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I. INTRODUCTION

Financial markets are highly complex systems that result from the interaction of many internal and external
factors. For many years, economists, mathematicians and physicists have studied these time series, since their
statistical properties are quite unique [1]. One of the first models of market prices was proposed by Louis Bachelier,
who used a sequence of Gaussian random variables. In 1963, Mandelbrot contradicted Bachelier in a famous paper
that showed that the series of returns for small intervals follows a Pareto-Levy distribution [2]. Years later, E. Fama
introduced the Efficient Market Hypothesis (EMH), that states that at any time, the price of an asset fully reflects
all avable historical information. This implies that there can be no correlation between past and future returns
though it allows for correlations between their absolute values. More recently, physicists have used statistical physics
and associated concepts such as “phase transitions” or “critical phenomena” to understand economic systems [3]
and more specifically to propose some potentially universal properties of markets, so called stylized facts. One of the
more remarkable stylized fact is that if one considers returns on different time scales, when the ∆t increases the fat
tail distribution, Pareto-Levy type, evolves towards a simpler Gaussian behavior. Another interesting stylized fact
is the power law behavior of the autocorrelations of absolute returns,[2]. Also, recent works have demonstrated that
empirical data coming from financial markets, such as stock market indices, foreign exchange markets, commodities,
traded volumes and interest rates have a multifractal nature [4–9].

In this paper we intend to study the correlation between the series of international commodity prices and the
evolution of Argentina’s economy in the period 2002 − 2012. We will make use of the multifractal formalism to
propose a specific way to estimate the cross-correlation between the MERVAL index and the commodity prices. This
article is organized as follows: section II is a brief overview of the last economic history of Argentina; in section III we
present the mathematical methodology, the next section we present and discuss the results and finally the conclusions.

II. BRIEF REVIEW OF RECENT ARGENTINIAN ECONOMIC HISTORY

Argentina is a country whose main activity is agriculture and livestock: it is one of the leading exporters of food
commodities. From 1991 to 2001 -Menem’s and De la Rúa presidencies- the Argentine peso was at a fixed exchange
rate with the US dollar. This “dollarization” was meant to overcome the tendency to periodic bursts of hyperinflation
common during the late 1980s, but almost entirely deprived Argentina of any control over its monetary policy as it
became evident when the aftermath of the “Tequila Crisis” provoked a massive outflow of capital. The 1997 financial
crisis in SouthEast Asia caused a sudden revaluation of the dollar when compared with the currencies of competing
countries and the impossibility to devalue the peso seriously harmed exports. As a result, the economy stopped
growing, unemployment and poverty increased. social unrest grew and the country entered into a recession.

The crisis exploded on November 29, 2001, when Argentinians took to banks and financial institutions to withdraw
millions of pesos and dollars from their accounts. Had the withdrawal continued, Argentina’s entire banking system
would have collapsed. In this context, De la Rúa President’s position had become un-sustainable. Between December
16 and December 19 there were several incidents involving unemployed activists and protesters who demanded the
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handing-out of food bags from supermarkets. These incidents ended up with outright looting of supermarkets and
convenience stores on December 18, provoking 2 days later De la Rúa’s resignation. Between December 20, 2001 and
January 2, 2002 there were five presidents. The last, Eduardo Duhalde, called for elections won by Nestor Kirchner on
May 2003. During the following year, Kirchner rescheduled 84 billion dollars in debts with international organizations,
for three years. In the first half of 2005, the government launched a bond exchange to restructure approximately 81
billion of national public debt. Over 76 % of the debt was tendered and restructured for a recovery value of approx-
imately one-third of its nominal value. These decisions as well as a large peso devaluation produced strong positive
changes in the Argentinian economy and consequently in society. In October 2007, he was succeeded by his wife,
Cristina Ferná ndez de Kirchner. who maintained the same course: economic development based on agro-industries,
reduced debt and progressive social support to the most needy, in order to promote domestic consumption. Therefore,
Argentina’s economy is strongly linked to the export of raw materials, mainly soybeans, grains and beef. So, she urged
the manufacturing industries for local development.
We consider these historical circumstances and divide the data set into three distinct periods T1, T2 and T3, charac-
terized by the political-economic contexts both internally and worldwide. From a domestic perspective, these periods
represent essentially three presidential terms. Period T1 : 2000 − 2004, Fernando De La Rúa and Duhalde’s govern-
ment); T2: 2004− 2008 Nestor Kirchner; T3 2008 − today Cristina Fernández . Since 2007 the international price of
some grains, especially soybeans, rose to record levels, while the period T3 is characterized by a substantial increase
in taxes on export of grains (especially soybeans), that the government used to reinvest into the economy through
public works, subsidies and social programs.

III. MATHEMATICAL METHODS

A. The Multifractal Fluctuation Analysis

We will adopt the Multifractal Detrended Fluctuation Analysis (MFDFA) method, a generalization of the Detrended

Fluctuation Analysis (DFA) method that has been proved to be a particularly flexible method, specially to deal with
non-stationary series, [10, 11].

The MFDFA multifractal spectrum estimation of a one dimensional series {x(i), i = 1, · · · , N}, is based on the
construction and analysis of the fluctuation function, that is defined as a function of the profile of the series by the

integration: Y (k) =
∑k

i=1[x(i) − < x >],: where < x > is the mean value of the series {x(i)}. The fluctuation

function is defined as:

F 2
s (ν) =

1

s

s
∑

i=1

{Y [(ν − 1)s + i] − pν(i)}2 . (1)

The profile is then cut into Ns = N/s non overlapping segments of equal length s. The detrended time series for
segment ν , denoted by Yν(i), is calculated as the difference between the original time series and a polynomial pν(i)
that fits the series in the ν-th segment.

Yν(i) = Y (i) − pν(i) , (2)

For simplicity we will use a polynomial fit of order 1, so that following the usual notation our algorithm is strictly
the 1-MFDFA. In this paper we will use the simpler notation MFDFA, though we should keep in mind that different
degrees in the polynomial mean different elimination of trends in the data. For each of the Ns segments, the variance
of the detrended time series Yν(i) is evaluated by averaging over all data point i in the ν-th segment. Then, averaging
over all segments, it is possible to obtain the q-th fluctuation function:

Fq(s) =

{

1

2Ns

2Ns
∑

ν=1

[

F 2
s (ν)

]q/2

}1/q

, (3)

where, in general, the index q can take any real value, and q work as a mathematical microscope that amplifies
different behaviors of the data series, as we will show. The scaling behavior of the fluctuation function is determined
by analyzing log-log plots Fq(s) versus s for each value of q. If the series x(i) is long-range power-law correlated Fq(s)
increases, for large values of s, as a power-law:

Fq(s) ∼ sh(q) . (4)
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For more details see [10].
For monofractal time series with compact support, h(q) is independent of q, since the scaling behavior of the

variance F 2
s (ν) is identical for all segments ν and the averaging procedure in Eq. 3 will give just this identical scaling

behavior for all values of q. But if small and large fluctuations scale differently, there will be a significant dependence
of h(q) on q. If we consider positive values of q, the segments ν with large variance F 2

s (ν) will dominate the average
Fq(s) for sufficiently large q. Thus, for positive (large) values of q, h(q) describes the scaling behavior of the segments
with large fluctuations. On the contrary, for negative (large in absolute value) values of q, the segments ν with small
variance F 2

s (ν) will dominate the average Fq(s). Hence, for negative values of q, h(q) describes the scaling behavior
of the segments with small fluctuations and it is known as generalized Hurst exponent. When q = 2, the h(2) is the
Hurst exponent.

Following from Eqs. (3) and (4) and assuming that the length N of the series is an integer multiple of the scale s,

N/s
∑

ν=1

| Y (νs) − Y ((ν − 1)s) |q ∼ sqh(q)−1 . (5)

Kantelhardt and co-workers argue that this multifractal formalism corresponds with the standard box counting
theory and they related both formalisms. It is obvious that the term | Y (νs)−Y ((ν − 1)s) | is identical to the sum of
the numbers x(i) whit in each segment ν of size s. This sum is the box probability ps(ν) in the standard formalism
for normalized series x(i).

The scaling function η(q) is usually defined from last equation:

η(q) = q h(q) − 1 (6)

where q is a real parameter. The Hölder exponent α and the multifractal spectrum f(α) are related with η(q) via a
Legendre transform, in the case that η(q) is concave:

α = η′(q) (7)

and

f(α) = q h − η(q) . (8)

Then, MFDFA can be framed into the multifractal formalism. In multifractal systems, the strength of multifractal-
ity con be described by de width of the spectrum ∆α. It is easy to show that: αmax = h(−∞) and αmin = h(+∞).
So, to estimate αmax and αmin we can use the function h(q) with | q |>> 1 .
For a stationary series as fractional Gaussian noise (fGn), the series (profile) is a fractional Brownian motion (fBm).
For theses processes, 0 < h(q = 2) < 1 and h(q = 2) is the Hurst exponent, H . In the case of a monofractal signal
with compact support, h(q) is independent of q, because the scaling behavior of Fq(s) is the same for all segments.
Only if the little and big fluctuations in segments s whit a big variance the fluctuations scaled in a different way, the
function h(q) will depend with q, significantly.

B. The Detrended Cross-Correlations Analysis

Podobnik and Stanley [12] have proposed evaluate the Cross-Fluctuation Function based on in a work of Kantelhardt
[10], who proposed the MFDFA estimator for the multifractal spectrum. Let two series with same length and sampled
frequency ({s1(i), i = 1, · · · , N} y {s2(i), i = 1, · · · , N})

f2
MCCR(ν) =

1

r

r
∑

i=1

{(Y1r[(ν − 1)r + i])(Y2r[(ν − 1)r + i])} (9)

when

Y1,2(k) =

k
∑

i=1

[s1,2(i)− < s1,2 >]. (10)

The estimator MF-CCR is the q-norm of f2
MCCR(ν):

FMCCR(q, r) =

{

1

2Nr

2Nr
∑

ν=1

[

f2
r (ν)

]q/2

}1/q

. (11)
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When the series are non lineal cross correlated, they present a relation like:

FMCCR(q, r) ∝ rhMCCR(q). (12)

In the similar way that Eq. (4), the exponent hMCCR(q) can be obtained from the slope of the graph log-log of
FMCCR(q, r) vs. r.
In the case q = 2 the cross correlation estimator hMCCR(q = 2) = hDCC is known as Detrended Cross-Correlation.
When i = j the fluctuation function FMCCR(q, r) became the function Fs(q) and hMCCR(q) became the standard
generalized Hurst exponent, h(q), and hDCC became the Hurst exponent H .
The notions of persistence and anti-persistence are relevant to study the behavior of markets. These are used by
market analysts to estimate future behavior when they want to make short-term estimates and these are related
to Hurst exponent: h(2). When the behavior is persistent, it holds that 0.5 < H < 1 and when there is a higher
probability that a positive trend (rise) will follow a rise and a negative (low), another low. In contrast, when the
behavior is anti-persistent, the Hurst is between 0 < H < 0.5 and they assume that an increase will most likely to be
succeeded by a low and vice-versa. The H = 0.5 situation corresponds to an entirely uncorrelated behavior, so that
it is not possible to estimate any trend.

The concepts of persistence and anti-persistence are directly generalized to the case of the cross-correlations between
the fluctuation rates of a couples of series: the interpretation is similar to H : if 0 < hDCC < 0.5 correspond to the
anti-persistent behavior, when one increases the other series decreases and in the case of persistent 0.5 < hDCC < 1,
when one of the series grows (decreases) so does the other series. If hCCD = 0.5 the two series are not correlated with
each.
It is easy to show that, for the binomial multiplicative cascades with probabilities pi y pj and corresponded generalized
Hurst exponent hi(q) and hj(q), the following equation is verified, [12]:

hMCCR(q) =
hi(q) + hj(q)

2
(13)

is interesting to note that in the case natural series, there is a relationship of inequality. For this, in this work, we
calculate the coefficient proposed by [13]:

µi,j(q) = (hMCCR(q) −
hi(q) + hj(q)

2
)/hMCCR(q) (14)

For two binomial multiplicative cascades µi,j(q) = 0 for all q, but, for other coupled of series µi,j(q) results a
measure of the difference between the series and a process like a binomial cascades. The interpretation is: µi,j(q) > 0
implies that the cross-correlations between the individual series are generally stronger than what would be expected
from the long memory behavior of each of the individual series.

IV. DATA AND RESULTS

Were used the following data series: The MERVAL Index data that is an average of the top companies in the
stock market in Buenos Aires and the international prices of three commodities: soybeans, corn and wheat. Data
corresponding to the same period journals 1/8/2000 - 20/4/2012 and make a total of 2937 values for each series.
Because particular countries schedules (national holidays, time off, etc.), it was necessary to add and remove any of
the data in order to obtain series that dates coincide. It was derived from the data obtained for this commodity because
these are international, in the event that the date of the Down Jones series is not in the number of commodities, this
was removed, and if on the other hand, in the number of commodities is the data missing sometime in the Down
Jones, this is added to the series by averaging between the previous day and the next. The three sub-series with the
same length (979 data points) T1, T2 and T3 corresponding the periods 1/8/2000 - 8/7/2004; 9/7/2004 - 3/6/2008
and 4/6/2008 - 20/4/2012 respectively. These series are synchronized with the corresponding Merval Index data.

Since the data series {x(i), i = 1, · · · , N} the returns coefficients are: {r(i) = log x(i)
x(i+1) , i = 1, · · · , N − 1} and the

volatility is the absolute values of the returns. In the Fig. 1, we present the normalized price series in this period for
the Merval, soybeans, corn and wheat.

From these price series, we calculate the cross multifractal correlations between data sets MERVAL index returns
and each of the series of returns of the index of prices of soybeans, wheat and corn. Using the formalism presented
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FIG. 1: Normalized prices for the Merval series and the international prices of soybean, wheat and corn.

above, we calculated the cross Hurst index hMCCR(q) from (12) and the coefficient µi,j from (14), for the three
periods, T1, T2 and T3. Table I present the results for the case q = 2 corresponding to the hDCC.

Period Couple of series hij
hi+hj

2
% of µij

T1 MERVAL - Soy 0,53 0,53 0.8 %

T1 MERVAL - Corn 0,55 0,52 3.9 %

T1 MERVAL - Wheat 0,53 0,50 2.9 %

T2 MERVAL - Soy 0,53 0,52 3.8 %

T2 MERVAL - Corn 0,55 0,54 2.1 %

T2 MERVAL - Wheat 0,50 0,50 0,4 %

T3 MERVAL - Soy 0,63 0,59 6.8 %

T3 MERVAL - Corn 0,59 0,59 4.8 %

T3 MERVAL - Wheat 0,58 0,55 4.6 %

Tab. I: values of the cross correlation for the couples return prices of MERVAL Index and the international prices of
soybean, corn ant wheat. Note that in all cases, µ ≥ 0, i.e. a persistence behavior.

Figures 2,3 and 4 show the features of fluctuation and cross fluctuation function for each of the time periods, T1, T2 and T3,
only for the case of the couple of MERVAL-Soybeans:

FIG. 2: Power law correlations and cross-correlations between MERVAL and soybean return time series, in the Period I.
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FIG. 3: Power law correlations and cross-correlations between MERVAL and soybean return time series, in the Period II.
Cross-correlations are stronger than the individual auto-correlations.

FIG. 4: Power law correlations and cross-correlations between MERVAL and soybean return time series, in the Period III.
Cross-correlations are considerably stronger than the individual auto-correlations.

V. CONCLUSIONS

In this work we have investigated the relationship between the autocorrelations and cross-correlations in time series of returns
for MERVAL and three series of agricultural commodities: soybeans, corn and wheat. We find that for the case of soybeans,
in the first period cross-correlations were virtually identical to the autocorrelation (µ ≈ 0), but increased in the second period
and reaches a maximum in the third period. In the case of corn and wheat, the second period has a lower cross-correlation (µ
almost reaches zero for wheat) but becomes positive in the third period.

This result is fully consistent with the decisions taken from 2004 in respect to taxes on exports of grains and re-injection of
the funds in social assistance (which increased the domestic market), construction loans and support industry.
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agrarian commodities and stocks”, Physica A 389 (2010) 2739-2743


