4,15,58,218,654,1260,1260,654,218,58,15,4,1] ≈ 2.91571446499836 × 1024

16 [1,4,15,58,227,758,1814,2521,1814,758,227,58,15,4,1] ≈ 2.21715254911351 × 1028

17 [1,4,15,58,233,839,2353,4277,4277,2353,839,233,58,15,4,1] ≈ 3.49163431528466 × 1032

Table 2
Left. Ratio between the number of collections of non-trivial harmonic subsets of 
[0, n] ∩ Z fulfilling property (P 2) and the number of graphs on n + 1 vertices bijec-
tively labeled with {0, 1, . . . , n}. Middle. Ratio between the time cost of computing γn

and the estimated time cost of computing all harmonic subsets of [0, n] ∩Z sorted by 
average. Right. Ratio between the estimated time cost of computing �n and checking 
Properties (P1), (P3) and (P4) versus the time cost of checking for weak harmonicity 
in every possible graph of n + 1 vertices bijectively labeled with [0, n] ∩Z.

n γn/2(n+1
2 ) γn/((n + 1)22n+1) ((n + 1)5γn)/(n2(n+1

2 ))

3 0.046875 0.01171875 21.3333333333
4 0.0146484375 0.01875 12.20703125
5 0.00302124023438 0.04296875 4.74609375
6 0.000476360321045 0.159279336735 1.33570035299
7 6.29536807537 · 10−5 1.03143310547 0.294712611607
8 8.51285585668 · 10−6 14.1058786651 0.0628345605946
9 1.05064825107 · 10−6 360.999990234 0.0116738697721
10 1.19288756623 · 10−7 17343.3884257 0.00192115735473
11 1.35698799419 · 10−8 1697591.84028 0.000306965487792
12 1.50609288496 · 10−9 328787100.592 4.66001454611 · 10−5

13 1.70047082943 · 10−10 1.3110606449 · 1011 7.03503094898 · 10−6

14 1.94127582651 · 10−11 1.06808136575 · 1014 1.05296880768 · 10−6

15 2.19353976462 · 10−12 1.73790124953 · 1017 1.53339543482 · 10−7

16 2.54516630507 · 10−13 5.85312509798 · 1020 2.25860762151 · 10−8

17 3.0580136275 · 10−14 4.11096539354 · 1024 3.39901452593 · 10−9

under 1 (see Algorithm 1 in Table 3). Table 2 (middle) shows the ratio between this number and γn for the first positive 
integers, which evidences that the time complexity of computing �n is O (γn). By Table 2 (left) again, this time is better 
than the time complexity 2(n+1

2 ) of computing every possible graph of n + 1 vertices bijectively labeled with [0, n] ∩Z. As to 
the verification of Properties (P1), (P3) and (P4), the algorithms shown in Table 3 evidence that the time cost for checking 
all three properties is loosely bounded above by (n +1)5. Finally, Table 2 (right) shows the ratio between the estimated time 
cost of computing �n and checking Properties (P1), (P3) and (P4) versus the time cost of computing every possible graph 
of n + 1 vertices bijectively labeled with [0, n] ∩Z and verifying weak harmonicity, where we have assumed a linear time 
complexity for this last task.

In Table 4 we present all possible weakly labeled graphs of up to (and including) 10 vertices computed using the 
characterization given in Theorem 4.6.

6. Multigraphs and total labelings

In this section we extend the main definitions and results of weak harmonic labelings to multigraphs and provide a 
generalization of Theorem 4.6 in this context. All multigraphs have connected components of at least 3 vertices, are loopless and 
have bounded degree (see Remark 6.7). Also, since the identity of the edges is indifferent to the theory, we consider all parallel 
edges to be indistinguishable.

Recall that a (finite) multiset M is a pair (A, m) where A is a (finite) non-empty set and m : A → N is a function 
giving the multiplicity of each element in A (the number of instances of that element). The cardinality of M is the number 
|M| = ∑

x∈A m(x). If A = {x1, x2, · · · xn} we shall often write M = {xm(x1)
, xm(x2)

, . . . , xm(xn)
n }. If m(xi) = 1 we simply write xi .
1 2
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Table 3
Algorithms for computing the collection of all harmonic subsets of [0, n] ∩ Z sorted by average and Properties (P1), (P3) and (P4). These algorithms are 
deliberately based on detailed non-optimal procedures to strengthen the evidence of the efficiency of computing by means of the characterization given in 
Theorem 4.6 versus the exhaustive calculation.

Algorithm 1 Computing non-trivial harmonic subsets of 
[0, n] ∩Z sorted by average.
Require: n ≥ 2
Ensure: Hn sorted by average

1: for i ∈ [1, n − 1] ∩Z do
2: Hi

n ← {}
3: end for
4: for B ∈ Powerset({0, . . . , n}) do
5: compute av(B)

6: if |B| ≥ 3 and av(B) ∈ B then
7: Hav(B)

n ← Hav(B)
n ∪ {B}

8: end if
9: end for

10: return Hn = (H1
n , H2

n , . . . , Hn−1
n )

Algorithm 2 Verifying Property (P1).
Require: A collection C of harmonic subsets of [0, n] ∩ Z of different 

averages
Ensure: True iff C satisfies Property (P1)

1: for i ∈ [0, n] ∩Z do
2: checki ← 0
3: for A ∈ C do
4: if i ∈ A then
5: checki ← 1
6: end if
7: end for
8: end for
9: return checki = 1 for all i ∈ [0, n] ∩Z

Algorithm 3 Verifying Property (P3).
Require: A collection C of harmonic subsets of [0, n] ∩ Z of different 

averages
Ensure: True iff C satisfies Property (P3)

1: T ← {}
2: for A, B ∈ C do
3: compute A ∩ B
4: for t ∈ A ∩ B do
5: T ← T ∪ {t}
6: end for
7: end for
8: averages ← {}
9: for A ∈ C do

10: compute av(A)

11: averages ← averages ∪ {av(A)}
12: end for
13: check ← 1
14: for t ∈ T do
15: if t /∈ averages then
16: check ← 0
17: end if
18: end for
19: return check = 1

Algorithm 4 Verifying Property (P4).
Require: A collection C of harmonic subsets of [0, n] ∩ Z of different 

averages
Ensure: True iff C satisfies Property (P4)

1: averages ← {}
2: for A ∈ C do
3: compute av(A)

4: averages ← averages ∪ {av(A)}
5: end for
6: check ← 1
7: for A ∈ C do
8: for t ∈ A, t 	= av(A) do
9: if t ∈ averages then

10: checkt ← 0
11: for B ∈ C, B 	= A do
12: if t ∈ B then
13: checkt ← 1
14: end if
15: end for
16: end if
17: end for
18: end for
19: return checkt 	= 0 for all t ∈ averages

Given a multigraph G we let mG(v, w) = mG(w, v) ∈ Z≥0 denote the number of edges between vertices v, w ∈ V G , 

v 	= w . If mG(v, w) 	= 0 then v and w are adjacent and we write v ∼ w . If m(v, w) = k ≥ 2 we shall often write v k∼ w
or {v, w}k ∈ G . A vertex v ∈ G is a leaf if mG(v, w) 	= 0 for exactly one w 	= v . As in the simple case, we shall denote SG

the set of leaves of the multigraph G . The simplification of a multigraph G is the simple graph sG where V sG = V G and 
{u, v} ∈ EsG if and only if mG (v, w) 	= 0 (v 	= w). We shall call the closed multi neighborhood of v ∈ V G in a multigraph G to 
the multiset NG (v) = {v} ∪ {wmG (v,w) : v ∼ w}. Thus, the closed multi neighborhood of v keeps track of the multiplicities 
of the vertices adjacent to v as well. The (standard) close neighborhood of v is NsG(v) ⊂ V G .

Definition 6.1. A weak harmonic labeling of a multigraph G is a bijective function � : V G → I such that

�(v) = 1

deg(v)

∑
w∼v

mG(v, w)φ(w) ∀v ∈ V G \ SG .

Fig. 11 shows some examples of harmonic labelings of finite multigraphs. Note that the presence of at least two leaves 
is still a requirement for the existence of a weak harmonic labeling.

We next show that Theorem 4.6 can be generalized to multigraphs.

Definition 6.2. For a multiset M = (A, m) with finite non-empty A ⊂Z we let

av(M) = 1

|M|
∑

m(k)k.
P. Bonucci and N. Capitelli Discrete Mathematics 345 (2022) 112816
k∈A
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Table 4
All weakly labeled graphs of up to (and including) 10 vertices. For simplicity, harmonic subsets have been written in the 
form a1a2 · · ·as instead of {a1, a2, . . . , as}. For example, 23406 denotes the harmonic subset {2, 3, 4, 0, 6}.

n Harmonic Subsets of [0,n]
2 {012}
3 {012,321}
4 {012,321,432}; {12304}
5 {012,321,432,543}; {012,543}; {204,351}
6 {012,321,432,543,654}; {012,321,654}; {012,543,654}; {204,351,462};

{12304,432,54362}; {321,23406,543}; {1234506}
7 {012,321,432,543,654,765}; {012,321,432,765}; {012,321,654,765}; {012,543,654,765};

{012,65473}; {204,351,462,573}; {204,6543271}; {12304,765}; {321,2307,654}; {321,4507,654};
{2307,5461}; {13407,54362}; {3261,4507}; {23406,54371}; {1234506,573}; {43251,34607}

8 {012,321,432,543,654,765,876}; {012,321,432,543,876}; {012,321,432,765,876};
{012,321,654,765,876}; {012,321,76584}; {012,543,654,765,876}; {012,543,876}; {012,573,684};
{1205,543,65482,765}; {1205,7654382}; {204,351,462,573,684}; {204,351,876};
{204,54281,65473}; {204,6543271,684}; {204,4372,6581}; {204,54362,75481}; {204,765381};
{12304,432,54362,654,76584}; {12304,462,76584}; {12304,765,876}; {321,23406,543,7683};
{321,432,34508,654,765}; {321,432,543,456708}; {321,408,765}; {321,456708}; {123408,543,654,765};
{123408,765}; {2307,5461,684}; {13407,54362,684}; {13407,543,65482}; {123507,684}; {306, 471,582};
{23406,543,75481}; {1234506,7683}; {351,24608,573}; {351,245607,5483}; {43251,34508,65473};
{43251,34607,684}; {3405,643281,573}; {3405,6543271,5483}; {432,1345708,654}; {123456708}

9 {012,321,432,543,654,765,876,987}; {012,321,432,543,654, 987}; {012,321,432,543,876,987};
{012,321,432,765,876,987}; {012,321,432,87695}; {012,321,654,765,876,987}; {012,321,654,987};
{012,321,684,795}; {012,543,654,765,876,987}; {012,543,654,987}; {012,543,876,987};
{012,573,684,795}; {012,65473,765,87695}; {012,654,76593,876}; {012,8765493};
{1205,543,5492,876}; {1205,5492,7683}; {1205,65392,76584}; {1205,65482, 76593};
{1205,7654382,795}; {204,351,462,573,684,795}; {204,351,462,987}; {204,351,573,87695};
{204,351,876,987}; {204,543291,654,765,876}; {204,543291,876}; {204,54281,65473, 795};
{204,54281,654,76593}; {204,643281,795}; {204,6543271,8794}; {204,462,75391,684};
{204,462,765381,6594}; {204,54362,65491,76584}; {204,54362,75481,795}; {204,591,7683};
{204,6581,76593}; {204,765381,795}; {204,573,8691}; {12304,432,54362,987}; {12304,462,684,795};
{12304,765,876,987}; {12304,87695}; {321,23406,543,654,76593,876}; {321,23406,543,987};
{321,23406,76593,876}; {321,432,3409,765,876}; {321,432,543,456708,795}; {321,432,543,67809};
{321,432,5609,765,876}; {321,4507,654,8794}; {321,5609,76584}; {321,456708,795};
{12309,654,765,876}; {12309,76584}; {1308,462,795}; {1308,6572,6594}; {2307, 591,684}; {2307,6581, 6594};
{13407,543,654,86592}; {13407,86592}; {3261,408,76593}; {3261,408,795}; {3261,4507,8794};
{306,54281,654,76593}; {306,471,582,693}; {23406,4381,76593}; {23406,4381, 795};
{23406,54371,8794}; {23406,543,75481,693}; {23406,543,75481,795}; {23406,591,7683};
{23406,6581,76593}; {13506,462,573,86493}; {1234506,987}; {351,408,65392,765}; {351,408,7692};
{351,24608,573,795}; {43251,3409,876}; {43251,34508,65473,795}; {43251,34607,8794};
{43251,543,3456809,765}; {43251,67809}; {3405,4381,65392,765}; {3405,4381,7692};
{3405,643281,573,795}; {3405,4372,8691}; {3405,543,876543291}; {432,3409,6581,765};
{432,1345609,654,76584}; {432,4381,5609,765}; {432,34508,65491,765}; {432,34607,591,684};
{432,34607,6581,6594}; {432,543,14567809}; {543291,456708}; {14609,75382}; {12345809,654,765};
{24608,75391}; {145608,754392}; {14708,65392}; {123456708, 654,6594}; {64271,35809}; {34607,85291};
{245607,854391}

Fig. 11. Examples of weak harmonic labeling on multigraphs.
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We say that M is an harmonic multiset of Z if av(M) ∈ A.

Remark 6.3. As for harmonic subsets, the multisets whose underlying set is a unit set of Z are (trivial) harmonic multisets of 
Z. Also, there are no harmonic multisets of Z whose underlying set has two elements. Therefore, any non-trivial harmonic 
multiset of Z has an underlying set of at least three elements.

Analogously to the simple case, we consider pairs (G, �) for a multigraph G and a weak harmonic labeling � : V G → I and 
define an isomorphism between two weakly labeled multigraphs (G, �) and (G ′, �′) as a multigraph isomorphism f : G → G ′
such that �( f (v)) = �(v) for every v ∈ V G . We let MG I denote the quotient set of pairs (G, �), � : V G → I , under the 
isomorphism relation.

Given (G, �) ∈MG I we consider the collection

MA(G,�) = {Bv : v ∈ V G \ SG}
where Bv = {�(v)} ∪{�(w)mG (v,w) : w ∼ v}. As in the simple case, it is easy to see that MA(G,�) is a collection of non-trivial 
harmonic multisets of Z verifying av(Bv) = �(v) that satisfies the (analogous) conditions than Lemma 4.3. Namely, if AM
stands for the underlying set of the multiset M:

Lemma 6.4. Let MA be the collection MA(G,�) of harmonic multisets of Z defined as above. For B, C ∈MA, we have:

(MP1)
⋃

D∈MA AD = I .
(MP2) av(B) 	= av(C) if B 	= C .
(MP3) If t ∈ AB ∩ AC then there exists D ∈MA such that av(D) = t.
(MP4) If av(B)k ∈ C then av(C)k ∈ B.

We let MHI stand for the class of collections of non-trivial harmonic multisets of Z with 
⋃

D∈MA AD = I satisfying 
(MP1) through (MP5) of Lemma 6.4. With the analogous constructions as in the simple case it can be shown that there is a 
bijection MG I ≡MHI . Namely, for MA = {Bi}i∈ J ∈MHI define the associated multigraph GMA as:

• VMA = I

• i k∼ j ∈ GMA ⇔ (∃ t/i = av(Bt) and jk ∈ Bt) or (∃ t/ j = av(Bt) and ik ∈ Bt)

Note that, by (MP4), this multigraph is well-defined. Finally, we define a vertex labeling �MA over GMA by �MA(i) = i.
Identical arguments as in the proofs of Lemma 4.4, Corollary 4.5 and Theorem 4.6 go through to prove the following 

analogous results for multigraphs.

Lemma 6.5. With the notations as above,

(1) GMA is connected.
(2) i ∈ V GMA \ SGMA if and only if ∃ t ∈ J such that i = av(Bt). Furthermore, this t is unique and NGMA(i) = Bt . In particular, 

j ∈ ABt if and only if j = i or j ∼ i in GMA .
(3) �MA is a weak harmonic labeling over GMA.

Theorem 6.6. The maps (G, �) →MA(G,�) and MA→ (GMA, �MA) are mutually inverse.

Remark 6.7. All the results of this section can be extended in a straightforward manner to multigraphs with loops. This is 
consequence of the fact that a multiset

{xm1
1 , xm2

2 , . . . , xk, . . . , xmn
n }

is harmonic with average xk if and only if {xm1
1 , xm2

2 , . . . , xm
k , . . . , xmn

n } is harmonic with average xk for all m > 0.

6.1. Total weak harmonic labelings

Since a weak harmonic labeling over a multigraph G is trivially equivalent to a total labeling over sG we can state the 
theory in terms of total labelings.

Definition 6.8. If G is a simple graph, then we call a total weak harmonic labeling of G onto I to a function � : V G ∪ EG →Z
such that �|V G is a bijection with I and
14
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Algorithm 5 Total weak harmonic labeling.
Require: φ : V G → [0, n − 1] ∩Z with property (3)
Ensure: � a total harmonic labeling on G

1: procedure totalLabelingFrom(φ)
2: Order V G \ SG = {v1, . . . , vt} such that φ(vi) < φ(v j) if i < j.
3: Bi ← {φ(w) | w ∈ NG (vi)} (1 ≤ i ≤ t).
4: for 1 ≤ i ≤ t do
5: if av(Bi) 	= φ(vi) then
6: Harmonize Bi by conveniently altering the multiplicity of the elements different from φ(vi) (see Remark 6.9).
7: if φ(v j) ∈ Bi then
8: For 1 ≤ j < i: Correct the multiplicities of the elements of B j so the multiplicity of φ(vi) ∈ B j coincides with that of φ(v j) ∈ Bi

9: For i < j ≤ t: Correct the multiplicity of φ(vi) ∈ B j so it coincides with that of φ(v j) ∈ Bi

10: end if
11: end if
12: end for
13: �(v) ← φ(v) for every v ∈ V G

14: �({w, u}) ← multiplicity of φ(u) in Bφ(w)

15: end procedure

Fig. 12. Examples of total weak harmonic labelings obtained from Algorithm 5. The labels of the edges appear in parentheses (labels equal to 1 are omitted).

�(v) = 1

deg(v)

∑
w∼v

�({v, w})�(w) ∀v ∈ V G \ SG .

Given a weak harmonic labeling � : V → I over a multigraph G we have the associated total weak harmonic labeling 
�∗ : V sG ∪ EsG →Z over sG defined as{

�∗(v) = �(v) v ∈ V sG

�∗({v, w}) = mG(v, w) {u, v} ∈ EsG .

Conversely, given a total weak harmonic labeling � : V G ∪ EG → Z over a simple graph G we can define a weak harmonic 
labeling over the multigraph G� where V G�

= V G and mG�
(v, w) = �({v, w}). View in this fashion, weak harmonic labelings 

of simple graphs are a particular case of total weak harmonic labelings of simple graphs.
Total weak harmonicity is naturally much less restrictive than weak harmonicity. Any finite simple graph G which admits 

a weak harmonic labeling in particular admits a bijective vertex-labeling � : V G → [0, n − 1] ∩Z such that

min
w∈Nv (G)

{�(w)} < �(v) < max
u∈Nv (G)

{�(u)} (3)

for every v ∈ V G \ SG . Algorithm 5 produces a total weak harmonic labeling from any labeling φ fulfilling (3) on a finite 
simple graph G . It makes use of the following

Remark 6.9. If M = (A, m) is a finite multiset and x ∈ M is neither the maximum or minimum of M then we can “correct” 
the multiplicities of the elements of M so av(M) = x. Indeed, if x > av(M) then letting s = miny∈M{y} and

m′(y) =
⎧⎨
⎩

m(y) · m(s) · (x − s) y 	= s, x

m(s) · | ∑
z 	=s

(x − z)m(z)| y = s

we readily see that M′ = (A, m′) is an harmonic multiset of Z. The case x < av(M) is analogous. Additionally, note that 
multiplying the multiplicities of every element in an harmonic multiset of Z by a fixed positive integer does not alter its 
harmonicity.

Fig. 12 shows examples of total weak harmonic labelings obtained from Algorithm 5 to some complete graphs with two 
leaves added.
15
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7. Open questions and future work

Next is a short list of possible future directions and open problems of the theory of weak harmonic labelings.

(1) As it was pointed out by a reviewer, the examples of harmonic labelings obtained from finite weak models in this article 
enjoy a lot of symmetries. Can a larger class of examples be produced based on this regularity? Is there a way to obtain 
an harmonic labeling from (the weak labeling) of K1,n for every even n (see Fig. 5)?

(2) Can a given infinite graph admit two different harmonic labelings? Can finite weak models help construct examples of 
such labelings? This question also arose from a reviewer’s comment.

(3) We have shown in Section 3 that many of the examples of weak labelings onto Z built from finite models belonged to 
the family P (see Proposition 3.4). Can all weakly labeled graphs onto Z which are (weakly labeled) subgraphs of P B

for some B ⊂ B be characterized?
(4) In Section 5 we provided quantitative evidence of the efficiency of using Theorem 4.6 to compute weakly labeled finite 

graphs. It would be interesting to produce concrete efficient implementations to perform these calculations.
(5) Harmonic subsets of Z are a rather interesting class of subsets of Z. Can they all be characterized/built efficiently? If 

not, what can we say about its cardinality and/or distribution according to average or size?
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