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1. Introduction

Let H be a separable Hilbert space and K(H) be the algebra of compact operators. In this work we 
consider the orbit manifold of a self-adjoint compact operator A by a particular unitary group, that 
is

OA = {uAu∗ : u unitary in B(H) and u− 1 ∈ K(H)}.
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Given two points, x, y ∈ OA, the rectifiable distance between them is the infimum of the lengths of all 
the smooth curves in OA that join x and y. Our purpose is to study the existence and properties of some 
particular minimal length curves in OA.

The tangent space at any b ∈ OA is

(TOA)b = {zb− bz : z ∈ K(H), z∗ = −z}

endowed with the Finsler metric given by the usual operator norm ‖·‖. If x ∈ (TOA)b, the existence of a 
(not necessarily unique) minimal element z0 such that

‖x‖b = ‖z0‖ = inf {‖z‖ : z ∈ K(H), z∗ = −z, zb− bz = x}

allows in [1] the description of minimal length curves of the manifold by the parametrization

γ(t) = etz0 b e−tz0 , t ∈
[
− π

2 ‖z0‖
,

π

2 ‖z0‖

]
.

These z0 can be described as i(C + D), with C ∈ K(H), C∗ = C and D a real diagonal operator in an 
orthonormal basis of eigenvectors of A.

If we consider B ⊂ A von Neumann algebras and a ∈ A, a∗ = a, there always exists an element b0 in 
B such that ‖a + b0‖ ≤ ‖a + b‖, for all b ∈ B (see [4]). The element a + b0 is called minimal in the class 
[a] of Ah/Bh. However, in the case of A = K(H), a C∗-algebra which is not a von Neumann algebra, and 
B ⊂ K(H) a subalgebra there is not always a minimal compact operator in any class in K(Hh)/Bh. In [2]
we exhibit an example of this fact. In this case, the existence of a best approximant for C ∈ K(H), C∗ = C

is guaranteed when C, for example, has finite rank (see Proposition 5.1 in [1]).
The above motivated us to study the following, among other issues, in the unitary orbit of a Hermitian 

operator. Let b ∈ OA and x ∈ (TOA)b and suppose that there exists a uniparametric curve ψ(t) = etZbe−tZ

which is a minimal length curve among all the smooth curves joining b and ψ(t) in OA for t ∈
[
− π

2‖Z‖ ,
π

2‖Z‖

]
:

• Would Z be a compact minimal lifting of x (i.e. x = Zb − bZ and ‖Z‖ = ‖x‖b)?
• Can ψ be approximated in OA by a sequence of minimal length curves of matrices?

The present work continues the analysis made in [1] of these homogeneous spaces and we use minimality 
characterizations that we developed in [2].

The results in this paper are divided in three parts. In the first we describe and study minimal length 
curves in the orbit of a particular compact Hermitian operator. In the second part we construct a sequence 
of minimal length curves of matrices which converges uniformly to the minimal length curves found in 
the first part. Finally, in the third part we study cases of anti-Hermitian compact operators whose best 
bounded diagonal approximants are not compact and we also study the properties of the minimal curves 
they determine.

2. Preliminaries and notation

Let (H, 〈, 〉) be a separable Hilbert space. We denote by ‖h‖ = 〈h, h〉1/2 the norm for each h ∈ H. Let 
B(H) denote the set of bounded operators (with the identity operator I) and K(H), the two-sided closed 
ideal of compact operators on H. Given A ⊂ B(H), we use the superscript ah (resp. h) to note the subset 
of anti-Hermitian (resp. Hermitian) elements of A.

We consider the group of unitary operators in B(H)
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U(H) = {u ∈ B(H) : uu∗ = u∗u = I}

and the unitary Fredholm group, defined as

Uc(H) = {u ∈ U(H) : u− I ∈ K(H)}.

We denote with ‖·‖ the usual operator norm in B(H) and with [ , ] the commutator operator, that is, 
for any T, S ∈ B(H)

[T, S] = TS − ST.

It should be clear from the context the use of the same notation ‖·‖ to refer to the operator norm or the 
norm on H.

We define the unitary orbit of a fixed A = A∗ ∈ K(H) as

OA = {uAu∗ : u ∈ Uc(H)} ⊂ K(H). (2.1)

If A has spectral multiplicity one then OA becomes a smooth homogeneous space if we consider the action 
πb : Uc(H) → OA, πb(u) = ubu∗. In order to prove this, we will use the following lemma.

Lemma 1. If A = A∗ ∈ K(H) has spectral multiplicity one, then there exists a conditional expectation from 
K(H) onto {A}′ ∩ K(H).

Proof. The hypothesis on A implies that the sequence {En}n≥1 of projections onto the nonzero eigenspaces 
of A consists of rank-one projections and 1 =

∑
n≥1 En in the strong operator topology. Moreover, one has

{A}′ = {T ∈ B(H) : ∀n ≥ 1, TEn = EnT}.

Then the map

E : K(H) → {A}′ ∩ K(H), E :=
∑
n≥1

EnTEn,

is well defined by a norm-convergent series and is a conditional expectation as claimed. To see that the above 
series converges in the norm topology, one uses the Cauchy criterion. More specifically, for any T ∈ K(H)
one has lim

n→∞
‖EnTEn‖ = 0, and then, using that En1En2 = 0 if n1 �= n2, one obtains

∥∥∥∥∥∥
∑
n≥m

EnTEn

∥∥∥∥∥∥ = sup
n≥m

‖EnTEn‖ → 0 as m → ∞,

which concludes the proof. �
Then it can be proved that for the group action

Uc(H) × B(H) → B(H), (u,A) �→ uAu∗

the isotropy group of any A = A∗ ∈ K(H) having spectral multiplicity one is a Banach–Lie subgroup of 
Uc(H), because it is an algebraic subgroup in the sense of the Harris–Kaup theorem, and its Lie algebra 
has a complement in the Lie algebra of Uc(H) by the above lemma. Therefore, the unitary orbit OA has a 
smooth structure.
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For each b ∈ OA, the isotropy group Ib is

Ib = {u ∈ Uc(H) : ubu∗ = b}.

Since for each u ∈ Uc(H) there always exists X ∈ K(H)ah such that u = eX (see Proposition 4), the isotropy 
can be redefined by

Ib = {eX ∈ Uc(H) : X ∈ K(H)ah, [X, b] = 0}.

For each b ∈ OA, its tangent space is

(TOA)b = {Y b− bY : Y ∈ K(H)ah} ⊂ K(H)ah.

Consider a smooth curve (i.e. C1 and with derivative non-equal to zero) u : [0, 1] → Uc(H) such that 
u(0) = 1 and u′(0) = Y , then the differential of the surjective map πb at 1 is

(dπb)1(Y ) = d

dt
πb(u(t))|t=0 = u′(0)b u∗(0) + u(0)b u′(0)∗

= Y b1∗ + 1bY ∗ = Y b− bY = [Y, b].

For every b ∈ OA we consider each tangent space as

(TOA)b ∼= (TUc(H))1/(TIb)1 ∼= K(H)ah/({b}′)ah,

being {b}′ the set of elements that commute with b in a C∗-algebra A (in this particular case A = K(H)). 
Let us consider the Finsler metric, defined for each x ∈ (TOA)b as

‖x‖b = inf{‖Y ‖ : Y ∈ K(H)ah such that [Y, b] = x}

This metric can be expressed in terms of the projection to the quotient K(H)ah/({b}′)ah as

‖Y b− bY ‖b = ‖[Y ]‖ = inf
C∈({b}′)ah

‖Y + C‖

for each class [Y ] =
{
Y + C : C ∈ ({b}′)ah

}
. This Finsler norm is invariant under the action of Uc(H).

There always exists Z ∈ B(H)ah such that [Z, b] = x and ‖Z‖ = ‖x‖b. Such element Z is called minimal 
lifting for x, and Z may not be compact and/or unique (see [2]). Consider piecewise smooth curves β :
[a, b] → OA. We define the rectifiable length of β as

L(β) =
b∫

a

‖β′(t)‖β(t) dt,

and the rectifiable distance between two points of OA, named c1 and c2, as

dist(c1, c2) = inf{L(β) : β is smooth, β(a) = c1, β(b) = c2}.

If A is any C∗-algebra of B(H) and {ek}∞k=1 is a fixed orthonormal basis of H, we denote with D(A) the 
set of diagonal operators with respect to this basis, that is

D(A) = {T ∈ A : 〈Tei, ej〉 = 0 , for all i �= j} .
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Given an operator Z ∈ A, if there exists an operator D1 ∈ D(A) such that

‖Z + D1‖ = dist (Z,D (A)) ,

we say that D1 is a best approximant of Z in D(A). In other terms, the operator Z+D1 verifies the following 
inequality

‖Z + D1‖ ≤ ‖Z + D‖

for all D ∈ D(A). In this sense, we call Z + D1 a minimal operator or similarly we say that D1 is minimal 
for Z. If Z is anti-Hermitian it holds that

dist (Z,D (A)) = dist
(
Z,D

(
Aah

))
,

since ‖Im(X)‖ ≤ ‖X‖ for every X ∈ A.
Let T ∈ B(H) and consider the coefficients Tij = 〈Tei, ej〉 for each i, j ∈ N, that define an infinite 

matrix (Tij)i,j∈N
. The jth-column and ith-row of T are the vectors in �2 given by cj(T ) = (T1j , T2j , . . .) and 

fi(T ) = (Ti1, Ti2, . . .), respectively.
We use σ(T ) and R(T ) to denote the spectrum and range of T ∈ B(H), respectively.
We define Φ : B(H) → D(B(H)), Φ(X) = Diag(X), that takes the main diagonal (i.e. the elements of the 

form {〈Xei, ei〉}i∈N) of an operator X and builds a diagonal operator in the chosen fixed basis of H. For a 
given bounded sequence {dn}n∈N ⊂ C we denote with Diag

(
{dn}n∈N

)
the diagonal (infinite) matrix with 

{dn}n∈N in its diagonal and 0 elsewhere.
The following theorem is similar to Theorem 1 in [2] but this version only requires that T ∈ B(H)h, 

instead of T ∈ K(H)h. The proof follows exactly the same arguments that the one in the case where T is 
compact.

Theorem 2. Let T ∈ B(H)h described as an infinite matrix by (Tij)i,j∈N
. Suppose that T satisfies:

• Tij ∈ R for each i, j ∈ N,
• there exists i0 ∈ N satisfying Ti0i0 = 0, with Ti0n �= 0, for all n �= i0,
• if T [i0] is the operator T with zero in its i0th-column and i0th-row then

‖ci0(T )‖ ≥
∥∥∥T [i0]

∥∥∥
(where ‖ci0(T )‖ denotes the Hilbert norm of the i0th-column of T ), and

• 〈ci0(T ), cn(T )〉 = 0 for each n ∈ N, n �= i0.

Then,

1. ‖T‖ = ‖ci0(T )‖.
2. T is minimal, that is

‖T‖ = inf
D∈D(B(H)h)

‖T + D‖ = inf
D∈D(K(H)h)

‖T + D‖ ,

and D = Diag
(
{Tnn}n∈N

)
is the unique bounded minimal diagonal operator for T .

Proof. Without loss of generality suppose that T = (Tij)i,j∈N
∈ B(H)h has real entries Tij and i0 = 1. The 

hypothesis in this case are
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• i0 = 1 with T1n �= 0, ∀n ∈ N − {1}.
• T11 = 0.
• ‖c1(T )‖ ≥

∥∥T [1]
∥∥.

• 〈c1(T ), cn(T )〉 = 0 for each n ∈ N, n �= 1.

There are some remarks to be made:

• The last hypothesis implies that

Tnn = −〈c1(T ), cn(T )〉 − TnnT1n

T1n
= − 1

T1n

∑
i	=n

Ti1Tin , for every n ∈ N \ {1}

and observe that

|Tnn| =
∣∣∣〈T [1]en, en

〉∣∣∣ ≤ ∥∥∥T [1]en

∥∥∥ ‖en‖ ≤
∥∥∥T [1]

∥∥∥ ≤ ‖c1(T )‖ < ∞.

Namely, {Tnn}n∈N is a bounded sequence (each Tnn is a diagonal element of T [1] in the fixed basis).
• A direct computation proves that ‖c1(T )‖ and − ‖c1(T )‖ are eigenvalues of T with

v+ = 1√
2 ‖c1(T )‖

(‖c1(T )‖ e1 + c1(T )) and

v− = 1√
2 ‖c1(T )‖

(‖c1(T )‖ e1 − c1(T )) ,

which are eigenvectors of ‖c1(T )‖ and − ‖c1(T )‖, respectively. Let us consider the space V =
Gen {v+, v−}:
a) For every w ∈ V , there exist α, β ∈ R such that w = αv+ + βv−. Then

‖Tw‖2
2 = ‖T (αv+ + βv−)‖2

2 = ‖α ‖c1(T )‖ v+ − β ‖c1(T )‖ v−‖2
2

= |α|2 ‖c1(T )‖2 + |β|2 ‖c1(T )‖2 = ‖c1(T )‖2
(
|α|2 + |β|2

)
= ‖c1(T )‖2 ‖w‖2

.

b) If y ∈ V ⊥, Ty =
(

0 ct1(T )
c1(T ) T [1]

)(
0
y

)
=

(
0

T [1]y

)
. Then,

‖Ty‖ =
∥∥∥∥
(

0
T [1]y

)∥∥∥∥ =
∥∥∥T [1]y

∥∥∥ ≤
∥∥∥T [1]

∥∥∥ ‖y‖ .
Now we are in conditions to prove the statements of the theorem:

1. Norm of ‖T‖: For every x = w + y ∈ H, with w ∈ V and y ∈ V ⊥:

‖Tx‖2 = ‖T (w + y)‖2 = ‖Tw‖2 + ‖Ty‖2 + 2 Re 〈Tw, Ty〉

= ‖Tw‖2 + ‖Ty‖2

where the last equality follows since V and V ⊥ are stable by the Hermitian operator T . Then



T. Bottazzi, A. Varela / Differential Geometry and its Applications 45 (2016) 1–22 7
‖Tx‖2 = ‖Tw‖2 + ‖Ty‖2 ≤ ‖c1(T )‖2 ‖w‖2 +
∥∥∥T [1]

∥∥∥2
‖y‖2

≤ ‖c1(T )‖2 ‖x‖2
,

and hence ‖T‖ = ‖c1(T )‖.
2. Minimality and uniqueness of D: Let D′ ∈ D(B(H)h) and define (T +D′)en = T ′(en) = cn(T ′) for each 

n ∈ N, then the following properties are satisfied:
• If D′

11 �= 0 then

‖T ′(e1)‖2 = ‖c1(T ′)‖2 = |D′
11|

2 + ‖c1(T )‖2
> ‖c1(T )‖2 = ‖T‖2

⇒ ‖T ′‖ > ‖T‖ .

Therefore, we can assume that if T + D′ is minimal then D′
11 = 0.

• Now suppose that there exists i ∈ N, i > 1, such that T ′ does not have its ith-column orthogonal to 
the first one, that is:

〈T ′e1, T
′ei〉 = 〈c1(T ′), ci(T ′)〉 = ai �= 0.

Then,

T ′
(

c1(T )
‖c1(T )‖

)
=

(
‖c1(T )‖ , a2

‖c1(T )‖ , . . . ,
ai

‖c1(T )‖ , . . .
)

⇒ ‖T ′(c1(T ))‖2
> ‖c1(T )‖2 = ‖T‖ .

Hence, ‖T ′‖ > ‖T‖.
Therefore, D = Diag

(
{Tnn}n∈N

)
is the unique minimal diagonal for T and it is bounded. �

3. The unitary Fredholm orbit of a Hermitian compact operator

In this section we consider the unitary Fredholm orbit OA of a particular case of a Hermitian compact 
operator, that is: A ∈ K(H)h, A = uDiag ({λi}i∈N)u∗, with u ∈ Uc(H) and {λi}i∈N ⊂ R such that λi �= λj

for each i �= j. Consider OA as defined in section 2 and b = Diag ({λi}i∈N) ∈ OA. The isotropy Ib is the set 
{ed : d ∈ D(K(H)ah)} and (TOA)b can be identified with the quotient space K(H)ah/D(K(H)ah).

Proposition 3. Let b = Diag ({λi}i∈N) ∈ OA with distinct eigenvalues. For each x ∈ (TOA)b, if Z ∈ K(H)ah
is such that [Z, b] = x, then

‖x‖b = inf
D∈D(K(H)ah)

‖Z + D‖ (3.1)

Proof. If Y1, Y2 ∈ {Y ∈ K(H)ah : [Y, b] = x} then

Y1 − Y2 ∈ {D : [D, b] = Db− bD = 0} = {b}′

and since b is a diagonal operator with distinct eigenvalues, then every D is diagonal. Thus

Y1 − Y2 = D, with D diagonal

or equivalently: Y1 = Y2 + D, with D ∈ D(K(H)ah). Then,

‖x‖b = inf{‖Y ‖ : Y ∈ K(H)ah such that Y = Y2 + D, with D ∈ D(K(H)ah)}. �
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Fix x = [Zr, b] = Zrb − bZr ∈ B(H)ah, where Zr is an anti-Hermitian operator defined as the infinite 
matrix defined by

(Zr)j,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j = k = 1,
i dk if j = k (for j �= 1 and k �= 1),

i γmax{j,k}−2 if j �= k and (for j �= 1 and k �= 1),
i rγ|j−k| if j = 1 or k = 1 (for j �= 1 or k �= 1).

Therefore

Zr = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 rγ rγ2 rγ3 rγ4 · · ·
rγ d2 γ γ2 γ3 · · ·
rγ2 γ d3 γ2 γ3 · · ·
rγ3 γ2 γ2 d4 γ3 · · ·
rγ4 γ3 γ3 γ3 d5 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)

= i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 rγ rγ2 rγ3 rγ4 · · ·
rγ 0 γ γ2 γ3 · · ·
rγ2 γ 0 γ2 γ3 · · ·
rγ3 γ2 γ2 0 γ3 · · ·
rγ4 γ3 γ3 γ3 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Yr

+ i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 d2 0 0 0 · · ·
0 0 d3 0 0 · · ·
0 0 0 d4 0 · · ·
0 0 0 0 d5 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
D0

= Yr + D0. (3.3)

The entries of the operator Zr are such that:

1. γ ∈ R such that |γ| < 1.
2. The diagonal entries dk are defined by imposing that the relation 〈c1(Zr), ck(Zr)〉 = 0 is satisfied. Then 

d2 = − 
∑∞

j=1 γ
2j , and for each k ∈ N, k > 2:

dk = −

⎛
⎝k−3∑

j=0
γj

⎞
⎠−

⎛
⎝ ∞∑

j=0
γk+2j

⎞
⎠ = 1 − γk−2

γ − 1 − γk

1 − γ2 .

Notice that lim
k→∞

dk = 1
γ−1 .

3. r ≥
∥∥∥Y [1]+D0

∥∥∥(∑∞
j=1 γ2j

)1/2 , where Y [1] = Yr −

⎛
⎜⎜⎜⎜⎜⎝

0 rγ rγ2 rγ3 · · ·
rγ 0 0 0 · · ·
rγ2 0 0 0 · · ·
rγ3 0 0 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠.

Observe that the definition of each dk is independent of the parameter r. Also note that Yr is a Hilbert–
Schmidt operator. Indeed,

• (Y ∗
r Yr)11 = 〈f1(Yr), c1(Yr)〉 = r2 (∑∞

k=1 γ2k) = r2 γ2

1 − γ2 < ∞.

• (Y ∗
r Yr)22 = 〈f2(Yr), c2(Yr)〉 = r2γ2 +

∑∞
k=1 γ2k = r2γ2 + γ2

2 < ∞.
1 − γ



T. Bottazzi, A. Varela / Differential Geometry and its Applications 45 (2016) 1–22 9
• Inductively for each n ≥ 3:

(Y ∗
r Yr)nn = 〈fn(Yr), cn(Yr)〉 = r2γ2(n−1) + (n− 2)γ2(n−2) +

∞∑
k=n−1

γ2k

= r2γ2(n−1) + (n− 2)γ2(n−2) + γ−2+2n

1 − γ2 < ∞.

Then,

tr(Y ∗
r Yr) = tr(Y 2

r ) =
∞∑

n=1
(Y ∗

r Yr)nn

= r2 γ2

1 − γ2 + r2γ2 + γ2

1 − γ2 +
∞∑

n=3

[
r2γ2(n−1) + (n− 2)γ2(n−2) + γ2n−2

1 − γ2

]

= r2 γ2

1 − γ2 + r2γ2 + γ2

1 − γ2 + r2γ4

1 − γ2 + γ2(1 + γ2)
(1 − γ2)2 < ∞.

The operator −iZr fulfills the conditions of minimality in Theorem 2 stated in the Preliminaries and has 
been studied in [2]. Therefore,

‖[Yr]‖ = inf
D∈D(K(H)ah)

‖Yr + D‖ = ‖Yr + D0‖ = ‖Zr‖ .

Moreover, the diagonal operator D0 is the unique minimal diagonal (bounded, but non-compact) operator 
for Yr. Since D0b − bD0 = 0, then x = Yrb − bYr ∈ (TOA)b and

‖x‖b = ‖Zrb− bZr‖b = inf
D∈D(K(H)h)

‖Yr + D‖ = ‖[Yr]‖ = ‖Zr‖ < ‖Yr + D‖

for all D ∈ D(K(H)ah). In other words, there is no compact minimal lifting for x in this case.
The following proposition is a characterization of the unitary Fredholm group in terms of operators in 

K(H)ah.

Proposition 4. w ∈ Uc(H) if and only if there exists X ∈ K(H)ah such that w = eX .

Proof. Given w ∈ Uc(H), by Lemma 2.1 in [1] there exists X ∈ K(H)ah such that w = eX . On the other 
hand, consider X ∈ K(H)ah and the series expansion of eX

eX = 1 + X + 1
2X

2 + 1
3!X

3 + . . .

= 1 + X

[
1 + 1

2X + 1
3!X

2 + . . .

]
= 1 + K , K ∈ K(H).

Additionally, (eX)∗ = e−X and (eX)∗eX = eX(eX)∗ = eX−X = I. Then, eX ∈ Uc(H). �
Remark 5. Even if Z /∈ K(H)ah, eZ may belong to Uc(H). Indeed, let X0 ∈ K(H)ah, then Z = X0 + 2πiI /∈
K(H)ah but

eX0+2πiI = eX0 ∈ Uc(H).
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For Zr as in (3.2) define the uniparametric curve β by

β(t) = etZrbe−tZr , t ∈
[
− π

2 ‖Zr‖
,

π

2 ‖Zr‖

]
. (3.4)

To prove that β is a curve in OA, we introduce first the next result.

Lemma 6. Let Zr be the operator defined in (3.2). Then for each t ∈ R, there exist zt ∈ C, |zt| = 1 and 
U(t) ∈ Uc(H) such that

etZr = ztU(t).

Proof. Let α = −i lim
n→∞

dn = i
1−γ . Then etZr+αIt = etZretαI . Observe that etαI = etαI. Thus

etZr = e−tαetZr+tαI = e−tαetYr+tD0+tαI ,

with e−tα ∈ C, |e−tα| = 1 for every t ∈ R. Moreover, D0 + αI ∈ D(K(H)ah), since it is a bounded diagonal 
and

∣∣∣(D0 + αI)jj
∣∣∣ =

∣∣∣∣−1 − γj−2

1 − γ
− γj

1 − γ2 + 1
1 − γ

∣∣∣∣ =
∣∣∣∣ γj−2

1 − γ
− γj

1 − γ2

∣∣∣∣ → 0

when j → ∞. Therefore, since tZr + tαI ∈ K(H)ah for every t ∈ R then U(t) = etZr+tαI ∈ Uc(H) and

etZr = ztU(t), with zt = etα ∈ C. �
Remark 7. For any minimal lifting Z ∈ B(H)ah of x = [Y, b], the curve κ(t) = eZtbe−Zt has minimal length 
over all the smooth curves in P = {uAu∗ : u ∈ U(H)} that join β(0) = b and β(t), with |t| ≤ π

2‖Z‖

(Theorem II in [4]). Since OA ⊆ P, then for each t0 ∈
[
− π

2‖Z‖ ,
π

2‖Z‖

]
follows that

L(κ) = inf{L(χ) : χ ⊂ P, χ is smooth, χ(0) = b and χ(t0) = β(t0)}
≤ inf{L(χ) : χ ⊂ OA, χ is smooth, χ(0) = b and χ(t0) = β(t0)}
= dist(b, β(t0)).

Using the previous remark and Lemma 6 we can prove the following theorem.

Theorem 8. Let A = uDiag ({λi}i∈N)u∗, with u ∈ Uc(H) and {λi}i∈N ⊂ R such that λi �= λj for each i �= j. 
Let b = Diag ({λi}i∈N) ∈ OA and the parametric curve β defined in (3.4). Then β satisfies:

1. β(t) = et(Zr+ i
1−γ I)be−t(Zr+ i

1−γ I), which means that β(t) ∈ OA for every t.
2. β′(0) = x = Yrb − bYr = Zrb − bZr ∈ (TOA)b.
3. β has minimal length between all smooth curves in OA joining b with β(t0), for every t0 ∈[

− π
2‖Zr‖ ,

π
2‖Zr‖

]
. That is

L
(
β|[0,t0]

)
= inf{L(χ) : χ is smooth, χ(0) = b and χ(t0) = β(t0)}

= dist(b, β(t0)).

4. L 
(
β|

)
= |t0| ‖x‖ , for each t0 ∈

[
− π , π

]
.
[0,t0] b 2‖Zr‖ 2‖Zr‖
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Proof.

1. By Lemma 6, if U(t) = etZr+t i
1−γ I , then β can be rewritten as

β(t) = ztU(t)b(ztU(t))∗ = ztztU(t)bU−1(t)

= U(t)bU−1(t) = et(Zr+ i
1−γ I)be−t(Zr+ i

1−γ I)

and U(t) ∈ Uc(H) for each t ∈ R. Follows that β(t) ∈ OA for every t ∈ R.
2. β′(0) = etZr [Zr, b] e−tZr

∣∣
t=0.

3. Observe that ‖Zr‖ = ‖[Yr]‖B(H)ah/D(B(H))ah and Zr is (the unique) minimal lifting of x = [Yr, b] in 
B(H). Then, the result is a direct consequence of Remark 7.

4. Observe that L(β) =
∫ t0
0 ‖β′(t)‖β(t) dt = t0 ‖Yrb− bYr‖b. Indeed,

‖β′(t)‖β(t) =
∥∥Zre

tZrbe−tZr − etZrbZre
−tZr

∥∥
β(t) =

∥∥etZr [Zr, b] e−tZr
∥∥
β(t)

=
∥∥zzU(t) [Zr, b]U−1(t)

∥∥
β(t) = |z|2

∥∥U(t) [Zr, b]U−1(t)
∥∥
β(t)

=
∥∥U(t) [Zr, b]U−1(t)

∥∥
U(t)bU−1(t) = ‖Zrb− bZr‖b

= ‖Yrb− bYr‖b = ‖x‖b ,

where the equality 
∥∥U(t) [Zr, b]U−1(t)

∥∥
U(t)bU−1(t) = ‖Zrb− bZr‖b holds due to the unitary invariance 

of the Finsler norm. �
Summarizing, if Zα = Zr + i

1−γ I ∈ K(H)ah, we obtained that the parametric curve given by

πb ◦ (etZα) = etZαbe−tZα

has minimal length between elements of OA. Nevertheless, the operator Zα is not a minimal element in its 
class (recall that [Zr] = {Zr + D : D ∈ D(K(H)ah) = [Yr]}). On the other hand,

etZαbe−tZα = etZrbe−tZr

and Zr is minimal, but it does not belong to K(H)ah. We conclude with the following comment.

Remark 9. Let b ∈ OA, b = Diag ({λi}i∈N) such that λi �= λj for each i �= j. Then, there exist minimal 
length curves of the form ρ(t) = etZbe−tZ in OA such that they join b with other points of the orbit, but 
with Z ∈ K(H)ah and ‖Z‖ > ‖[Z]‖K(H)ah/D(K(H)ah).

4. Approximation with minimal length curves of matrices

There are two main objectives in this section: the first is to build two sequences of minimal matrices which 
approximate Zr and Zr+ i

1−γ I in the strong operator topology (SOT) and in the operator norm, respectively. 
The second objective is to find a family of minimal length curves of matrices which approximates the curve 
β defined in (3.4).
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Let Yr be the anti-Hermitian compact operator defined in (3.3) and consider the following decomposition

Yr = rL + Y [1], where L = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 γ γ2 γ3 · · ·
γ 0 0 0 · · ·
γ2 0 0 0 · · ·
γ3 0 0 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.1)

Let D0 be the diagonal bounded operator defined in (3.3). If r ≥
∥∥∥Y [1]+D0

∥∥∥
‖c1(L)‖ , then Zr = rL + Y [1] + D0 is 

minimal.
Let us consider for each n ∈ N≥3 = {n ∈ N : n ≥ 3} the orthogonal projection Pn over the space 

generated by {e1, . . . , en}. We define the following finite rank operators

Yn = rnPnLPn + PnY
[1]Pn, (4.2)

with rn ∈ R>0 for each n ∈ N. For each n ∈ N≥3 we define the diagonal operator Dn = iDiag
(
{d(n)

k }k∈N≥3

)
uniquely determined by the conditions:

1. d
(n)
1 = 0;

2. 〈c1(Yn + Dn), cj(Yn + Dn)〉 = 0, for each j ∈ N, j �= 1;
3. d

(n)
k = 0, for every k > n.

Thus, each d(n)
k is determined for every n ∈ N≥3 as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
(n)
2 = −

∑n−2
j=1 γ2j < 0

d
(n)
k = −

∑k−3
j=0 γj −

∑2n−2k−2
j=0 γk+2j < 0 if k < n

d
(n)
n = −

∑k−3
j=0 γj < 0

d
(n)
k = 0 for all k > n.

(4.3)

The proof is by induction over the indices k for every n ∈ N≥3. Observe that the choice of each d(n)
k is 

independent of the parameter rn.
The following lemma will be used to prove the minimality of each Yn + Dn for a fixed rn.

Lemma 10. Let Yn = rnPnLPn + PnY
[1]Pn and Dn as defined in (4.2) and (4.3) for each n ∈ N≥3, 

respectively. Then

sup
n∈N≥3

∥∥∥PnY
[1]Pn + Dn

∥∥∥ < ∞.

Proof. Fix n ∈ N≥3. Since supn∈N

∣∣∣d(n)
n

∣∣∣ ≤ ‖D0‖, for D0 the diagonal operator defined in (3.3), then

∥∥∥PnY
[1]Pn + Dn

∥∥∥ ≤
∥∥∥PnY

[1]Pn

∥∥∥ + ‖Dn‖ ≤ ‖Pn‖2
∥∥∥Y [1]

∥∥∥ + sup
1≤k≤n

∣∣∣d(n)
k

∣∣∣
≤

∥∥∥Y [1]
∥∥∥ +

∣∣∣d(n)
n

∣∣∣ ≤ ∥∥∥Y [1]
∥∥∥ + sup

∣∣∣d(n)
n

∣∣∣ ≤ ∥∥∥Y [1]
∥∥∥ + ‖D0‖ < ∞. �
n∈N≥3
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As a consequence of this lemma, there exists a constant M0 ∈ R>0 such that:

M0 = max
{

sup
n∈N≥3

∥∥∥PnY
[1]Pn + Dn

∥∥∥ , ∥∥∥Y [1] + D0

∥∥∥
}
. (4.4)

Now we can prove the minimality of each Yn + Dn for all n ∈ N.

Proposition 11. Let Yn = rnPnLPn + PnY
[1]Pn and Dn as defined in (4.2) and (4.3) for each n ∈ N≥3, 

respectively. Consider the constant M0 as in (4.4) and define rn = M0
‖c1(PnLPn)‖ . Then for each n ∈ N≥3 the 

operator Yn + Dn is minimal in K(H)ah/D(K(H)ah), that is

‖[Yn]‖ = inf
D̃∈D(K(H)ah)

∥∥Yn + D̃
∥∥ = ‖Yn + Dn‖ = M0.

Proof. Fix n ∈ N≥3. Without loss of generality, we can consider Yn + Dn as an n × n matrix. Then

• d
(n)
1 = 0;

• 〈c1(Yn + Dn), cj(Yn + Dn)〉 = 0, for each j ∈ N, 2 ≤ j ≤ n;
• ‖c1(Yn + Dn)‖ = rn ‖c1(PnLPn)‖ = M0 ≥

∥∥PnY
[1]Pn + Dn

∥∥.

As an n × n matrix, Dn is the unique minimal diagonal operator for Yn (see Theorem 8 in [5]). Since

inf
D∈D(K(H)ah)

‖Yn + D‖ = min
D̃∈D(Mn(C)ah)

∥∥Yn + D̃
∥∥ ,

follows that

‖[Yn]‖ = ‖Yn + Dn‖ . �
Observe that the norm of the minimal operator Yn + Dn is M0 for every n ∈ N≥3.

Remark 12. For every n ∈ N≥3

inf
D∈D(K(H)ah)

‖Yn + D‖ = min
D′∈D(Mn(C)ah)

‖Yn + D′‖ = ‖Yn + Dn‖ ,

but there is no uniqueness of the D′ ∈ D(K(H)ah) that attain the minimum. Moreover, every block operator 

of the form Cn =
(
Dn 0
0 Dc

)
, with Dc diagonal and such that ‖Dc‖ ≤ ‖c1(Yn)‖ satisfies

‖Yn + Cn‖ = max {‖Yn + Dn‖ ; ‖Dc‖} = ‖Yn + Dn‖ = ‖[Yn]‖ .

Reconsider the operator Yr = rL + Y [1] fixing r = M0
‖c1(L)‖ . Note that

∥∥Y [1] + D0
∥∥

‖c1(L)‖ ≤ r < ∞

where the last inequality holds due to Lemma 10. Then, Zr = Yr +D0 satisfies the hypothesis of Theorem 2
and is a minimal operator with D0, the unique (non-compact) bounded diagonal operator such that

‖[Yr]‖ = inf
ah

‖Yr + D‖ = ‖Zr‖ .

D∈D(K(H) )
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Moreover,

‖[Yr]‖ = ‖c1(Zr)‖ = ‖c1(Yr)‖ = M0.

Therefore,

‖[Yr]‖ = ‖[Yn]‖ , for all n ∈ N≥3. (4.5)

The following result relates Yr with Yn.

Proposition 13. Let Yr be the operator defined in (4.1) and {Yn}∞n=3 the family of finite rank operators 
defined in (4.2). If M0 is the real constant defined in (4.4) such that r = M0

‖c1(L)‖ and rn = M0
‖c1(PnLPn)‖ for 

each n ∈ N≥3, are fixed. Then

1. lim
n→∞

rn = r.
2. Yn → Yr when n → ∞ in the operator norm.

Proof.

1. Since ‖c1(PnLPn)‖ =
(∑n−1

i=1 γ2i
) 1

2 and ‖c1(L)‖ =
(∑∞

i=1 γ
2i) 1

2 , follows that lim
n→∞

rn = r.

2. ‖Yr − Yn‖ =
∥∥rL + Y [1] − rnPnLPn − PnY

[1]Pn

∥∥
≤ ‖rL± rnL− rnPnLPn‖ +

∥∥Y [1] − PnY
[1]Pn

∥∥
≤ |r − rn| ‖L‖ + |rn| ‖L− PnLPn‖ +

∥∥Y [1] − PnY
[1]Pn

∥∥ → 0

when n → ∞, since L and Y [1] are Hilbert–Schmidt operators and rn → r. �
Observe that the numerical sequence {d(n)

k }n∈N≥3 defined in (4.3) converges to dk when n → ∞, for each 
k ∈ N ⎧⎨

⎩ d
(n)
2 ↘ −

∑∞
j=1 γ

2j = − γ2

1−γ2 = d2,

d
(n)
k ↘ −

∑k−3
j=0 γj −

∑∞
j=0 γ

k+2j = 1−γk−2

γ−1 − γk

1−γ2 = dk, ∀k ≥ 3.

As a consequence, the sequence of diagonal operators {Dn}n∈N≥3 converges SOT to the unique best ap-
proximant (non-compact) diagonal D0 ∈ D(B(H)) for Yr.

Proposition 14. Let Yr be the operator defined in (3.3) and D0 the unique bounded diagonal operator such 
that ‖[Yr]‖K(H)ah/D(K(H)ah) = ‖Yr + D0‖. Let {Dn}n∈N≥3 be the sequence of finite rank diagonal operators 
defined in (4.3). Then

Dn → D0 SOT when n → ∞.

Proof. {Dn −D0}n∈N≥3
is a bounded family of B(H) and

(Dn −D0) (ek) = d
(n)
k − dk → 0

when n → ∞ for every ek that belongs to the fixed orthonormal basis. Then standard arguments of operator 
theory imply that Dn → D0 SOT when n → ∞ (see [3]). �
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Observe that Propositions 13 and 14 imply that lim
n→∞

Yn + Dn = Zr SOT. Since Dn ∈ K(H)ah for all 
n ∈ N≥3 and D0 /∈ D(K(H)ah), the convergence cannot be in the operator norm. To establish the second 
main result of this section we prove first the convergence in the operator norm of Yn +Dn +αI to Zr +αI, 
for a particular α ∈ R.

Proposition 15. Let Yr, D0, {Yn}n∈N≥3 , {Dn}n∈N≥3 , {Pn}n∈N≥3 be the operators and sequence of operators 
defined previously in (4.1), (4.2) and (4.3). Then

Yn + Dn + i

1 − γ
Pn → Yr + D0 + i

1 − γ
I,

in the operator norm when n → ∞.

Proof. Let ε > 0, then

∥∥∥∥Yr + D0 + i

1 − γ
I − Yn −Dn − i

1 − γ
Pn

∥∥∥∥
≤ ‖Yr − Yn‖ +

∥∥∥∥D0 + i

1 − γ
I −Dn − i

1 − γ
Pn

∥∥∥∥ .
By Proposition 13, there exists n1 ∈ N such that ‖Yr − Yn‖ < ε, for all n ≥ n1. Focus on the second term. 
For each n ∈ N≥3

∥∥∥∥D0 + i

1 − γ
I −Dn − i

1 − γ
Pn

∥∥∥∥ = sup
k∈N

∣∣∣∣dk + 1
1 − γ

− d
(n)
k −

(
1

1 − γ
Pn

)
kk

∣∣∣∣
= max

⎧⎨
⎩ max

1≤k≤n

∣∣∣∣∣∣
∞∑
j=n

γ2j−k

∣∣∣∣∣∣ ; sup
k>n

∣∣∣∣dk + 1
1 − γ

∣∣∣∣
⎫⎬
⎭ .

By Proposition 14, max
1≤k≤n

∣∣∣∑∞
j=n γ

2j−k
∣∣∣ and sup

k>n

∣∣∣dk + 1
1−γ

∣∣∣ converge to 0 when n → ∞. Then, there exists 

n2 ∈ N such that for each n ≥ n0

max

⎧⎨
⎩ max

1≤k≤n

∣∣∣∣∣∣
∞∑
j=n

γ2j−k

∣∣∣∣∣∣ ; sup
k>n

∣∣∣∣dk + 1
1 − γ

∣∣∣∣
⎫⎬
⎭ < ε.

Finally, if n0 = max{n1; n2} follows that

n ≥ n0 ⇒
∥∥∥∥Yr + D0 + i

1 − γ
I − Yn −Dn − i

1 − γ
Pn

∥∥∥∥ < 2ε,

which means that Yn + Dn + i
1−γPn converges to Yr + D0 + i

1−γ I when n → ∞ in the operator norm. �
In the above proof we also obtained that {Dn+ i

1−γPn}n∈N≥3 , which is a sequence of finite rank operators, 
converges in the operator norm to D0+ i

1−γ I ∈ D(K(H)ah). Even though Yn+Dn+ i
1−γPn and Yr+D0+ i

1−γ I

are not minimal operators, they are useful to construct minimal length curves in the unitary orbit of A. We 
will use the operators Yn +Dn + i

1−γPn to construct a sequence of minimal length curves that converge to 
β defined in (3.4).
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The first result in this direction is the convergence of the sequence of exponential curves in OA.

Proposition 16. Let b ∈ OA and ςn(t) = etZnbe−tZn , a sequence of curves in OA with t ∈ R and {Zn}n∈N ⊂
K(H)ah such that ‖Zn − Z‖ → 0 when n → ∞. If we define ς(t) = etZbe−tZ , then

ςn → ς

uniformly in the operator norm when n → ∞ for any interval [t1, t2] ⊂ R.

Proof. Let ε > 0.

‖ςn(t) − ς(t)‖ ≤
∥∥etZnbe−tZn − etZbe−tZn

∥∥ +
∥∥etZbe−tZn − etZbe−tZ

∥∥
≤

∥∥(etZn − etZ
)
be−tZn

∥∥ +
∥∥etZb (e−tZn − e−tZ

)∥∥
≤

(∥∥etZn − etZ
∥∥ +

∥∥e−tZn − e−tZ
∥∥) ‖b‖ .

It is known that the exponential map exp : K(H)ah → Uc(H) is Lipschitz continuous in compact sets of 
K(H), then there exists n0 ∈ N such that

for all n ≥ n0 ⇒
{ ∥∥etZn − etZ

∥∥ < ε
‖b‖∥∥e−tZn − e−tZ

∥∥ < ε
‖b‖ ,

for each t in a closed interval [t1, t2] ⊂ R. Therefore

‖ςn(t) − ς(t)‖ < ε

for each n ≥ n0 and t ∈ [t1, t2], which implies that ςn → ς uniformly in the operator norm in that interval. �
If we consider the sequence {Yn + Dn + i

1−γPn}n∈Ngt and use Proposition 15 then

Yn + Dn + i

1 − γ
Pn → Yr + D0 + i

1 − γ
I

in the operator norm when n → ∞. Define for each n ∈ N≥3 and t0 ∈ R the curves parametrized by

βn(t) = et(Yn+Dn+ i
1−γ Pn)be−t(Yn+Dn+ i

1−γ Pn), t ∈ [0, t0]. (4.6)

Observe that these can be considered as matricial type curves.

Theorem 17. Let A and b ∈ OA as in Theorem 8. Let {βn}n∈N≥3 be the sequence of curves defined in (4.6), 
and β be the curve defined in (3.4). Then, for each n ∈ N≥3

1.
{

βn(0) = b

β′
n(0) = Ynb− bYn ∈ (TOA)b.

.

2. βn(t) = et(Yn+Dn)be−t(Yn+Dn) for all t, since i
1−γPn commutes with Yn + Dn.

3. For each t0 ∈
[
− π

2‖[Yn]‖ ,
π

2‖[Yn]‖

]
=

[
− π

2M0
, π

2M0

]
holds that

L
(
βn|[0,t0]

)
= |t0| ‖[Yn]‖ = |t0|M0 = L

(
β|[0,t0]

)
.
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4. βn : [0, t0] → OA with t0 ∈
[
− π

2M0
, π

2M0

]
is a minimal length curve in OA.

5. β′
n(0) → β′(0) in the norm ‖.‖b of (TOA)b.

Moreover, by Proposition 16, βn → β uniformly in the operator norm in the interval 
[
− π

2M0
, π

2M0

]
.

Proof. The proof of items (1), (2), (3) is analogous to the proof in Theorem 8. The equality ‖[Yn]‖ = M0 =
‖[Yr]‖ is due to Proposition 11.

Since for each n ∈ N≥3 fixed Yn +Dn is a minimal compact operator, by Theorem I in [4] βn is a minimal 
length curve between all curves in OA joining βn(0) = b and βn(t) with |t| ≤ π

2‖Yn+Dn‖ . Then (4) is proved.
We proceed to prove (5): fix ε > 0. Then there exists n0 ∈ N such that if n ≥ n0 then ‖Yn − Yr‖ < ε. 

Therefore,

‖β′
n(0) − β′(0)‖b = inf

{
‖Z‖ : Z ∈ K(H)ah, [Z, b] = (Yn − Yr) b− b (Yn − Yr)

}
= inf

D∈D(K(H)ah)
‖Yn − Yr + D‖ ≤ ‖Yn − Yr‖ < ε

for each n ≥ n0. Then ‖β′
n(0) − β′(0)‖b → 0 when n → ∞. �

Therefore, we obtained a minimal length curve β ⊂ OA that can be uniformly approximated by minimal 
curves of matrices {βn}. Nevertheless, β does not have a minimal compact lifting, although each βn has at 
least one minimal matricial lifting.

5. Bounded minimal operators Z + D with Z ∈ K(H) and non-compact diagonal D

Let Yr, D0 be the operators defined in (3.3). To establish the equality β(t) = eYr+D0+ i
1−γ Ibe−(Yr+D0+ i

1−γ I)

in Theorem 8 the following properties were essential:

1. D0 + i
1−γ I ∈ D(K(H)ah) and

2. i
1−γ I commutes with Zr and b but i

1−γ I /∈ K(H).

This can be generalized.

Proposition 18. Let Z ∈ K(H)ah and suppose that there exists D1 ∈ D(B(H)ah) such that

‖[Z]‖K(H)ah/D(K(H)ah) = ‖Z + D1‖

and D1 is not compact. If there exists λ ∈ iR such that limj→∞ (D1)jj = λ, then the curve

χ(t) = et(Z+D1−λI)be−t(Z+D1−λI)

has minimal length between all the smooth curves in OA joining b with χ(t0), for t0 ∈
[
− π

2‖Z‖ ,
π

2‖[Z]‖

]
.

Proof. First observe that Re ((D1)jj) = 0 for each j ∈ N, since D1 ∈ D(B(H)ah). Then,

lim
j→∞

(D1)jj = λ

and λ �= 0 since D1 is not compact. Therefore, using functional calculus and Proposition 6 in [2]

‖Z + D1 − λI‖ = max{|− ‖[Z]‖ − |λ|| ; ‖[Z]‖ − |λ|} > ‖[Z]‖ .
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Also D1 − λI ∈ D(K(H)ah), since |(D1 − λI)jj | = |(D1)jj − λ| → 0, when j → ∞. Then, Z + D1 − λI is 
not minimal in K(H)ah/D(K(H)ah) but the curve parameterized by

χ(t) = et(Z+D1−λI)be−t(Z+D1−λI) ∈ OA

has minimal length, as χ is equal to the curve δ(t) = et(Z+D1)be−t(Z+D1), which has minimal length in the 
homogeneous space {uAu∗ : u ∈ U(H)} (Theorem II in [4]). Therefore χ has minimal length in OA. �

Given Z ∈ K(H)ah, it is not true that every diagonal operator D1 such that Z + D1 is minimal fulfills 
the condition

∃λ ∈ iR such that lim
j→∞

(D1)jj = λ.

Indeed, consider the following operator

Z0 = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −δ γ −δ2 γ2 −δ3 γ3 · · ·
−δ 0 γ −δ2 γ2 −δ3 γ3 · · ·
γ γ 0 −δ2 γ2 −δ3 γ3 · · ·

−δ2 −δ2 −δ2 0 γ2 −δ3 γ3 · · ·
γ2 γ2 γ2 γ2 0 −δ3 γ3 · · ·
−δ3 −δ3 −δ3 −δ3 −δ3 0 γ3 · · ·
γ3 γ3 γ3 γ3 γ3 γ3 0 · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with γ, δ ∈ (0, 1). (5.1)

It is easy to prove that Z0 is a Hilbert Schmidt operator.
Let D′

0 = iDiag
(
{d′n}n∈N

)
the unique bounded diagonal operator such that

〈c1(Z0), cn(Z0 + D′
0)〉 = 0, ∀ n ∈ N. (5.2)

Simple calculations show that the condition (5.2) implies that {d′n}n∈N satisfies the following:

• d′1 = 0
• d′2 = δ3

1−δ2 +
(

γ2

δ

)
1

1−γ2 and for every even, with k ∈ N, k > 1

d′2k =

⎛
⎝k−1∑

j=1
δj

⎞
⎠−

⎛
⎝k−1∑

j=1
γj

⎞
⎠ + δk+2

1 − δ2 +
(
γ2

δ

)k 1
1 − γ2 .

• d′3 = δ − γ3

1−γ2 −
(

δ4

γ

)
1

1−δ2 and for every odd, with k ∈ N, k > 1

d′2k−1 =

⎛
⎝k−1∑

j=1
δj

⎞
⎠−

⎛
⎝k−2∑

j=1
γj

⎞
⎠− γk+1

1 − γ2 −
(
δ2

γ

)k
γ

1 − δ2 .

If γ2 ≤ δ and δ2 ≤ γ both sequences, {d′2k}k∈N and {d′2k−1}k∈N, are convergent.

If Z [1]
0 is the operator Z0 defined in (5.1) but with zeros in its first column and row and r =

∥∥∥Z[1]
0 +D′

0

∥∥∥
c1(Z0)

then r(Z0 − Z
[1]
0 ) + Z

[1]
0 + D′

0 is a minimal operator by Theorem 2 and D′
0 is the unique bounded minimal 

diagonal operator for r(Z0 − Z
[1]
0 ) + Z

[1]
0 . Also, if we fix the conditions γ2 = δ and δ2 < γ then
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lim
k→∞

d′2k = δ

1 − δ
− γ

1 − γ
+ 1

1 − γ2 and lim
k→∞

d′2k−1 = δ

1 − δ
− γ

1 − γ
,

which implies that {(D′
0)nn}n∈N has no limit. We call these diagonals “oscillant” in the sense that the 

sequence {〈Den, en〉}n∈N has at least two different limits.
Observe that an approximation to Z0 by matrices can be built as the one done in section 4. Consider for 

each n ∈ N≥5 = {n ∈ N : n ≥ 5} the orthogonal projection Pn and define the following finite rank operators

Zn = rnPn(Z0 − Z
[1]
0 )Pn + PnZ

[1]
0 Pn, (5.3)

with rn ∈ R>0 for each n ∈ N≥5. For each n ∈ N≥5 we define a diagonal operator D′
n = iDiag

(
{d(n)′

l }l∈N

)
uniquely determined as

1. d
(n)′
1 = 0;

2. 〈c1(Zn + D′
n), cj(Zn + D′

n)〉 = 0, for each j ∈ N, j �= 1;
3. d

(n)′
l = 0, for every l > n.

Then, d(n)′
l is determined for every n ∈ N≥5 as follows.

• If l ≤ n and l is even, l = 2k, then

d
(n)′
2 =

⎛
⎝

⌊
n−2

2
⌋∑

j=1
δ2j+1

⎞
⎠ +

∑⌊
n−1

2
⌋

j=1 γ2j

δ
,

d
(n)′
2k =

⎛
⎝k−1∑

j=1
δj

⎞
⎠−

⎛
⎝k−1∑

j=1
γj

⎞
⎠ +

⎛
⎜⎝

⌊
n−2k

2

⌋∑
j=1

δ2j+k

⎞
⎟⎠ +

+
∑⌊

n−1
2

⌋
j=k γ2j

δk
, if 1 < k ≤ n− 1

2 (5.4)

If n is odd and k = n+1
2 then d(n)′

2k = d
(n)′
n−1 is obtained by the above formula (5.4) without its third 

term. If n is even and k = n
2 then d(n)′

2k = d
(n)′
n is obtained by the above formula (5.4) without its third 

and fourth terms.
• If l ≤ n and l is odd, l = 2k − 1, then

d
(n)′
3 = δ −

⎛
⎝

⌊
n−1

2
⌋∑

j=2
γ2j−1

⎞
⎠−

∑⌊
n
2
⌋

j=2 δ
2j

γ
,

d
(n)′
2k−1 =

⎛
⎝k−1∑

j=1
δj

⎞
⎠−

⎛
⎝k−2∑

j=1
γj

⎞
⎠−

⎛
⎝

⌊
n−1

2
⌋∑

j=k

γ2j−k+1

⎞
⎠−

−
∑⌊

n
2
⌋

j=k δ
2j

γk−1 , if 2 < k ≤ n− 1
2 (5.5)

If n is odd and k = n+1
2 then d(n)′

2k−1 = d
(n)′
n is obtained by the above formula (5.5) without its third and 

fourth terms. If n is even and k = n
2 then d(n)′

2k−1 = d
(n)′
n−1 is obtained by the above formula (5.5) without 

its third term.
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• If l > n then

d
(n)′
l = 0 (5.6)

The proof is by induction over the indices k for every n ∈ N≥5. Observe the following:

1. The choice of each d(n)′
k is independent from the parameter rn.

2. lim
n→∞

d
(n)′
2 =

(∑∞
j=1 δ

2j+1
)

+
∑∞

j=1 γ2j

δ = d′2.

3. lim
n→∞

d
(n)′
2k =

(∑k−1
j=1 δj

)
−

(∑k−1
j=1 γj

)
+

(∑∞
j=1 δ

2j+k
)

+
∑∞

j=k γ2j

δk
= d′2k.

4. lim
n→∞

d
(n)′
3 = − 

(∑∞
j=2 γ

2j−1
)
−

∑∞
j=2 δ2j

γ = d′3.

5. lim
n→∞

d
(n)′
2k−1 =

(∑k−1
j=1 δj

)
−

(∑k−2
j=1 γj

)
−

(∑∞
j=k γ

2j−k+1
)
−

∑∞
j=k δ2j

γk−1 = d′2k−1.
6. For every k ∈ N and for each n ∈ N≥5:

d′2k−1 ≤ d
(n)′
2k−1 ≤ d

(n)′
2k ≤ d′2k.

Then, ‖D′
0‖ = sup

k∈N

{
∣∣d′2k−1

∣∣ ; |d′2k|} ≥ ‖D′
n‖.

7. D′
n → D′

0 SOT, since Diag
(
{d(n)′

2k }k∈N

)
→ Diag ({d′2k}k∈N) SOT and Diag

(
{d(n)′

2k−1}k∈N

)
→

Diag
(
{d′2k−1}k∈N

)
SOT.

With the previous properties, there exists M1 ∈ R>0 such that:

M1 = max
{

sup
n∈N

∥∥∥PnZ
[1]
0 Pn + D′

n

∥∥∥ , ∥∥∥Z [1]
0 + D′

0

∥∥∥} . (5.7)

For any injective σ : N → N define the projection

P σ =
∑
k∈N

eσ(k) ⊗ eσ(k). (5.8)

Thus, the following result is a direct consequence of all previous remarks.

Theorem 19. Let Z0, D′
0, Zn = rnPn(Z0 − Z

[1]
0 )Pn + PnZ

[1]
0 Pn and D′

n be the operators defined in (5.1), 
(5.2), (5.3), (5.4), (5.5) and (5.6) for each n ∈ N≥5, respectively. Consider the real constant M1 as in (5.7)
and define rn = M1∥∥∥c1(Pn(Z0−Z

[1]
0 )Pn

)∥∥∥ for each n ∈ N and r = M1∥∥∥c1(Z0−Z
[1]
0

)∥∥∥ . If

λ = lim
n→∞

d′2k, μ = lim
n→∞

d′2k−1,

then

1. Zn + D′
n is minimal in K(H)ah/D(K(H)ah) and

‖[Zn]‖ = inf
D∈D(K(H)ah)

‖Zn + D‖ = ‖Zn + D′
n‖ = M1.

2. If P σ1 and P σ2 are the projections defined in (5.8) for σ1(k) = 2k and σ2(k) = 2k − 1, respectively, 
then
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Zn + D′
n − λPnP

σ1Pn − μPnP
σ2Pn → r(Z0 − Z

[1]
0 ) + Z

[1]
0 + D′

0 − λP σ1 − μPσ2

in the operator norm when n → ∞.

Proof.

1. Observe that if D′
n is determined as in (5.4), (5.5) and (5.6) the operator −i(Zn + D′

n) fulfills the 
conditions stated in Theorem 2 and

inf
D∈D(K(H)ah)

‖Zn + D‖ = ‖Zn + D′
n‖ = ‖c1(Zn + D′

n)‖ = M1.

2. Let ε > 0. Since Z0 is compact and rn → r then there exists n1 ∈ N such that

∥∥∥Zn − r(Z0 − Z
[1]
0 ) + Z

[1]
0

∥∥∥ <
ε

2 ,

for each n ≥ n1. Similarly than in the case of diagonal with one limit point (see proof of Proposition 15), 
for each n ∈ N≥5:

‖D′
n − λPnP

σ1Pn − μPnP
σ2Pn −D′

0 + λP σ1 + μPσ2‖

= sup
l∈N

∣∣∣d′l − λ (PnP
σ1Pn)ll − μ (PnP

σ2Pn)ll − d
(n)′
l − λ (Pσ1)ll − μ (P σ2)ll

∣∣∣
= max

{
max
1≤l≤n

∣∣∣d′l − d
(n)′
l

∣∣∣ ; sup
k>n

|d′2k − λ| ; sup
k>n

∣∣d′2k−1 − μ
∣∣} . (5.9)

Since lim
n→∞

d
(n)′
2k = d′2k, lim

n→∞
d
(n)′
2k−1 = d′2k−1, lim

n→∞
d′2k = λ and lim

n→∞
d′2k−1 = μ, there exists n2 ∈ N such 

that the last expression is smaller than ε2 for every n ≥ n2. Therefore, it holds that

‖Zn + D′
n − λPnP

σ1Pn − μPnP
σ2Pn

−
[
r(Z0 − Z

[1]
0 ) + Z

[1]
0 + D′

0 − λP σ1 − μPσ2
]∥∥∥

≤
∥∥∥Zn − r(Z0 − Z

[1]
0 ) + Z

[1]
0

∥∥∥
+ ‖D′

n − λPnP
σ1Pn − μPnP

σ2Pn −D′
0 + λP σ1 + μPσ2‖ < ε

for every n ≥ max{n1; n2}. �
Remark 20. As r(Z0 − Z

[1]
0 ) + Z

[1]
0 , with Z0 and r defined previously, there exist other compact operators 

such that its best bounded diagonal approximant oscillates. Moreover, there exist examples of minimal 
bounded operators in which the elements on the main diagonal are the union of m subsequences (m ∈ N) 
such that each one converges to a different limit. For those m-oscillant operators an analogous result as that 
of Theorem 19 can be obtained with essentially the same arguments. Nevertheless, the techniques used in 
Theorems 8 and 17 to prove that the curves constructed in (3.4) and (4.6) belong to OA cannot be adapted 
to the case of an oscillant minimal diagonal for a compact Z ∈ K(H)ah.
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