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1. Introduction

The notion of orthogonality on an inner product space has been generalized to any 
normed space over K ∈ {R, C} in several ways. One of the most studied is the so-called 
Birkhoff–James orthogonality [11,22]: for x, y ∈ X it is said that x is Birkhoff–James 
orthogonal (B-J) to y, denoted by x ⊥BJ y, if and only if

‖x‖ ≤ ‖x + γy‖ (1.1)

for all γ ∈ K. If X is an inner product space, then B-J orthogonality is equivalent 
to the usual orthogonality given by the inner product. It is also easy to see that B-J 
orthogonality is nondegenerate, is homogeneous, but it is neither symmetric nor additive. 
There are several works dedicated to the study of this type of orthogonality, we cite for 
example [11,22,23,10,9,2,25,8,32,31,35,36] in chronological order.

In a similar way, for every closed subspace B ⊆ X and x ∈ X we say x is Birkhoff–
James orthogonal to B (noted by x⊥BJB) if

‖x‖ ≤ ‖x + b‖, for all b ∈ B,

that is ‖x‖ = dist(x, B). This x is also called a minimal vector and observe that

x⊥BJB ⇔ x⊥BJ b for all b ∈ B. (1.2)

Problems related with existence, unicity and characterization of minimal vectors in 
normed spaces were extensively studied in [3–5,17,20,21]. Relative to the existence prob-
lem, if we consider B ⊂ A von Neumann algebras and a ∈ A, a = a∗, there always 
exists an element b0 in B such that ‖a + b0‖ ≤ ‖a + b‖, for all b ∈ B (see [17]). The 
element a + b0 is minimal in the class [a] of the quotient space A/B. However, in the 
case of A = K(H), the C∗-algebra of compact operators over a complex Hilbert space H
(which is not a von Neumann algebra), and B = D(K(H)) ⊂ K(H), the C∗-subalgebra 
of diagonal operators respect some prefixed basis, there is not always exist a minimal 
Hermitian compact operator in each class on [Z] = {Z + D : such that D ∈ D(K(H))}. 
In [13] and [15] we exhibit examples of this fact. The existence of a best approximant for 
a compact Hermitian operator C is guaranteed for example when H is finite dimensional 
or C has finite rank [3].

We study in this paper the problem to find and characterize minimal Hermitian vectors 
in X , where X can be the space of bounded linear, compact or p-Schatten operators, 
with 1 ≤ p < ∞, over H. With this purpose, we use B-J orthogonality as a tool to 
characterize minimal Hermitian operators. In all cases, B = D(X ), that is the subspace 
of diagonal operators of X in any prefixed basis of X . If a Hermitian operator A ∈ X is 
minimal, that is

|||A||| ≤ |||A + D||| for all D ∈ D(X )
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and ||| · ||| is the usual operator norm in each X , then Diag(A) is the diagonal operator 
which minimizes the norm of A − Diag(A), or equivalently

|||A||| = dist(A,D(A)).

The problem about minimal operators is related with the study of minimal length 
curves of the orbit manifold of a Hermitian compact operator T by a particular unitary 
group, that is

OT = {uTu∗ : u is bounded, linear, unitary and u− 1 ∈ X}.

The existence of a (not necessarily unique) minimal element A allows the description of 
minimal length curves of the manifold OT with initial velocity x = iAb − biA by the 
parametrization

γ(t) = etiA b e−tiA, t ∈ [−1, 1].

For a deeper discussion of this topic we refer the reader to [17,3,15].
We briefly describe the contents of this paper. Section 2 contains basic definitions, no-

tation and some preliminary results. In section 3, we introduce the concept of minimality 
for bounded linear operators acting on H and we develop some general properties. In 
section 4, we present the concept of minimal operators in p-Schatten ideals for 1 < p < ∞
and we relate it with Birkhoff-James orthogonality. In section 5 we focus on character-
ize minimal compact and trace class operators using Gateaux ϕ-derivatives. In the last 
section, we present and describe some particular results and cases for the minimality of 
compact Hermitian operators in the spectral norm.

2. Preliminaries

Let (H, 〈, 〉) be a separable Hilbert space. As usual, B(H), U(H) and K(H) denote 
the sets of bounded, unitary and compact operators on H. We denote with ‖·‖ the usual 
operator norm in B(H). The symbol I stands for the identity operator on B(H).

If an orthonormal basis {ei}∞i=1 of H is fixed we can consider matricial representations 
of each A ∈ B(H). More precisely, we regard an operator A ∈ B(H) as an infinite matrix 
defined for each i, j ∈ N as Aij = 〈Aei, ej〉. In this sense, ith-row of A and the jth-column 
are the vectors in �2 given by and fj(A) = (Ai1, Ai2, ...) and cj(A) = (A1j , A2j , ...), 
respectively.

If A is any subspace of B(H), we denote with D(A) the set of diagonal operators with 
respect to the prefixed basis of H, that is

D(A) = {A ∈ A : 〈Aei, ej〉 = 0 , for all i �= j} .
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We define the operator Diag : B(H) → D(B(H)), which essentially takes the main 
diagonal of an operator A (i.e. the elements of the form 〈Aei, ei〉i∈N) and builds a di-
agonal operator in the prefixed basis of H. For a given sequence {dn}n∈N we denote 
with Diag

(
(dn)n∈N

)
the diagonal (infinite) matrix with (dn)n∈N in its diagonal and 0

elsewhere.
Given a subspace S of H, we denote as PS the orthogonal projection onto S. For every 

subset A ⊂ B(H), we use the superscript h to note the subset of Hermitian elements of 
A. A Hermitian element A ∈ B(H) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H and it 
is denoted by A ≥ 0. For an operator A ∈ B(H) we use ker(A) to denote the kernel of A
and it can be defined the modulus of A as |A| = (A∗A) 1

2 .
For every compact operator A ∈ K(H), let s1(A), s2(A), · · · be the singular values of 

A, i.e. the eigenvalues of |A| in decreasing order (si(A) = λi(|A|), for each i ∈ N) and 
repeated according to multiplicity. For p > 0, let

‖A‖p =
( ∞∑

i=1
si(A)p

) 1
p

= (tr|A|p)
1
p , (2.1)

where tr(·) is the trace functional, i.e.

tr(A) =
∞∑
j=1

〈Aej , ej〉. (2.2)

Note that this coincides with the usual definition of the trace if H is finite-dimensional. 
We observe that the series (2.2) converges absolutely and it is independent from the 
choice of basis. Equality (2.1) defines for 1 ≤ p < ∞ a norm on the ideal

Bp(H) = {A ∈ K(H) : ‖A‖p < ∞},

called the p-Schatten class.
Note that if H = Cn, for every n ∈ N, Bp(Cn) is the space of square n × n complex 

matrices endowed with the ‖ · ‖p Schatten norm.
We summarize some of the most important properties of p-Schatten operators in the 

following theorem.

Theorem 2.1. Let 1 ≤ p < ∞, then

1. Bp(H) ⊆ K(H).

2. Bp(H) is an operator ideal in B(H) and a Banach space with the ‖ · ‖p norm.

3. for every A ∈ Bp(H) and T ∈ B(H) we have the following inequalities:

‖A‖ ≤ ‖A‖p = ‖A∗‖p and ‖TA‖p ≤ ‖T‖‖A‖p.
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4. Hölder inequality: for every A ∈ Bp(H) and T ∈ Bq(H) such that 1
p + 1

q = 1

|tr(AT )| ≤ ‖AT‖1 ≤ ‖A‖p‖T‖q

For 1 < p < ∞, (Bp(H), ‖.‖p) is a uniformly convex space as a consequence of the 
classical McCarthy-Clarkson inequality (see [30], Theorem 2.7). The ideal B1(H) is called 
the trace class. It is not reflexive and, in particular, is not a uniformly convex space, 
because it contains D(B1(H)), which is isomorphic to l1. Other relevant ideal is B2(H), 
the Hilbert-Schmidt class, and it is a Hilbert space with the inner product 〈A, B〉HS :=
tr(B∗A).

Let Eij = ei ⊗ ej , with {ei}∞i=1 the fixed orthonormal basis of H. Observe that 
every Eij is a rank one operator for all i, j ∈ N and any A ∈ K(H) can be written 

as A =
∞∑

i,j=1
aijEij , with aij = 〈Aei, ej〉. The set {Eij}∞i,j=1 is an orthonormal countable 

basis of B2(H), since

〈Eij , Ekl〉HS = tr(E∗
klEij) =

{
1 if i = k and j = l

0 in any other case.

The Schatten p-norms and the operator norm are special examples of unitarily in-
variant norms, i.e. |||UXV ||| = |||X|||, for every pair of unitary operators U, V . On the 
theory of norm ideals and their associated unitarily invariant norms, a reference for this 
subject is [19].

In a normed space X , x ∈ X is a smooth point if there is a unique hyperplane 
supporting the open ball B(0, ‖x‖) at x. We say that X is a smooth space if all its points 
in the unit sphere are smooth points. For geometric and topological properties of smooth 
points in Banach spaces we refer to [16] and references therein.

3. Generalities of minimal operators in Xh/D(X )h

for every X closed subspace of B(H) and A ∈ X h we say that A is minimal in the 
norm ||| · ||| of X if and only if

|||A||| ≤ |||A + D||| for all D ∈ D(X h), (3.1)

or equivalently, dist|||·|||(A, D(X h)) = |||A|||. This is equivalent to say that the norm 
of A is the quotient norm of the class {A + D : D ∈ D(X h)} in the quotient space 
X h/D(X h). In this case, we say that the diagonal of A, Diag(A), is minimizant or is 
the best approximant of A in D(X h). In case of existence, the best Hermitian (or real) 
diagonal aproximation of an operator may not be unique. In this sense, another equivalent 
way to consider the minimality problem is, given an operator A0 ∈ X h, find D0 ∈ D(X h)
such that
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|||A0 + D0||| ≤ |||A0 + D||| for all D ∈ D(X h). (3.2)

In (3.2), A0 can be taken with zero diagonal. We will use both formulations (3.1) or (3.2)
whenever is convenient.

Remark 3.1. for every operator X ∈ X , if ||| · ||| is self-adjoint norm (i.e. |||X∗||| = |||X|||)

|||Re(X)||| = 1
2 |||(X + X∗)||| ≤ |||X|||

it follows that A ∈ X h is minimal if and only if

|||A||| ≤ |||A + D|||, for all D ∈ D(X ). (3.3)

The next two Propositions are closely related with the Hahn-Banach theorem for 
Banach spaces and they link the ideal spaces Bp(H) and B(H)q with 1

p + 1
q = 1. Both 

results are generalizations of the Banach Duality formula found in [13] and we include 
proofs for the sake of completeness. To simplify, here we use the notation B∞(H) = K(H).

Proposition 3.2. Let A ∈ Bp(H), 1 ≤ p ≤ ∞ and consider the set

Nq =
{
Y ∈ Bq(H)h : ‖Y ‖q = 1, tr(Y D) = 0 for all D ∈ D(Bp(H))

}
,

with 1
p + 1

q = 1. Then, there exists Y0 ∈ N such that

‖[A]‖Bp(H)h/D(Bp(H))h = inf
D∈D(Bp(H))

‖C + D‖p = tr(Y0A). (3.4)

For 1 < p < ∞ this Y0 is unique and has the form

Y0 = |A|p−1U∗

‖|A|p−1U∗‖q
,

where U is the partial isometry of the polar decomposition of A.

Proof. The existence is an immediate consequence from the Hahn-Banach theorem that 
since D(Bp(H))h is a closed subspace of Bp(H)h for all 1 ≤ p ≤ ∞. Then there exists a 
functional ρ : K(H) → R such that ‖ρ‖ = 1, ρ(D) = 0, for all D ∈ D(Bp(H)h), and

ρ(A) = inf
D∈D(Bp(H)h)

‖A + D‖p = dist(A,D(Bp(H)h)).

But, since any functional ρ can be written as ρ(.) = tr(Y0.), with Y0 ∈ Bq(H), the result 
follows.
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On the other hand, for 1 < p < ∞ and using that 1
p + 1

q = 1

∥∥|A|p−1∥∥q
q

= tr
(
|A|p−1)q = tr|A|p = ‖A‖pp

and so 
∥∥|A|p−1

∥∥
q

= ‖A‖p/qp = ‖A‖p−1
p , this implies that |A|p−1 ∈ Bq(H). The operator 

Y0 ∈ Nq from (3.5) can be defined as

Y0 = |A|p−1U∗

‖|A|p−1U∗‖q

and the support functional is unique since Bp(H) with 1 < p < ∞ is a uniformly convex 
space and every A ∈ Bp(H) is a smooth point (see [1]). �
Proposition 3.3 (Banach Duality Formula). Let A ∈ Bp(H)h with 1 ≤ p ≤ ∞ and q ∈ R

such that 1
p + 1

q = 1. Then

inf
D∈D(Bp(H)h)

‖A + D‖p = max
Y ∈Nq

|tr(AY )| , (3.5)

Proof. Let A ∈ Bp(H)h with p, q as in the hypothesis. By Proposition 3.2, there exists 
Y0 ∈ Nq such that

inf
D∈D(Bp(H)h)

‖A + D‖p = tr(Y0A).

Then

inf
D∈D(Bp(H)h)

‖A + D‖p = tr(Y0A) ≤ max
Y ∈Nq

|tr(AY )| max
Y ∈Nq

|tr ((A + D)Y )|

≤ ‖Y ‖q ‖A + D‖p = ‖A + D‖p ,

for every D ∈ D(Bp(H)h), where the last inequality is due to item (6) of Theorem 2.1. 
Therefore, the equality (3.5) can be proved as a consequence of this fact. �

Propositions 3.2 (existence condition) and 3.3 can be generalized to any closed sub-
space B of Bp(H), not only for D(Bp(H)), with the same arguments.

Proposition 3.4. If A is a minimal operator in Bp(H)h, 1 < p ≤ ∞, and A ≥ 0 then 
A = 0. That is, any nonzero minimal Hermitian operator cannot be positive semidefinite.

Proof. A ≥ 0 implies that A = U |A| = |A| and U = I. We separate the proof in different 
cases.

• Case p = ∞: if A is minimal and positive then by the balanced spectrum property 
(Prop. 6 in [13]) λmax = −λmin = 0. Hence, A = 0.
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• Case 1 < p < ∞: A ≥ 0 and minimal implies by Theorem 4.5

tr(|A|p−1U∗) = tr(Ap−1) =
n∑

i=1
λi(Ap−1) = 0.

By continuous functional calculus, for all 1 < p < ∞

λi(Ap−1) = λi(A)p−1

with λi(A) ≥ 0 for all i. Then λi(A) = 0 for all i and A = 0. �
In the case p = 1, there are minimal positive operators also in a finite dimensional 

context. We can see an example in Remark 4.10.

4. BJ-orthogonality in Bp(H) and minimality of Hermitian operators

Let Bp(H) be a p-Schatten ideal with p > 0. Using (1.1) the Birkhoff–James orthog-
onality for every A, B ∈ Bp(H) is

A ⊥p
BJ B if and only if ‖A‖p ≤ ‖A + γB‖p for all γ ∈ C.

Let D(Bp(H)) be the closed subspace of diagonal operators of Bp(H), that is

D(Bp(H)) =
{
D ∈ D(K(H)) :

∞∑
i=1

| 〈Dei, ei〉 |p < ∞
}
.

By (1.2), given A ∈ Bp(H),

A⊥BJD(Bp(H)) ⇔ A ⊥p
BJ D for all D ∈ D(Bp(H)). (4.1)

We focus in particular when p ≥ 1, where ‖ · ‖p is a norm.
According with (3.1) we say that A ∈ Bp(H)h is minimal in the p− Schatten norm if 

and only if

‖A‖p ≤ ‖A + D‖p, for all D ∈ D(Bp(H))h.

The operator A is minimal in the class [A] = {A +D : D ∈ D(Bp(H))h} of the quotient 
space Bp(H)h/D(Bp(H)h).

Applying Remark 3.1, we can combine minimality with BJ-orthogonality as follows: 
given A ∈ Bp(H)h

A is minimal if and only if A ⊥BJ D(Bp(H)). (4.2)
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Remark 4.1. Since every Bp(H) with 1 < p < ∞ is a uniformly convex Banach space 
and D(Bp(H)) is a proper closed vector subspace, there always exists a unique minimal 
element A in its class, that is ‖A‖ = distp(A, D(Bp(H))h) (Lemma 4 in [18]).

4.1. Minimality in B2(H)

Here we consider the Hilbert-Schmidt class endowed with the inner product 
〈A,B〉HS = tr(B∗A), A, B ∈ B2(H) and its induced 2-norm, that is ‖A‖2 =

√
tr(A∗A). 

Then, we have the following minimality theorem.

Theorem 4.2. Let A ∈ B2(H), then the following conditions are equivalent:

1. ‖A‖2 = min
D∈D(B2(H))

‖A + D‖2.

2. Diag(A) = 0.

Proof. From the theory of approximation in Hilbert spaces and since D(B2(H)) is a 
closed subspace of B2(H), we obtain that the problem

min
D∈D(B2(H))

‖A + D‖2 (4.3)

has unique diagonal solution of the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈A,E11〉HS 0 · · · · · · · · ·
0 〈A,E22〉HS

. . . · · ·
...

...
. . . . . . 0

...
... · · · 0 〈A,Enn〉HS
... · · · · · · · · · . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −Diag(A), (4.4)

which is provided by the normal equations in the minimum least squares problem (A +
D ⊥ Eii for all i ∈ N, and {Eii}i∈N is a basis for D(B2(H))). Thus,

min
D∈D(B2(H))

‖A + D‖2 = ‖A− Diag(A)‖2

and

dist2(A,D(B2(H)))2 = ‖A− Diag(A)‖2
2

= tr (A∗A−A∗ Diag(A) − Diag(A)∗A + Diag(A)∗ Diag(A))

= ‖A‖2
2 − ‖Diag(A)‖2

2.

If ‖A‖2 = dist2(A, D(B2(H))), by the unicity of the solution of (4.3) A = A − Diag(A), 
then Diag(A) = 0. On the other hand, if Diag(A) = 0, then
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dist2(A,D(B2(H)))2 = ‖A‖2
2 − ‖Diag(A)‖2

2 = ‖A‖2
2. �

Corollary 4.3. Let A ∈ B2(H)h, then A is a minimal operator if and only if Diag(A) = 0.

4.2. Bp(H) ideals as semi-inner product spaces and minimality

Lumer [29] and Giles [18] noticed that in any normed space (X , ‖ · ‖) it can be can 
construct a semi-inner product, i.e., a mapping [·, ·] : X × X → K such that

(1) [x, x] = ‖x‖2,
(2) [αx + βy, z] = α[x, z] + β[y, z],
(3) [x, γy] = γ[x, y],
(4) |[x, y]|2 ≤ ‖x‖2‖y‖2,

for all x, y, z ∈ X and all α, β, γ ∈ K. It is well known that in a normed space there 
exists exactly one semi-inner product if and only if the space is smooth (i.e., there is a 
unique support hyperplane at each point of the unit surface). If X is an inner product 
space, the only semi inner product on X is the inner product itself. More details can be 
found in [29,18].

Proposition 4.4 ([12]). Let 1 < p < ∞ and we define for every A, B ∈ Bp(H)

[B,A] = ‖A‖2−p
p tr

(
|A|p−1U∗B

)
, (4.5)

where U |A| is the polar decomposition of A. Then, 
(
Bp(H), [·, ·]

)
is a continuous semi-

inner product space (in the Lumer sense) and the following statements are equivalent:

(i) A ⊥p
BJ B.

(ii) [B, A] = 0.

Observe that this semi-inner product does not fulfill the conjugate property, since in 
general [B, A] �= [A,B].

Theorem 4.5. Let 1 < p < ∞, {ei}i∈N be the fixed basis of H and A ∈ Bp(H) with the 
polar decomposition A = U |A|. The following conditions are equivalent:

1. A ⊥p
BJ D(Bp(H)).

2. [D, A] = 0 for all D ∈ D(Bp(H)).

3. tr(|A|p−1U∗D) = 0 for all D ∈ D(Bp(H)).

4. tr(|A|p−1U∗Eii) = 0, for all Eii = Diag(ei), i ∈ N.

5. (|A|p−1U∗)ii = 0 for all i ∈ N.
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6. (U |A|p−1)ii = 0 for all i ∈ N.

Proof. The equivalence between items (1), (2) and (3) are direct consequence of Propo-
sition 4.4.

(3)⇒(4) is trivial since each Eii ∈ D(Bp(H)) for all i ∈ N.
(4)⇒(3) occurs since any D ∈ D(Bp(H)) can be written as
D =

∑∞
i=1 diEii, with di = 〈Dei, ei〉 such that 

∑∞
i=1 |di|p < ∞ and

tr(|A|p−1U∗D) = lim
N→∞

tr

(
|A|p−1U∗

(
N∑
i=1

diEii

))

= lim
N→∞

N∑
i=1

ditr
(
|A|p−1U∗Eii

)
= 0.

(4)⇒(5): each Eii can be written as ei ⊗ ei. Then

0 = tr(|A|p−1U∗Eii) =
∞∑
j=1

〈
|A|p−1U∗Eiiej , ej

〉
=
〈
|A|p−1U∗ei, ei

〉

= (|A|p−1U∗)ii

for all i ∈ N. The converse (5)⇒(4) is obvious.
(5)⇔(6): Using continuous functional calculus for |A| and f(z) = zp−1

(
|A|p−1)∗ = f(|A|)∗ = f(|A|) = (|A|∗)p−1 = |A|p−1.

Then |A|p−1 is Hermitian and for all i ∈ N

0 = (|A|p−1U∗)ii = (|A|p−1U∗)∗ii = (U |A|p−1)ii. �
Corollary 4.6. Let A ∈ Bp(H)h, with 2 ≤ p < ∞. Then

1. A is a minimal operator in the p-Schatten norm if and only if

Diag(A|A|p−2) = Diag(|A|p−2A) = 0.

2. For every even integer p, A is minimal if and only if Diag(Ap−1) = 0.
3. If A is minimal in the p-Schatten norm, then

∞∑
sgn(λi(A))|λi(A)|p−1 = 0. (4.6)
i=1
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Proof. (1): Let A ∈ Bp(H)h, p ≥ 2, be a minimal operator. If U |A| is the polar decom-
position of A, then by Theorem 4.5

(U |A|p−1)ii = (U |A||A|p−2)ii = (A|A|p−2)ii = 0 for all i ∈ N.

Item (2) is due to Lemma 4.3 in [4], since A is minimal if and only if tr(Ap−1D) = 0
for all D ∈ D(Bp(H)h). In addition, observe that f(t) = tp−1 is well defined for compact 
Hermitian (non positive) operators only if p − 1 is not an even number.

(3): condition Diag(|A|p−2A) = 0 in particular implies that tr(|A|p−2A) = 0. Also, by 
hypothesis A is diagonalizable, then there exists V a unitary operator in B(H) such that 
A = V ∗ Diag(λ(A))V . Therefore,

tr
(
|A|p−2A

)
= tr

(
V ∗|Diag(λ(A))|p−2 Diag(λ(A))V

)
= tr

(
|Diag(λ(A))|p−2 Diag(λ(A))

)
=

∞∑
i=1

sgn(λi(A))|λi(A)|p−1 = 0. �

Condition (3) in Corollary 4.6 gives a necessary condition over the eigenvalues of an 
operator to be minimal (not sufficient), analogously to the balanced spectrum property 
for minimal Hermitian compact operators in the spectral norm.

Remark 4.7 (Some examples of minimal operators).

1. Bp(C2) and p ≥ 2: by (4.6) any non zero minimal matrix in the p− Schatten norm 

A =
(
a c
c d

)
fulfills that λ2(A) = −λ1(A) for all p ≥ 2. Then,

‖A‖p = (|λ1(A)|p + | − λ1(A)|p)1/p = 21/p|λ1(A)|

and the characteristic polynomial of A is p(λ) = λ2 − (|c|2 + a2) since has no lineal 
term (i.e., d = −a). Therefore,

‖A‖p = 21/p(|c|2 + a2)1/2

is minimum when a = 0 and A has zero diagonal.

2. B4(C3): if A =
(
a 1 0
1 b 1
0 1 c

)
is the minimal matrix in its class, then Diag(A) = 0. 

Indeed, the matrix A0 = A −Diag(A) fulfills that A3
0 = 2A0 and clearly Diag(A3

0) = 0, 
then A0 is minimal.
By a similar argument and for every separable H, every tridiagonal Hermitian oper-
ator in B4(H) with zero diagonal is minimal in its class.
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3. However, not every Hermitian operator with zero diagonal is minimal in Bp(H). For 

example, when p = 4, H = C3, and A =

⎛
⎝0 a b
a 0 c
b c 0

⎞
⎠, with a, b, c �= 0 can not be 

the minimal matrix in its class, since

Diag(A3) = (acb + acb)I �= 0.

But also observe that if any of a, b or c is 0, then A is a minimal matrix.
4. Bp(H)h, 1 < p < ∞: Let A ∈ Bp(H)h be a block-diagonal operator, that is

A =

⎛
⎜⎜⎝
A1 0 0 · · ·
0 A2 0 · · ·
0 0 A3 · · ·
...

...
...

. . .

⎞
⎟⎟⎠ ,

with Ai = PSi
APSi

∈ Bp(H)h
and ⊕∞

i=1 Si = H ∀ i ∈ N.

Then, there exists a unique Di ∈ D(Bp(H)h) such that Ai + Di is minimal in the 
p-Schatten norm for all i ∈ N. Therefore the block diagonal

A + D0 =

⎛
⎜⎜⎝
A1 + D1 0 0 · · ·

0 A2 + D2 0 · · ·
0 0 A3 + D3 · · ·
...

...
...

. . .

⎞
⎟⎟⎠ ,

is a minimal operator since

‖A + D0‖pp =
∞∑
i=1

‖Ai + Di‖pp (4.7)

≤
∞∑
i=1

‖Ai + D′
i‖pp =

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝
A1 + D′

1 0 0 · · ·
0 A2 + D′

2 0 · · ·
0 0 A3 + D′

3 · · ·
...

...
...

. . .

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

p

p

for all D′
i ∈ D(Bp(H)). The first equality in (4.7) is a property of pinching operators 

[7].

Remark 4.8 (Considerations about Theorem 4.5 and Corollary 4.6). With the same no-
tation and hypothesis of the mentioned results:

1. These results generalize for all p ∈ (1, ∞) Lemma 4.3 in [4] about minimal (lifting) 
operators in iBp(H)h, the subspace of anti-Hermitian operators in Bp(H).

2. Observe that for p = 2, A⊥BJD(Bp(H)) if and only if Aii = (A∗)ii = (|A|U∗)ii = 0
for all i ∈ N, which equivalent to the characterization of minimal operators found in 
Theorem 4.2 using least squares.
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3. The minimality condition in Bp(H)h

[Eii, A] = 0 for all i ∈ N

is equivalent to the normal equations for the solution of the least squares problem in 
a non-Hilbert space context.

4. Any minimal operator A in Bp(H), with p ∈ (1, ∞), fulfills [D, A] = 0 for all D ∈
D(Bp(H)). But in general [A, D] �= 0, since

[A,D] = 0 for all D ∈ D(Bp(H)) ⇔ ‖D‖2−p
p tr

(
|D|p−1V ∗A

)
= 0

∞∑
k=1

|dk|p−1eiθkAii = 0 for all {dn}n∈N ∈ �p ⇔ Diag(A) = 0

Here V = Diag
(
{e−iθk}k∈N

)
is the diagonal unitary operator of the polar decompo-

sition of D. For example when p = 2 or item (3) in Remark 4.7, the minimal operator 
A satisfies that Diag(A) = 0, then [D, A] = 0 and [A, D] = 0.

The case p = 1 is treated more generally in the next section, but when H = Cn, 
Theorem 2.1 in [10] can be used in order to have the following result.

Proposition 4.9. for every matrix A with polar decomposition A = U |A| in B1(Cn) such 
that tr(U∗D) = 0 for all D ∈ D(Mn(C)), then A is a minimal matrix in the trace norm. 
The converse is true if A is also invertible.

Condition tr(U∗D) = 0 for all D ∈ D(Mn(C)) implies that the partial isometry U of 
the polar decomposition of A has null diagonal (U ∈ N1).

Remark 4.10 (Minimal matrices in the trace norm).

1. Minimal matrices in the 1-Schatten norm may be not unique, for example, if H = C2

and U is a unitary matrix of 2 × 2, then

tr(U∗D) = 0 for all D ∈ D(C2×2) ⇔ U =
(

0 eiθ

eiβ 0

)
, θ, β ∈ [0, 2π).

Therefore, any A = A∗ minimal (non-diagonal) has an unitary U for its polar decom-

position as before and U∗A = AU ≥ 0. If A =
(
a c
c d

)
with a, d ∈ R and c ∈ C �=0, 

then (
0 e−iθ

e−iβ 0

)(
a c
c d

)
=
(
a c
c d

)(
0 eiβ

eiθ 0

)
= |A|

⇔
(
ce−iθ de−iθ

−iβ −iβ

)
=
(
ceiθ aeiβ

iθ iβ

)
= |A|.
ae ce de ce
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Simple calculations show that θ = − arg(c) = −β, a = d,

A =
(
a c
c a

)
with |a| ≤ |c| and ‖A‖1 = |a + |c|| + |a− |c|| = 2|c|.

Observe that we characterized all minimal Hermitian matrices in C2×2 for the 1-
Schatten norm in terms of c and a. Moreover, condition |a| ≤ |c| indicates that 
there is not unicity of the minimizant diagonal (in fact, there are infinite, all scalar 
multiples of the identity, with a scalar with modulus less or equal than |c|). For 

example, if c = 1, every A =
(
a 1
1 a

)
with |a| ≤ 1 is a minimal matrix with the 

trace norm |a + 1| + |a − 1| = 2.
Also, there are minimal matrices that do not have necessary a zero diagonal. But in 
all cases, the minimizant diagonal is a scalar multiple of the identity, therefore

dist1(A,D(C2×2)) = dist1(A,CI).

2. Any matrix A =

⎛
⎝a d 0
d b 0
0 0 c

⎞
⎠ with d �= 0 fixed is a block diagonal matrix and

‖A‖1 =
∥∥∥∥
(
a d
d b

)∥∥∥∥
1

+ |c|

and it is minimal in the 1-Schatten norm if and only if c = 0, a = b and |a| ≤
|d|. One can check that a partial isometry of the polar decomposition that satisfies 
Proposition 4.9 is

U =

⎛
⎝ 0 eiθ1 0
eiθ2 0 0
0 0 0

⎞
⎠ , with θ1 = −θ2,

it is not unitary (ker(U) = ker(A) = span{e3}) and it can not be extended to an 
unitary with zero diagonal. There are infinite minimal matrices in the class of A and 
we observe that there are minimizant diagonals which are not a scalar multiple of 
the identity matrix.

3. Recall that the partial isometry of the polar decomposition of any matrix may not 
be unique but a minimal matrix must have any partial isometry of its polar de-
composition with zero diagonal. Indeed, consider the case B1(C3) and the matrix 

A =
(
a 1 1
1 b 1
1 1 c

)
, with a, b, c ∈ R to be determined. Its polar decomposition has a 

unitary operator and every unitary U to fulfill the zero diagonal condition is given 
by



16 T. Bottazzi / Linear Algebra and its Applications 620 (2021) 1–26
⎛
⎝ 0 eiθ1 0

0 0 eiθ2

eiθ3 0 0

⎞
⎠ or

⎛
⎝ 0 0 eiθ1

eiθ2 0 0
0 eiθ3 0

⎞
⎠ (4.8)

Then, A =
(
a 1 1
1 b 1
1 1 c

)
is a minimal matrix in B1(C3) if A = U |A| with U as in 

(4.8). Without loss of generality, we choose the first option. Then,

AU = U∗|A| ≥ 0 ⇔

⎛
⎝ eiθ3 aeiθ1 eiθ2

eiθ3 eiθ1 beiθ2

ceiθ3 eiθ1 eiθ2

⎞
⎠ =

⎛
⎝ e−iθ3 e−iθ3 ce−iθ3

ae−iθ1 e−iθ1 e−iθ1

e−iθ2 be−iθ2 e−iθ2

⎞
⎠ ≥ 0

⇔ θk = 0 for k = 1, 2, 3 and a = b = c = 1.

Therefore, A =
(1 1 1

1 1 1
1 1 1

)
= (1, 1, 1) ⊗ (1, 1, 1) is a minimal matrix in its class and 

we observe that is semi-definite positive of rank one. The unitary U chosen to the 
condition was a permutation of the identity (in fact, A = I|A| but I does not fulfill 
the minimality condition). In this case

inf
D∈D(B1(C3))

‖A + D‖1 = ‖A‖1 = 3

and, similar as the previous example,

dist1(A,D(C3×3)) = dist1(A,CI).

5. Gateaux derivative and minimality of Hermitian operators in B1(H) and K(H)

In this section we focus on the study of the minimal Hermitian operators on the 
particular cases B1(H) and K(H), which are not included in the study made previously. 
We follow central ideas from [27], [26], [1] and [24]. There are also more recent related 
work (see for instance [37] and [34]).

Definition 5.1. Let (X , ‖ · ‖) be an arbitrary Banach space. The ϕ-Gateaux derivative of 
the norm at the point x in the y-direction is

Dϕ,x(y) = lim
t→0+

‖x + teiϕy‖ − ‖x‖
t

(5.1)

The case ϕ = 0 corresponds to the usual Gateaux derivative of the norm at the point 
x. In this case, the norm ‖ · ‖ is Gateaux differentiable at a nonzero x ∈ X if

lim ‖x + ty‖ − ‖x‖ = ReDx(y) for all y ∈ X , (5.2)

t→0+ t
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where Dx is the unique functional in X ∗ (dual space of X ) such that Dx(x) = ‖x‖ and 
‖Dx‖ = 1. This condition is equivalent to say that x is a smooth point on the sphere 
S(0, ‖x‖) ⊂ X . Relative to smooth points we collect the following facts.

Remark 5.2 (Smooth points).

1. For 1 < p < ∞, every A ∈ Bp(H), A �= 0, is a smooth point, since Bp(H) is a 
uniformly convex space. In this case

DA(B) = tr

(
|A|p−1UB∗

‖A‖p−1
p

)
= 1

‖A‖p
[B,A],

where A = U |A| is the polar decomposition of A and [·, ·] is the semi-inner product 
defined in (4.5).

2. For p = 1, A ∈ B1(H), A �= 0, is a smooth point if and only if A or A∗ are one-to-one. 
In the case that A is one-to-one,

DA(B) = tr (UB∗) , (5.3)

where A = U |A| is the polar decomposition of A.
3. In K(H), A ∈ K(H) is a smooth point if and only if there exists a unique norm 1

vector v (up to multiplication by constants of modulus one) such that ‖A‖ = ‖Av‖. 
In this case

DA(B) = tr

(
v ⊗Av

‖A‖ B

)
=
〈
Bv,

Av

‖A‖

〉
. (5.4)

The next result is similar to Proposition 4.9 in an infinite dimensional context.

Proposition 5.3. Let A ∈ B1(H) be a smooth point. Then, the following statements are 
equivalent:

1. A⊥BJD(B1(H)).
2. DA(D) = tr (U∗D) = 0 for all D ∈ D(B1(H)) if A is one-to-one (or tr (UD) = 0 if 

A∗ is one-to-one).
3. U∗

ii = 0 for all i ∈ N, i.e. Diag(U∗) = 0 (or Diag(U) = 0 if A∗ is one-to-one).

Here U is the partial isometry of the polar decomposition of A.

Proof. Without loss of generality, we assume A is one-to-one.
(1)⇔ (2) By [27, Lemma 1] A⊥BJ

1D ⇔ DA(D) = 0. Using this fact for all D ∈
D(B1(H)) and formula in (5.3) we obtain the desired result.

(2)⇔ (3) This equivalence follows by the same argument as in the proof of (4)⇔ (5) 
from Theorem 4.5. �
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Corollary 5.4. Let A ∈ B1(H)h be a smooth point. Then, the following statements are 
equivalent:

1. A is minimal in B1(H).
2. tr (UD) = 0 for all D ∈ D(B1(H)).
3. Diag(U) = 0.

Proof. Suppose A is minimal in B1(H), then by (4.2) it is equivalent to A⊥BJD(B1(H)). 
By Proposition 5.3,

DA(D) = tr(U∗D) = tr(UD) = 0 for all D ∈ D(B1(H))

since A is Hermitian and a smooth point. �
We obtain an analogous of Proposition 5.3 for smooth points in K(H).

Proposition 5.5. Let A ∈ K(H) a smooth point and v ∈ H be the unique (up to multi-
plication by scalars of modulus one) unitary vector such that ‖A‖ = ‖Av‖. Then, the 
following statements are equivalent:

1. A⊥BJD(K(H)).
2. DA(D) = tr

(
v⊗Av
‖A‖ D

)
=
〈
Dv, Av

‖A‖

〉
= 0 for all D ∈ D(K(H)) (in fact, for every 

D ∈ D(B(H))).

Proof. By Lemma 1 in [27] A⊥BJD ⇔ DA(D) = 0. Using this fact for all D ∈ D(K(H))
and formula in (5.4) we obtain the desired result. �

By the mentioned balanced spectrum property, every A ∈ K(H)h minimal fulfills that 
±‖A‖ is in the (discrete) spectrum. Then, there exist v, w linearly independent unitary 
eigenvectors of ‖A‖ and −‖A‖, respectively. Therefore, a minimal operator A in K(H)h
can not be smooth. For non smooth points in a normed space X , Keckic proved in [26, 
Theorem 1.4] that for every pair x, y ∈ X

x⊥BJy ⇔ inf
ϕ

Dϕ,x(y) ≥ 0. (5.5)

Also, he found explicit formulas for the Gateaux derivative for non smooth points on 
B1(H) and K(H) ((5.6) and (5.8), respectively).

Now we characterize minimal Hermitian operators in B1(H) and K(H), respectively.

Theorem 5.6. Let A ∈ B1(H)h. Then, the following statements are equivalent:

1. A is minimal.
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2. |tr (U∗D)| ≤ ‖PDP‖1 for all D ∈ D(B1(H))h, where A = U |A| is the polar decom-
position of A and P = Pker(A).

Proof. A ∈ B1(H)h is minimal if and only if A⊥BJD for all D ∈ D(B1(H))h. Then, by 
(5.5) it is equivalent to

inf
ϕ

Dϕ,A(D) ≥ 0 for all D ∈ D(B1(H))h.

The explicit formula found in [26] of the Gateaux derivative for A, B ∈ B1(H) is

lim
t→0+

‖A + tD‖1 − ‖A‖1

t
= Re (tr(U∗D)) + ‖QDP‖1, (5.6)

where A = U |A| is the polar decomposition of A, P = Pker(A) and Q = Pker(A∗). 
Replacing by A Hermitian and B = eiϕD

inf
ϕ

Dϕ,A(D) = inf
ϕ

(
Re
(
eiϕtr(U∗D)

))
+ ‖PDP‖1.

Therefore, infϕ Dϕ,A(D) ≥ 0 if and only if |tr (U∗D)| ≤ ‖PDP‖1 for all D ∈ D(B1(H))h, 
since

inf
ϕ

(
Re
(
eiϕtr(U∗D)

))
= Re

(
e−i arg(tr(U∗D))tr(U∗D)

)
= Re (|tr(U∗D)|) �

Example 5.7. Suppose A ∈ B1(H)h and S is a finite dimension subspace of H such that 

A can be written by block notation as A =
[
AS 0
0 0

]
S
S⊥ , where AS = PSAPS is the 

compression of A by S. Then, simple computations show that P = PKer(A) =
[
0 0
0 I

]

and a partial isometry U for the polar decomposition is U =
[
US 0
0 0

]
. Therefore, by 

Theorem 5.6 A is minimal if and only if |tr(U∗D)| ≤ ‖PDP‖1 for all D ∈ D(B1(H)). In 
particular, if S = span{ei : 1 ≤ i ≤ n} then

|Uii| = |tr(U∗Eii)| ≤ ‖PEiiP‖1 =
{

0 if i ≤ n

1 if i ≥ n
. Thus Diag(U) =

[
I 0
0 0

]

Theorem 5.8. Let A ∈ K(H)h. Then, the following statements are equivalent:

1. A is minimal.
2. inf

0≤ϕ<2π
max
v∈MA,
‖v‖=1

Re 
(
eiϕ 〈U∗Dv, v〉

)
≥ 0 for all D ∈ D(K(H)h), where A = U |A| is the 

polar decomposition of A and MA is the subspace where the operator A attains its 
norm (MA �= ∅).
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3. There exists v ∈ MA such that 〈Dv,Av〉 = 0 for all D ∈ D(K(H)h).
4. There exists v ∈ MA such that for each i ∈ N

vi = 0 or (Av)i = fi(A)tv = 0.

5. There exists v ∈ MA such that 〈Dv,Av〉 = 0 for all D ∈ D(B(H)h).

Proof. (1)⇔(2): Analogously to the case B1(H), an operator A ∈ K(H)h is minimal if 
and only if

inf
ϕ

Dϕ,A(D) ≥ 0 for all D ∈ D(K(H)h).

In this case, the explicit formula found in [26] of the Gateaux derivative for A, B ∈ K(H)
is

lim
t→0+

‖A + tB‖ − ‖A‖
t

= max
v∈Φ,
‖v‖=1

Re 〈U∗Bv, v〉 , (5.7)

where A = U |A| is the polar decomposition of A and Φ is the characteristic subspace of 
|A| respect to its eigenvalue s1. Replacing by A Hermitian and B = eiϕD

inf
ϕ

Dϕ,A(D) = inf
0≤ϕ<2π

max
v∈MA,
‖v‖=1

Re
(
eiϕ 〈U∗Dv, v〉

)
.

Therefore, A is minimal if and only if

inf
0≤ϕ<2π

max
v∈MA,
‖v‖=1

Re
(
eiϕ 〈U∗Dv, v〉

)
≥ 0 for all D ∈ D(K(H)h).

Equivalence (2)⇔(3) is due to Corollary 2.8 in [26] for A ∈ K(H)h fixed and every 
B = D ∈ D(K(H)h). Also, (1) ⇔ (3) can be obtained by Corollary 2.2.1 in [33].

For item (2) observe that the set MA cannot be empty since H is reflexive and A ∈
K(H).

(3) ⇔ (4): statement (3) is equivalent to say that there exists v ∈ MA such that

〈Eiiv,Av〉 = 〈viei, Av〉 = vi(Av)i = 0 for all i ∈ N

⇔ vi = 0 ∨ (Av)i = fi(A)tv = 0 for all i ∈ N.

(3) ⇔ (5): it is evident since condition (3) is equivalent to

〈Eiiv,Av〉 = 0 for all i ∈ N
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and every D ∈ D(B(H)) can be written as 
∞∑
i=1

diEii with di ∈ C, |di| ≤ M for some 

M > 0. �
Observe that equivalence between statements (1) and (5) in Theorem 5.8 gives a 

characterization for minimal Hermitian operators with bounded non-compact diagonal. 
It is an improvement from Lemma 6.1 in [14]. Additionally, note that the vector of 
condition (3) in the same theorem cannot be an eigenvector of the minimal operator A
and fulfills that

‖(A + D)v‖2 = ‖Av‖2 + ‖Dv‖2

for all D ∈ D(B(H)).

Remark 5.9 (Minimal operators with non compact diagonal). There are operators A ∈
K(H)h such that dist(A, D(K(H))h) is attained by bounded diagonals that are not com-
pact. One relevant example is the following: let Zr be the operator defined matricially 
as

Zr =

⎛
⎜⎜⎜⎜⎜⎝

0 rγ rγ2 rγ3 · · ·
rγ d2 γ γ2 · · ·
rγ2 γ d3 γ2 · · ·
rγ3 γ2 γ2 d4

. . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ , with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ ∈ (0, 1).
dn = −1−γn−2

1−γ − γn

1−γ2 , n ≥ 2.

r =
∥∥∥Z[1]

r

∥∥∥√
γ2

1−γ2

,

where Z [1]
r is the operator defined by the matrix of Zr with zeros in the first column 

and row. Then, in [13] we proved that Zr is a minimal operator with Zr − Diag(Zr) ∈
B2(H)h ⊂ K(H)h and Diag(Zr) is the (uniquely determined) diagonal minimizant, but 
it is not compact, since lim

n→∞
dn �= 0. Moreover, ‖Zr‖ = ‖c1(Zr)‖ = ‖Zre1‖. Also,

〈De1, Zre1〉 = 〈D11e1, c1(Zr)〉 = 0 for all D ∈ D(B(H)h),

which means that Zr fulfills items (3) and (4) of Theorem 5.8 for v = e1.
Curiously, we observe that by Corollary 4.3 Zr−Diag(Zr) is indeed a minimal operator 

in the quotient space B2(H)h/D(B2(H))h.

6. Cases of minimal Hermitian operators in K(H)

Let Mn(C) be the vector space of complex n × n matrices. In this context, we say 
M ∈ Mn(C)h is minimal in the spectral norm if

‖M‖ ≤ ‖M + D‖
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for all D real diagonal n × n matrix (D ∈ D(Mn(C)h)). Several characterizations and 
studies of geometric consequences of minimal Hermitian matrices in the spectral norm 
can be found in [5], [6] and [28]. We continue with some examples of minimal Hermitian 
matrices and compact operators in the spectral norm.

Theorem 6.1. Let C ∈ K(H) such that C is a block-diagonal operator, that is

C =

⎛
⎜⎜⎝
C1 0 0 · · ·
0 C2 0 · · ·
0 0 C3 · · ·
...

...
...

. . .

⎞
⎟⎟⎠ ,

where Ci ∈ Mh
ni

(C), for each i ∈ N. Then, there exists D ∈ D(K(H)) such that C + D

is minimal.

Proof. For each i ∈ N there exists a minimizing Di ∈ D(Mh
ni

(C)). That is

‖Ci + Di‖ ≤ ‖Ci + D′
i‖ , for all D′

i ∈ D(Mh
ni

(C)).

We claim that the block-diagonal operator defined as

D =

⎛
⎜⎜⎝
D1 0 0 · · ·
0 D2 0 · · ·
0 0 D3 · · ·
...

...
...

. . .

⎞
⎟⎟⎠

is a minimizant for C. Indeed, it is trivial to observe that is diagonal since each block 
Di is a diagonal matrix. It remains to prove compacity and minimality.

• Minimality: Let D′ ∈ D(K(H)). It can be written in the same block notation of C
as

D′ =

⎛
⎜⎜⎝
D′

1 0 0 · · ·
0 D′

2 0 · · ·
0 0 D′

3 · · ·
...

...
...

. . .

⎞
⎟⎟⎠ , with D′

i ∈ D(Mh
ni

(C)), ni ∈ N.

Then,

‖C + D′‖ = sup
i∈N

‖Ci + D′
i‖ ≥ sup

i∈N
‖Ci + Di‖ = ‖C + D‖ .

• Compacity: by minimality, ‖Ci + Di‖ ≤ ‖Ci‖ for each i ∈ N, then

‖Di‖ ≤ ‖Ci + Di‖ + ‖Ci‖ ≤ 2 ‖Ci‖ → 0,
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when i → ∞ (since C is compact). Therefore, lim
i→∞

Di = 0 and D is also compact. �
Remark 6.2. In Theorem 6.1 the operator norm of C + D is sup{‖Ci + Di‖ : i ∈ N}, 
which is clearly attained at any i0 ∈ N, since lim

i→∞
‖Ci + Di‖ = 0.

Lemma 6.3. (due to Prof. Varela) Any tridiagonal Hermitian matrix M of n × n with 
zero diagonal is minimal in the spectral norm.

Proof. Let M ∈ Mh
n (C) be a tridiagonal matrix defined as a polar way, that is,

M =

⎛
⎜⎜⎜⎜⎜⎝

0 a1e
it1 0 · · · 0

a1e
−it1 0 a2e

it2 · · · 0

0 a2e
it2 0 a3e

it3
...

...
...

...
. . .

...
0 0 · · · an−1e

−itn−1 0

⎞
⎟⎟⎟⎟⎟⎠ , (6.1)

with ai, ti ∈ R for all 1 ≤ i ≤ n, and consider a unitary matrix U , given by

U =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 ... 0
0 eit1+iπ

2 0 · · · 0
0 0 ei(t1+t2)+iπ · · · 0
...

...
...

. . .
...

0 0 0 · · · e
[
i(t1+...+tn−1)+n−1

2 iπ
]

⎞
⎟⎟⎟⎟⎟⎠ .

Then,

UMU∗ =

⎛
⎜⎜⎜⎜⎜⎝

0 ia1 0 · · · 0
−ia1 0 ia2 · · · 0

0 −ia2 0 · · ·
...

...
...

...
. . . ian−1

0 0 · · · −ian−1 0

⎞
⎟⎟⎟⎟⎟⎠

with Re(UMUij) = 0 for all i, j ≤ n and Diag(M ′) = 0. Thus, by Theorem 8 in [28], 
M ′ is minimal. Therefore,

‖M‖ = ‖U∗M ′U‖ = ‖M ′‖ ≤ ‖M ′ + D‖ = ‖M + U∗DU‖ = ‖M + D‖ ,

where last equality is due to U is diagonal. Then,

‖M‖ ≤ ‖M + D‖ for all D diagonal. �
Proposition 6.4 (Unicity). Let M be a tridiagonal Hermitian matrix as (6.1) such that 
ai �= 0 for all 1 ≤ i ≤ n. Then, 0 is the unique minimizing real diagonal for M .
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Proof. Let M as in the statement and λ = ‖M‖. By Proposition 6.3 M is minimal 
and ±λ ∈ σ(M). Moreover, simple calculations show that if x = (x1, x2, ..., xn) is an 
eigenvector associated to λ, then y = (−x1, x2, ..., (−1)nxn) is an eigenvector associated 
to −λ (and this holds for all μ ∈ σ(M), so every eigenspace of M has multiplicity one). 
In particular, x1 �= 0 implies x �= 0 and yk = (−1)kxk �= 0 for all 1 < k ≤ n. Then 
|yk|2 = |xk|2 for each 1 ≤ k ≤ n and therefore,

x ◦ x = (|x1|2, |x2|2, ..., |xn|2) = y ◦ y.

By [28, Theorem 10] M has only one minimizing real diagonal D, which is D = 0. �
Finally, we use Lemma 6.3 to state the minimality of tridiagonal compact operators, 

since each matrix M of n × n can be seen as a finite rank operator in K(H), that is 
M = P{e1,...,en}MP{e1,...,en}, with Mij = 〈Mei, ej〉 for each i, j ∈ N and P{e1,...,en} is 
the orthogonal projection to the subspace span{e1, ..., en}.

Proposition 6.5. If C ∈ K(H) is a minimal Hermitian tridiagonal operator with Ci(i+1) �=
0 for all i ∈ N. Then, the following statements are equivalent:

1. C is a minimal operator in K(H).
2. Diag(C) = 0.

Proof. (1)⇒(2): Let {Cn}n∈N be a Hermitian tridiagonal matrix sequence such that

lim
n→∞

Cn = C y Diag(Cn) = 0.

Each Cn ∈ K(H), since rank(Cn) < ∞, and by Proposition 6.3 all are minimal. Then

‖C‖ =
∥∥∥ lim
n→∞

Cn

∥∥∥ = lim
n→∞

‖Cn‖

≤ lim
n→∞

‖Cn + D‖ =
∥∥∥ lim
n→∞

Cn + D
∥∥∥ = ‖C + D‖

for each D ∈ D(K(H)). Then, it is evident that Diag(C) = 0.
(2)⇒(1): If C is a tridiagonal operator with zero diagonal, then PnCPn is a tridiagonal 

matrix with zero diagonal for all n ∈ N (Pn = P{e1,...,en}). Then each PnCPn is a 
minimal matrix in Mn(C)h. On the other hand, every D ∈ D(K(H)h) can be obtained 
as lim

n→∞
Dn, with Dn ∈ D(Mn(C)h) for all n ∈ N (and ‖Dn‖ → 0 when n → ∞). Then, 

for all D ∈ D(K(H)h)

‖C‖ = lim
n→∞

‖PnCPn‖ ≤ lim
n→∞

‖PnCPn + Dn‖ = ‖C + D‖.

Therefore, C is minimal. �
Observe that implication (1)⇒(2) holds without the requirement Ci(i+1) �= 0.
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