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Abstract.  Inspired by some recent experiments and numerical works related 
to nanoresonators, we perform classical molecular dynamics simulations to 
investigate the thermal expansion and the ability of the device to act as a strain 
sensor assisted by thermally-induced vibrations. The proposed model consists 
in a chain of atoms interacting anharmonically with both ends clamped to 
thermal reservoirs. We analyze the thermal expansion and resonant frequency 
shifts as a function of temperature and the applied strain. For the transversal 
modes the shift is approximately linear with strain. We also present analytical 
results from canonical calculations in the harmonic approximation showing 
that thermal expansion is uniform along the device. This prediction also works 
when the system operates in a nonlinear oscillation regime at moderate and 
high temperatures.
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1.  Introduction

Increasing interest in resonant motion of nanosystems is due to its promising capability 
to act as sensors. Theoretical and experimental studies enabled advances not only in 
the characterization but also in the production of nanoscale resonators [1–3].

The functionality as sensors is based on their low masses, low force constants, 
large resonant frequencies and low damping, i.e. high mechanical quality factors [4–9]. 
Nanoscale resonators are typically carbon-based structures, capable of weighing single 
bacteria [4], detecting single spins in magnetic resonance systems [5], and even prob-
ing quantum mechanics in macroscopic systems [2]. In particular, carbon nanotubes 
and graphene resonators [10, 11] are nearly ideal building material due to their perfect 
atomic structure with low density and high Young’s modulus.

Another interesting feature of nanoresonators is their strongly nonlinear behavior 
[2, 12, 13]. This produces nonlinear vibrational modes, localized and non-localized 
modes, enabling an energy transfer between them [14, 15]. These consequences directly 
aect their thermal properties such as thermal expansion, intrinsic thermal vibrations 
and conductivity. In addition to nonlinearities and depending on the dimensionality 
of the device, the role played by longitudinal, transversal and flexural modes and the 
coupling between them will be critical when studying thermal properties. For example, 
it was shown that the graphene’s superior thermal conductivity and the behaviour of 
the coecient of thermal expansion are mainly due to the interplay between its three 
acoustic phonon modes, the fundamental role of flexural modes on thermal fluctuations 
and their particular vibration morphology [16].

On the other hand, these nanomechanical carbon-based devices are usually sus-
pended and thus subject to tensile stress, which leads to high mechanical stability 
and high mechanical quality factors. The applied mechanical stress also aects the 
vibrational-mode frequencies, and consequently their thermal response. This has led to 
the development of an elastic strain engineering in order to improve the performance 
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of the transport and sensor properties of the resonators. This technique is a low-cost 
way of continuously tuning the phonon and electronic modes and thus the desired mat
erial properties. Just to mention an example, in a recent experimental work a versatile 
local-self-calibration and nondestructive method to monitor the applied strains in semi-
conductor micro or nano-structures was proposed, where local strains can be measured 
through analyzing the relative position of Raman peaks [17].

Harmonic and anharmonic models [18, 19] have been proposed to theoretically 
study the underlying physical mechanisms involved in the energy transfer. For exam-
ple for carbon-nanotubes or nanowires devices, the models are in general structures 
built from one dimensional arrays of atoms that can vibrate only longitudinally. 
However, in order to get a more reliable picture of the energy transfer phenomena, 
one should include longitudinal as well as transversal vibrations, and the coupling 
between them [20].

We propose a model for nanoresonator which can act as a strain sensor while it 
undergoes a thermal expansion. In this work we model a nanowire as a chain of atoms 
with a α β−  Fermi–Pasta–Ulam interaction potential. The Fermi–Pasta–Ulam (FPU) 
model and its variants provide an ideal test-bed for addressing fundamental issues in 
statistical mechanics such as the validity of macroscopic laws in low dimensional sys-
tems [21, 22], when strong nonlinearities have to be consider. Thermal properties, as 
thermal conductivity, have been extensively investigated in one dimensional chains of 
atoms oscillating in one direction using a FPU model , e.g. demonstrating a breakdown 
of the normal-diusional Fourier’s law dynamics [23]. As we are interested in the role 
of dierent kinds of modes, we generalize the α β−  FPU model, to the case of particles 
that are allowed to oscillate in any direction enabling also transversal modes.

2. The model

We consider a system of N particles in a linear arrangement, identified by an index 
⩽ ⩽i N1 , at positions Ri, which in principle can have dierent masses mi. The par-

ticles interact with nearest neighbors by an α-β Fermi–Pasta–Ulam potential that only 
depends on the relative distance = | − |+d R Ri i i1

( ) ( ) ( ) ( )α β= − + − + −v d k d l d l d l
1

2

1

3

1

4
.i i i i0

2
0

3
0

4
� (1)

where l0 is the equilibrium distance. The particles on the left (i  =  1) and right (i  =  N ) 
borders also interact by the same potential with two substrates that can be thought 
as a left (i  =  0) and right (i  =  N  +  1) fixed particles, so we are considering a nanowire 
with fixed boundary conditions. Therefore, there are (N  +1) interactions or bonds that 
contribute to the total potential

({ }) ( )∑=
=

V v dR ,i

i

N

i

0
� (2)

that depends on the positions Ri. We allow for the particles to move in the three dimen-
sions (see figure 1). A natural equilibrium position of the particles is a linear array along 
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the x axis with lattice constant a  =  l0. However, if the distance between the fixed par-
ticles is bigger than (N  +  1) l0, there will be an uniaxial tension along the system that is 
parametrized by a change in the lattice constant a  >  l0, or the strain ( )/ε = −a l l0 0. We 
are specially interested on the eects of tension on the thermal properties of the system 
because it is an external parameter that can be easily controlled. The equilibrium posi-
tions of the particles are ( )= iaR , 0, 0i0 . We characterize the motion of the particles by 
the displacement with respect to their equilibrium position ( )= − = x y zr R R , ,i i i i i i0 . 
Moreover, the left and right particles i  =  1 and N are coupled to two thermal reser-
voirs respectively. We consider a Langevin interaction by a viscous term proportional 
to velocity, and decorrelated random forces acting on the particles in contact with the 
reservoirs. The equation of motion for each particle is

( )γ= −
∂
∂
− +m

t

V

t
t

r

r

r
f

d

d

d

d
i

i

i
i
i

i

2

2� (3)

where γ γ= ≠ 0i  for i  =1 or N, and zero otherwise. The random forces have the 
correlations

⟨ ( ) ( )⟩         ( )γ δ δ δ= −′ ′µ ν µ νf t f t k T t t2i j i i j, , B , ,� (4)

where Ti is TL and TR for i  =1 and N, the temperatures of the left and right reservoirs, 
respectively, or zero otherwise. The indices ( )µ ν,  run over the (x, y, z) directions of 
motion.

We focus on the thermal expansion of the nanowire, which we can compute from 
the average distance di, and on the resonances of transversal and longitudinal displace-
ments of the atoms. The thermal expansion and resonances will strongly depend on 
temperature and tension.

2.1. Expansion of the potential

Considering the general case of particles moving in three directions and with tension, 
the nonlinear potential can be expanded around the new equilibrium positions for small 
displacements. The distance between two neigboring atoms is

( )= +∆ +∆⊥d a ,i x
2 2� (5)

where ∆ = −+x xx i i1  and ( ) ( )∆ = − + −⊥ + +y y z zi i i i
2

1
2

1
2 are their relative longitudinal 

and transversal displacements. For both displacements being much smaller than the 
lattice constant a, we can expand it up to fourth order obtaining

Figure 1.  Schematic of the system. Particles on each end are coupled to Langevin 
thermal baths.
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−Od a

a a a
a

1

2

1

2

1

8
4 .i x x x

2
2

2
3
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Inserting this expansion into the potential (1) we obtain

v d v F k k c c
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� (7)
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(8)

v0 is an energy constant with no eect on the dynamics. F0 is the force in the longitudi-
nal direction in between two neighboring atoms, i.e. the tension as a function of the lat-
tice constant a, which indeed is nonlinear. keff is an eective value of the force constant 
in the longitudinal direction. Depending on the values and sign of α it can increase or 
decrease with strain. αeff replaces the α constant for the term proportional to the cube 
of the displacement in the longitudinal direction. ⊥k  represents a force constant, pro-
portional to the tension, which is the leading term for the transversal direction. In case 
of no tension, this term vanishes, and the leading term in the transversal direction is 
quartic in the displacement and proportional to β⊥. c3 and c4 are two constants which 
couple the longitudinal and transversal coordinates at third and fourth order in the 
displacements, respectively. These terms are responsible for the mixing and coupling of 
modes, reducing the transport of energy along the nanowire.

Summing these terms for every bond, the force terms proportional to ∆x cancel each 
other, obtaining up to second order

({ }) ( ) ( ) [( ) ( ) ]∑ ∑= + + − + − + − +…
=

+ ⊥
=

+ +V N v k x x k y y z zr 1
1

2

1

2
.i

i

N

i i

i

N

i i i i0 eff

0

1
2

0
1

2
1

2

� (9)

These quadratic terms give rise to the usual harmonic normal modes for a finite chain. 
In the case of equal masses mi  =  m the frequencies are
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for n  =  1 to N. The frequencies in the z direction are degenerate with those in y. In the 
case of no strain, the constant ⊥k  goes to zero, therefore, there are no harmonic modes in 
the transversal directions. The vibrations can be described by nonlinear modes whose 
frequencies are proportional to the amplitude and interact chaotically.

3. Canonical calculation

Considering that both thermal baths have the same temperature, the atomic chain is 
in thermal equilibrium, allowing a canonical calculation of the average displacement 
of the particles and their correlations. We start from the probability density of some 
possible state in the phase space:

({ } { }) ( ({ } { }))β= −P
Z

Hr p r p,
1

exp , ,i i i i� (11)

with /( )β = k T1 B , and the canonical partition function

( ({ } { }))∫ β= … … −Z Hp p r r r pd d d d exp , .N N i i1 1� (12)

In the harmonic approximation, the Hamiltonian with potential energy (9) can be writ-
ten as

({ } { }) [ ]∑ ∑∑=
+ +

+ + +
= = =

⊥ ⊥K K KH
p p p

m
k x x k y y k z zr p,

1

2

1

2
.i i

i

N
x i y i z i

i i

N

j

N

i ij j i ij j i ij j

1

,
2

,
2

,
2

1 1

eff

�

(13)

The ×N N  matrix K is triadiagonal, with = = = −+ +K K K2, 1ii i i i i, 1 1, , and zero oth-

erwise. The coordinates can be written as = ∑ ′= Ax xk l
N

kl l1 , where ′xl are the eigenvector 

coordinates with

⎛
⎝
⎜

⎞
⎠
⎟π

=
+ +

A
N

kl

N

2

1
sin

1
.kl� (14)

Similarly for yk and zk, the potential of the Hamiltonian simplifies to

V k x k y zr
1

2

1

2
,l

l

N

l l
l

N

l l leff

1

2 2

1

2 2 2({ }) ( )∑ ∑′ ′ ′= Ω + Ω +′
=

⊥
=

� (15)

with 
( )

⎡
⎣

⎤
⎦Ω = π

+
2 sinl

l

N2 1
. In these new coordinates all integrals in (12) are Gaussian and 

can be easily performed. Finally the partition function is
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N N
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B
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eff
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With this result, and the same change of variables, we can compute the correlations, 
obtaining

⟨ ⟩ ( )
∑=

Ω
=

+ −
+=

A A
x x

k T

k

k T

k

i N j

N

1

1
,i j

l

N
il jl

l

B

eff 1
2

B

eff
� (17)

and similarly for

⟨ ⟩ ⟨ ⟩ ( )
= =

+ −
+⊥

y y z z
k T

k

i N j

N

1

1
.i j i j

B
� (18)

In this harmonic approximation of the potential, there are no correlations between 
dierent directions, and we can now compute the average distance between atoms. 
From (6), up to second order we have

〈 〉 〈 〉 〈( ) ( ) 〉= + − + − + −+ + +d a x x
a
y y z z

1

2
,i i i i i i i1 1

2
1

2
� (19)

and replacing by the correlations we finally obtain

⟨ ⟩
⎛
⎝
⎜

⎞
⎠
⎟= +

+ ⊥
d a

N

N

k T

k a
1

1
.i

B

2� (20)

The most important feature of this result is that the average distance between atoms 
does not depend on the bond index i, i.e. the thermal expansion is uniform along the 
nanowire. It also gives a leading term which is linear in temperature. This formula is 
for ⊥�k T k aB

2.

4. Numerical results

For higher temperatures, the displacements of the atoms are of the same order of the 
lattice constant, and the nonlinear terms become important. Also for the case of no 
tension, the potential in the transversal direction is nonlinear for all amplitudes. For 
these cases it is necessary to integrate the equations of motion numerically, taking into 
account the stochastic forces of the thermal baths. In all simulations we start from the 
equilibrium configuration, waiting for the system to attain a stationary regime before 
starting to perfom dierent statistics.

We consider the equilibrium distance l0 between atoms as unit of length, the mass 

m of atoms as unit of mass, /τ = m k0  as unit of time, kl0
2 as unit of energy, and there-

fore /Θ = kl k0 0
2

B as unit of temperature. As an example, for carbon atoms in graphene 

≈l 0.140  nm and ≈k 650 nN nm−1 typically, giving Θ ≈ 100
6 K and /τ ≈1 1800  THz for 

temperature and frequency units, respectively. Also expanding the Terso–Brenner 
potential [24] around the equilibrium position up to fouth order, we obtain the dimen-
sionless values α≈−5.5 and β≈ 16.9.

http://dx.doi.org/10.1088/1742-5468/2016/08/083201


Thermal expansion in nanoresonators

8doi:10.1088/1742-5468/2016/08/083201

J. S
tat. M

ech. (2016) 083201

We study the thermal expansion of the system, by computing the temporal average 
distance between neighboring particles along the system. Although we perfom these 
calculations for dierent temperatures, strains, and strength of the cubic term of the 
potential, in all cases we find that the mean distance ⟨ ⟩di  does not significantly depend 
on the index i, beside some statistical errors, as it was shown in equation (20). Thus, 
the thermal expansion is uniform and particles near the thermal baths expand in the 
same way that particles in the middle of the nanowire.

We analyze the temperature dependence of the thermal expansion in figure 2, for 
a fixed positive value of strain. As expected, we observe a general increasing of ⟨ ⟩d  for 
increasing temperature. For low temperatures, there is a linear relation as predicted 
by equation (20), the slope being the coecient of thermal expansion. Nevertheless, at 
moderate and higher temperatures, the expansion has a decreasing slope, showing the 
eect of the nonlinear terms. We also plot the dependence for two dierent values of α, 
the cubic term in the interatomic potential. A negative value of α implies a repulsive 
potential at short distances. Therefore it is not surprising that in this case we observe 
the biggest expansion in all temperature regimes, compared with α = 0. We remark that 
even if the canonical calculation takes into account only harmonic terms in the poten-
tial, the dependence on α comes through ⊥k  after expanding the interatomic potential 
for a finite strain.

In figure 3 we plot the thermal expansion as a function of strain, for three dierent 
temperatures. From now on we keep fixed α = −5.5 (repulsive potential at short 
distances) and β≈ 16.9, which accounts for typical values between carbon atoms. 
Consistent with the previous figure, thermal expansion is bigger at higher temper
ature. However, the average distance ⟨ ⟩d  decreases at increasing strain for all three 
dierent temperatures. This is an evidence that the chain becomes more rigid with 
tension, which is compatible with the increasing value of the transversal eective 
constant ⊥k .

Figure 2.  Average distance between neighboring atoms d⟨ ⟩ as a function of 
temperature, for an homogeneous chain with N  =  50, strain 0.025ε = , and quartic 
term in the interatomic potential 16.9β = . Black squares and red circles are for 
the cubic terms 0α =  and 5.5α = − , respectively. Full lines are the canonical 
predictions given by equation (20), for the same two values of α.

http://dx.doi.org/10.1088/1742-5468/2016/08/083201
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In order to better understand the mechanical and thermal behavior, it is important 
to study the vibrational modes as a function of the dierent parameters. This would 
provide useful relations to use the system as a nanoresonator.

We perform Fourier transform of the longitudinal and transversal displacements 
of an atom in the chain, in order to find the main involved frequecies. In figure 4 we 
observe that most of the power is concentrated in the lowest transversal mode with 
ω ≈⊥ 0.0017 (that would correspond to approximately 300 GHz for carbon atoms). The 
longitudinal lowest mode has a much higher frequency ω≈ 0.007, but around an order 
of magnitude lower in power. It’s also interesting to observe a small peak around ω⊥ in 
the longitudinal spectrum. This means that both directions are eectively coupled by 
the nonlinear terms of the potential c3 and c4.

In figure  5 we observe an increase of ω⊥ with temperature. If harmonic normal 
modes of vibration are considered, their frequencies should not depend on available 

Figure 3.  Average distance between neighboring atoms d⟨ ⟩ as a function of 
strain, for an homogeneous chain with N  =  50, 5.5α = − , 16.9β =  and dierent 
temperatures. Black squares correspond to T  =  10−4, red circles to T  =  6.10−4 and 
blue triangles to T  =  10−3.

0.00 0.01 0.02 0.03 0.04 0.05
1.00

1.01

1.02

1.03

<d>/a

ε

T=10-4

T=6.10-4

T=10-3

Figure 4.  Spectra of transversal and longitudinal (inset) displacements. N  =  50, 
0.025=ε , T 6 10 4= ⋅ − .
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energy, i.e. the temperature. Therefore, the observed behavior is a consequence of non-
linear modes of vibration, whose frequencies depend on their amplitude. This eect is 
more pronounced when ε = 0, as =⊥k 0, and the restitutive force in the transversal 
direction is proportional to the cube of the displacement.

We plot in figure 6 the frequency ω⊥ as a function of strain, for a fixed temperature. 
We observe an approximate linear increasing. On one hand, this corresponds with the 
increasing value of ⊥k  with strain, that increases the rigidity and consequently the fre-
quency of normal harmonic modes. On the other hand, at low strain the transversal 
modes are highly nonlinear, in which case their frequencies strongly depend on ampl
itude. From this linear behavior it is possible to calibrate the system as a strain sensor 
from measurements of the resonant frequency.

Figure 5.  Frequency of the lowest transversal mode as a function of temperature 
for N  =  50 at two dierent strains.

Figure 6.  Frequency of the lowest transversal mode as a function of strain, for 
N  =  50 and T 6 10 4= ⋅ − .
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5. Conclusions

We have characterized thermal expansion and resonant frequencies in a nanowire at 
dierent temperature and strain regimes. We modeled the system as a one dimensional 
array, with interatomic potentials that depend on the absolute distance between atoms. 
However, the atoms can vibrate in the three directions, to consider a more general 
model. In turn, the interatomic potential besides a harmonic term includes nonlinear 
cubic and quartic terms (an α-β Fermi–Pasta–Ulam potential), as a general expansion 
of any potential.

Expanding the total potential energy around the equilibrium, eective coupling 
constants were obtained which depend on the strain and can explain the interactions 
between the longitudinal and transversal vibrational modes. We performed a canonical 
calculation, obtaining a theoretical expresion for the thermal expansion, which is uni-
form along the nanowire and linear with temperature. There is also a dependence with 
strain through the eective transversal harmonic constant.

These theoretical results were compared to molecular dynamics simulations. For 
low temperatures up to ⋅ −2 10 4 (around 200 K for carbon atoms), the canonical calcul
ation accurately describes the thermal expansion. For higher temperatures the expan-
sion has a decreasing slope, pointing to a more relevant contribution of the nonlinear 
terms and a coupling between longitudinal and transversal directions. Nevertheless, 
it was checked that the thermal expansion is uniform along the system even at high 
temperatures and dierent strains.

We obtained the main resonant frequency of the system, that correspond to the 
lowest transversal vibrational mode, studying its dependence with temperature and 
strain. The dependence of the frequency with temperature shows that this vibrational 
mode is highly nonlinear. Moreover, we also found that it is linearly shifted when strain 
is applied, which allows to use this type of systems as nanoresonators. A challenging 
technological implication is the use of nanowires as sensors of nano-forces by inducing 
the system into a thermally nonlinear vibrational regime. Experimentally this can be 
achieved by measuring resonant frequencies from shifts observed in Raman spectr
oscopy [25].

More theoretical work should be done to better understand the nonlinear vibra-
tional modes, the coupling between dierent modes, the localization phenomenon, and 
the implications in mechanical and thermal properties. The present work contributes 
in this direction and one of the authors (AM) will give a deeper insight to these aspects 
in a near future work.

In conclusion, the proposed atomistic model is a suitable approach to understand the 
underlying physics of nanosytems when transport properties are mediated by acoustic 
phonons. This model can also help to understand other thermal properties as conduc-
tance and thermal rectification phenomena.
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