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1. Introduction

Let H be a separable Hilbert space and IC(H) be the algebra of compact operators. In this work we
consider the orbit manifold of a self-adjoint compact operator A by a particular unitary group, that

is

04 = {uAu”™ : v unitary in B(H) and u — 1 € K(H)}.
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Given two points, x,y € O4, the rectifiable distance between them is the infimum of the lengths of all
the smooth curves in O4 that join x and y. Our purpose is to study the existence and properties of some
particular minimal length curves in Q4.

The tangent space at any b € O 4 is

(TOA)y={2b—bz:2z€ K(H), 2" = -z}

endowed with the Finsler metric given by the usual operator norm |-||. If z € (T'O4)p, the existence of a
(not necessarily unique) minimal element zy such that

lz|l, = l|20]| = inf {||2]| : 2 € K(H), 2" = —2z, 2b—bz =z}

allows in [1] the description of minimal length curves of the manifold by the parametrization

_ _tzo —tzo ™ ™
()= v ve [ o]

These zg can be described as i(C + D), with C' € K(H), C* = C and D a real diagonal operator in an
orthonormal basis of eigenvectors of A.

If we consider B C A von Neumann algebras and a € A, a* = a, there always exists an element by in
B such that ||a + bo|| < |la+b]|, for all b € B (see [4]). The element a + by is called minimal in the class
[a] of A"/B". However, in the case of A = K(H), a C*-algebra which is not a von Neumann algebra, and
B C K(H) a subalgebra there is not always a minimal compact operator in any class in (#")/B". In [2]
we exhibit an example of this fact. In this case, the existence of a best approximant for C' € K(H), C* = C
is guaranteed when C, for example, has finite rank (see Proposition 5.1 in [1]).

The above motivated us to study the following, among other issues, in the unitary orbit of a Hermitian

operator. Let b € O and z € (TO4), and suppose that there exists a uniparametric curve 9 (t) = e!Zbe~t%
which is a minimal length curve among all the smooth curves joining b and 1 (t) in O4 for ¢t € [— 2H7TZH , 2H7TZH ] :

« Would Z be a compact minimal lifting of  (i.e. = Zb — bZ and || Z|| = ||z|[,)?
e Can v be approximated in O 4 by a sequence of minimal length curves of matrices?

The present work continues the analysis made in [1] of these homogeneous spaces and we use minimality
characterizations that we developed in [2].

The results in this paper are divided in three parts. In the first we describe and study minimal length
curves in the orbit of a particular compact Hermitian operator. In the second part we construct a sequence
of minimal length curves of matrices which converges uniformly to the minimal length curves found in
the first part. Finally, in the third part we study cases of anti-Hermitian compact operators whose best
bounded diagonal approximants are not compact and we also study the properties of the minimal curves
they determine.

2. Preliminaries and notation

Let (H,(,)) be a separable Hilbert space. We denote by ||h| = (h, h>1/2 the norm for each h € H. Let
B(H) denote the set of bounded operators (with the identity operator I) and K(#), the two-sided closed
ideal of compact operators on H. Given A C B(H), we use the superscript ** (resp. ") to note the subset
of anti-Hermitian (resp. Hermitian) elements of A.

We consider the group of unitary operators in B(H)
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UH)={ueBH): uw" =u"u=1I}
and the unitary Fredholm group, defined as
UH)={ueld(H):u—TecKH)}.

We denote with ||-|| the usual operator norm in B(#) and with [, ] the commutator operator, that is,

for any T, S € B(H)
T,5] =TS — ST.

It should be clear from the context the use of the same notation ||-|| to refer to the operator norm or the
norm on H.
We define the unitary orbit of a fixed A = A* € K(H) as

O = {udu* 1 u € U(H)} C K(H). (2.1)

If A has spectral multiplicity one then O4 becomes a smooth homogeneous space if we consider the action
7y : U (H) = Oa, mp(u) = ubu*. In order to prove this, we will use the following lemma.

Lemma 1. If A = A* € K(H) has spectral multiplicity one, then there exists a conditional expectation from

K(H) onto {A}Y NK(H).

Proof. The hypothesis on A implies that the sequence {E,, },>1 of projections onto the nonzero eigenspaces
of A consists of rank-one projections and 1 =" ., F, in the strong operator topology. Moreover, one has

{AY ={T eB(H): Yn>1, TE, = E,T}.
Then the map

£:K(H) = {AY NK(H), E:=) E.TE,,

n>1

is well defined by a norm-convergent series and is a conditional expectation as claimed. To see that the above
series converges in the norm topology, one uses the Cauchy criterion. More specifically, for any T € K(H)
one has lim ||E,TE,| =0, and then, using that E,, F,, = 0 if ny # nay, one obtains

n—oo

Z E,TE,| = sup |E,TE,|| — 0 as m — o0,
n>m

n>m
which concludes the proof. 0O
Then it can be proved that for the group action
U(H) x B(H) — B(H), (u, A) — uAu*

the isotropy group of any A = A* € K(H) having spectral multiplicity one is a Banach—Lie subgroup of
U.(H), because it is an algebraic subgroup in the sense of the Harris-Kaup theorem, and its Lie algebra
has a complement in the Lie algebra of U.(H) by the above lemma. Therefore, the unitary orbit Q4 has a
smooth structure.



4 T. Bottazzi, A. Varela / Differential Geometry and its Applications 45 (2016) 1-22

For each b € O4, the isotropy group Zj is
Ty = {u € U(H) : ubu™ = b}.

Since for each u € U.(H) there always exists X € K(H)" such that u = eX (see Proposition 4), the isotropy
can be redefined by

T, = {eX cU.(H): X € K(H)™", [X,b] = 0}.
For each b € Oy, its tangent space is
(TOA)y = {Yb—0bY : Y € K(H)*"} € K(H)*™.

Consider a smooth curve (i.e. C! and with derivative non-equal to zero) u : [0,1] — U.(H) such that
u(0) =1 and v/(0) =Y, then the differential of the surjective map m at 1 is

d . *

(dmp)1 (V) = — mp(u(t))l ;o = @/ (0)b u”(0) + u(0)b u'(0)
=Yb1"+ 1Y =Yb—0bY =[Y,].

For every b € O 4 we consider each tangent space as

(TOA)y = (TU(H))1/(TTy)1 = K(H)™"/({b})",

being {b}’ the set of elements that commute with b in a C*-algebra A (in this particular case A = IC(H)).
Let us consider the Finsler metric, defined for each x € (TO4), as

||y = inf{||Y]| : Y € K(H)*" such that [Y,b] = =}
This metric can be expressed in terms of the projection to the quotient K(H)**/({b}")*" as

Yb-bY|,=|Y]||= inf Y+ C
[Yo—brl, =Yl = __inf Y +C]

for each class [Y] = {Y 4+ C: C € ({b}/)*"}. This Finsler norm is invariant under the action of U.().

There always exists Z € B(H)*" such that [Z,b] = z and ||Z|| = ||z||,. Such element Z is called minimal
lifting for z, and Z may not be compact and/or unique (see [2]). Consider piecewise smooth curves § :
[a,b] — O4. We define the rectifiable length of 5 as

b
L(8) = / 18Ol sy .

and the rectifiable distance between two points of O 4, named ¢y and co, as
dist(cy, co) = inf{L(B) : B is smooth, B(a) = ¢1, B(b) = c2}.

If A is any C*-algebra of B(H) and {e},-, is a fixed orthonormal basis of H, we denote with D(A) the
set of diagonal operators with respect to this basis, that is

DA ={T e A: (Tej,e;) =0, foralli##j}.
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Given an operator Z € A, if there exists an operator D; € D(A) such that
12 + D1l = dist (Z,D (A)),

we say that Dy is a best approximant of Z in D(.A). In other terms, the operator Z+ D; verifies the following
inequality

1Z+ Dl < 1Z + D

for all D € D(A). In this sense, we call Z + D; a minimal operator or similarly we say that D; is minimal
for Z. If Z is anti-Hermitian it holds that

dist (Z,D (A)) = dist (Z,D (A")),

since ||[Im(X)|| < || X]|| for every X € A.

Let T € B(H) and consider the coefficients T;; = (Te;,e;) for each i,j € N, that define an infinite
matrix (Ti;), ;cy- The jth-column and ith-row of T" are the vectors in 2% given by ¢;(T) = (Th;,T2j, . ..) and
fi(T) = (T;1, Tya, - . .), respectively.

We use o(T) and R(T) to denote the spectrum and range of T € B(H), respectively.

We define @ : B(H) — D(B(H)), ®(X) = Diag(X), that takes the main diagonal (i.e. the elements of the
form {(Xe;,e;)}ien) of an operator X and builds a diagonal operator in the chosen fixed basis of H. For a
given bounded sequence {d,}nen C C we denote with Diag({d, },cn) the diagonal (infinite) matrix with
{dn}nen in its diagonal and 0 elsewhere.

The following theorem is similar to Theorem 1 in [2] but this version only requires that T € B(H)",
instead of T € KC(H)". The proof follows exactly the same arguments that the one in the case where T is
compact.

Theorem 2. Let T € B(H)" described as an infinite matriz by (T;;) Suppose that T satisfies:

i,jEN"
o T;; €R foreach i,j €N,
o there exists ig € N satisfying T;,:, = 0, with T, # 0, for all n # iy,

o if Tl0l is the operator T with zero in its igth-column and igth-row then

Jeio (T = |70

(where ||c;, (T)|| denotes the Hilbert norm of the igth-column of T), and
o (¢iy(T),cn(T))y =0 for each n € N, n # ig.

Then,

LT = [leio (T)]]-
2. T is minimal, that is

T = inf T+ D = inf T+ D],
DeD(B(H)) DeD(K(H)")

and D = Dz'ag({T,m}neN) is the unique bounded minimal diagonal operator for T .

Proof. Without loss of generality suppose that T = (T};), ;o € B(H)" has real entries T;; and i = 1. The
hypothesis in this case are
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e ip =1 with Ty, £0, Vn € N — {1}.

e T11=0.

Jex(D)l > 0]

o (c1(T),en(T)) =0 for each n € N, n # 1.

There are some remarks to be made:
o The last hypothesis implies that

{er(T), en(T)) = TonTin
Tln

1
Ton = — :—T—MZTﬂTm , for every n € N\ {1}

and observe that

[Tl = |(TWen, 0 ) leall < 71| < lex(@)) < ox.

<ot

Namely, {Tyn }nen is a bounded sequence (each T, is a diagonal element of T in the fixed basis).
o A direct computation proves that |c1(7)|| and — ||c1(7T')|| are eigenvalues of T with

1
vy = ——— (|le1(T)|| e1 + ¢1(T)) and
= Zatoryy I @lles +aa()

1
- m ([ler (D) er — e (T))

which are eigenvectors of |[c1(T)| and —|c1(T)]||, respectively. Let us consider the space V =
Gen {vy,v_}:
a) For every w € V, there exist «, § € R such that w = avy 4+ Sv_. Then

ITwl} = T (@vs + o) 3 = llaller (D] v = 8 ler ()] v- 3
= la* e (DI + 1B ler (DI = en (DI (Jaf* +181)

2 2
= lex (D ]

0 (D)) (0 0
b) Ify S ‘/vJ-7 Ty = (Cl(T) %[1] > (y) = <T[1]y> Then,

0
il =| (2, )| = %] < ) .

Now we are in conditions to prove the statements of the theorem:
1. Norm of ||T'||: For every x = w +y € H, with w € V and y € V*:

ITz|* = | T(w +y)|* = | Twl* + |Tyl* + 2 Re (Tw, Ty)
2 2
= | Twl[” + [Tyl

where the last equality follows since V and V+ are stable by the Hermitian operator 7. Then
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2 2 2 2 2 22
1Tl = |Twl® + Tyl < llex(@I? fw) + |[T]|" ly)
< (D) flo)*,

and hence ||T|| = ||c1(T)]]-

2. Minimality and uniqueness of D: Let D’ € D(B(H)") and define (T + D')e,, = T'(e,) = c,(T") for each
n € N, then the following properties are satisfied:
o If D}, # 0 then

2 2 2 2 2 2
1T (e)I” = Nen (T = DU + ller (T > llea (D) = 1T
= T > Tl

Therefore, we can assume that if 7+ D’ is minimal then Dj; = 0.
o Now suppose that there exists ¢ € N, 7 > 1, such that 7" does not have its ith-column orthogonal to
the first one, that is:

<T/€1,T/€i> = <Cl (T/),Ci(T/» = Q; 7£ 0.

Then

)

™ (yar) = (@l mim fatmr)

Hence, || T|| > ||T|-
Therefore, D = Diag({TmL}neN) is the unique minimal diagonal for T' and it is bounded. O

3. The unitary Fredholm orbit of a Hermitian compact operator

In this section we consider the unitary Fredholm orbit O4 of a particular case of a Hermitian compact
operator, that is: A € K(H)", A = uDiag ({\;}ien) u*, with u € U.(H) and {\;}ien C R such that \; # ),
for each i # j. Consider Q4 as defined in section 2 and b = Diag ({\; }ien) € O4. The isotropy 7y is the set
{ed: d € D(K(H)®)} and (TO4)p can be identified with the quotient space K(H)* /D(K(H)").

Proposition 3. Let b = Diag ({\; }ien) € Oa with distinct eigenvalues. For each x € (TOa)y, if Z € K(H)*"
is such that [Z,b] = x, then

lzllo = _inf  [|Z+ D] (3.1)
DED(K(H))

Proof. If Y1,Ys € {Y € K(H)*" : [Y,b] = x} then
Y1 —Yse{D: [D,b] = Db—bD =0} = {b}
and since b is a diagonal operator with distinct eigenvalues, then every D is diagonal. Thus
Y1 — Yo = D, with D diagonal
or equivalently: Y; = Yo + D, with D € D(K(#H)*"). Then,

|||y = inf{||Y]| : Y € K(H)* such that Y = Y5 + D, with D € D(K(H)*")}. ]
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Fix x = [Z,,b] = Z,b —bZ,. € B(H)*", where Z, is an anti-Hermitian operator defined as the infinite
matrix defined by

0 it k=1,
i dy if j=k (forj#1andk#1),

7). . = ;
(Zr)n iy k=2 4f 5 oLk and (for j # 1 and k # 1),
iryl=klif j=1or k=1 (for j #1ork#1).

Therefore

0 7y m? r? ryt

mod oy A

oy dz PP

Zr=i] a3 A2 42 g, A3 (3.2)
4 .3

mt oy ds

0 ry ™2 3 oyt 0O 0 0 0 O
ry 0 oy 42 A3 0 do 0 0 0
2 oy 0 42 A3 0 0 dgs 0 O
=ifpB 42 42 0 4B +iflo 0o 0 d4 0 =Y, + Dy. (3.3)
’I“’}/4 73 ')/3 73 0 0 O 0 0 d5
Y, Do

The entries of the operator Z,. are such that:

1. v € R such that |y| < 1.
2. The diagonal entries dj, are defined by imposing that the relation (¢1(Z,), cx(Z,)) = 0 is satisfied. Then
dy = =372, %, and for each k € N, k > 2:

S¥ 2 1—Ah2 v*
dyp = — A - ~RTE = _ )
;o ;o y-1 o 1-9
Notice that lim dy = —15.
k—oc0 v
0 v ™ ry?
- ry 0 0 0
ylilip
3.r=> H7+_0‘1‘/2, where YWl =y, — [ 0 0 0
]0'011 72] T,YS O O O

Observe that the definition of each dj is independent of the parameter r. Also note that Y. is a Hilbert—
Schmidt operator. Indeed,

2
s () = (A e () = (D3l 7%) = <o
2

o (V) = (f)ea (V) =27 4 0, 9% =2 4

< 00.
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¢ Inductively for each n > 3:

(VY )un = (fal¥e)s ea(Y)) = 1297070 4 (n = 2)72072) 4 5 42
k=n—1
2, 2(n—1) 2(n—2) yT2tE
=ry +(7’L72)")/ +ﬁ<oo.
Then,
(YY) = (V) = 3V Y )un
n=1
2 2 o0 2n—2
_ .2 7 2 2 Y 2_2(n—1) _ 2(n—2) ,
,rl_WQJrT’Y +1_72+nz_:3[r’y + (n—2)y +1_72
2 2 2.4 2 2
2 7 2.2, 7 riyt (497
=r 1= +riy +1_72+1_72+ 127 < 00.

The operator —iZ, fulfills the conditions of minimality in Theorem 2 stated in the Preliminaries and has
been studied in [2]. Therefore,

MYl = __int Y+ DI = [Ye + Doll = [1Z: -
€D(K(H)*")

Moreover, the diagonal operator Dy is the unique minimal diagonal (bounded, but non-compact) operator
for Y,.. Since Dob — bDy = 0, then x = Y;.b — bY;. € (TO4)p and

= |Z:b—bZ,|l,= inf Y, +D| = [V = 1Z.]| < ||Y; + D
[y = | = it ¥+ DI =YL= 1121 < Y> + DI

for all D € D(K(#H)*"). In other words, there is no compact minimal lifting for z in this case.
The following proposition is a characterization of the unitary Fredholm group in terms of operators in

KC(H)h.
Proposition 4. w € U.(H) if and only if there exists X € K(H)" such that w = e*.

Proof. Given w € U.(H), by Lemma 2.1 in [1] there exists X € K(H)?" such that w = eX. On the other
hand, consider X € K(H)*" and the series expansion of e

1

3
3!X +...

eX:1+X+%X2+
1 1 o
=1+X 1+§X+§X +... :1+K,K€K(’H).

Additionally, (eX)* = e~ and (e¥)*eX = eX(eX)* = X=X =I. Then, eX cU.(H). O

Remark 5. Even if Z ¢ K(H)", eZ may belong to U.(H). Indeed, let Xy € K(H)*", then Z = X + 2mil ¢
KC(H)™ but

eXo2mil — oXo e 1 (H).
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For Z, as in (3.2) define the uniparametric curve 8 by

B(t) = etZrbe™tr | te |- (3.4)

To prove that § is a curve in O 4, we introduce first the next result.

Lemma 6. Let Z, be the operator defined in (3.2). Then for each t € R, there exist z; € C, |z| = 1 and
U(t) € U.(H) such that

etZr =z U(1).

Proof. Let o = —i lim d,, = ﬁ Then et4rtolt — etZretel  Qbserve that e!®! = eI, Thus
n—oo

tZ

eltZr — e—taetZT—&-taI

— e~tagtYr+tDottal

with et € C, |e~**| = 1 for every t € R. Moreover, Do + ol € D(K(H)*"), since it is a bounded diagonal
and

—0

L—o72 1 yi? v
D I,,‘: _ _ — _
‘( o+ el ’ 1—~ 1—72+1—7’ ‘1—7 1—~2

when j — oo. Therefore, since tZ, + tal € K(H)" for every t € R then U(t) = et?r+tol ¢ {f.(H) and
et?r = 4 U(t), with z, = e'* € C. O

Remark 7. For any minimal lifting Z € B(H)*" of 2 = [V, b], the curve x(t) = eZ*be~?* has minimal length
over all the smooth curves in P = {vAu* : w € U(H)} that join 5(0) = b and S(t), with [t| < &

2l 21l
(Theorem IT in [4]). Since O4 C P, then for each tg € {— VAR 2\WZ\|] follows that

L(k) = inf{L(x) : x C P, x is smooth, x(0) = b and x(tg) = B(to)}
<inf{L(x) : x C Oa, x is smooth, x(0) = b and x(to) = B(to)}
= dist(b, B(to))-

Using the previous remark and Lemma 6 we can prove the following theorem.

Theorem 8. Let A = uDiag ({\; }ien) u*, with u € U (H) and {\;}ien C R such that \; # A\, for each i # j.
Let b = Diag ({\i}ien) € Oa and the parametric curve B defined in (3.4). Then 8 satisfies:

(t) = ¢4t SDbe "2t 50 which means that B(t) € O4 for every t.
"0)=2=Y,b—-bY, =Z.b—0Z. € (TOA)».
has minimal length between all smooth curves in Oa joining b with B(tg), for every ty €

L g
2.8
3. B

{ That is

2HZ (K 2HZ II}

L (5|[07t0]) = inf{L(x) : x is smooth, x(0) = b and x(to) = B(to)}
= dist(b, B(to))-

L <6|[0’t0]) = |to| ||z|,, for each ty € [—m, Tz |-
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Proof.
1. By Lemma 6, if U(t) = ' "'1=5! then 8 can be rewritten as
B(t) = 2 U)b(zU (1) = 2zU(£)bU (1)
— UBU (1) = e!Zrt s DpetZrt 25 1)

and U(t) € U.(H) for each t € R. Follows that 8(t) € O4 for every t € R.
2. B'(0) = et? [Z,,b]e

3. Observe that | Z,| = ||[Y; ]||B (#)an /D(B(#))er and Zyp is (the unique) minimal lifting of « = [¥;, 8] in
B(H). Then, the result is a direct consequence of Remark 7.
4. Observe that L(3) = [;° [8'(t)ll gy dt = to [|Ysb — bY; |, Indeed,
Zp —t 2, Z, —tZ, _ || 2 —tZ
18" )l gy = | Z e “rbe™ 4 — e PrbZ, e |ﬁ(t) = ||e*" [Z,,b] e )
- 2
= 20 (28U O 5y = 12 [UO 20 61U @)
= U@ 12, 51U Oy eypr- ) = 1200 = 020,

= [[Yrb = bYe [, = [zl ,

where the equality ||U(t) [Z,,b] U}
of the Finsler norm. 0O

t)HU(t)bU—l(t) = ||Z,b — bZ,||, holds due to the unitary invariance

Summarizing, if Z, = Z, + ﬁf € K(H)%", we obtained that the parametric curve given by

T 0 (etZQ) _ etZa be_tZ“

has minimal length between elements of O 4. Nevertheless, the operator Z, is not a minimal element in its
class (recall that [Z,.] = {Z, + D : D € D(K(H)*) = [Y;]}). On the other hand,

tZabe—tZa — etZrbe—tZT
and Z, is minimal, but it does not belong to K(#H)*". We conclude with the following comment.
Remark 9. Let b € O4, b = Diag ({\; }ien) such that A; # A; for each i # j. Then, there exist minimal
length curves of the form p(t) = e!?be~'? in 04 such that they join b with other points of the orbit, but
with Z € K(H)*" and || Z]] > [ 2]l (zyan i 2eyony -

4. Approximation with minimal length curves of matrices

There are two main objectives in this section: the first is to build two sequences of minimal matrices which
approximate Z, and Z,.+ ﬁ[ in the strong operator topology (SOT) and in the operator norm, respectively.
The second objective is to find a family of minimal length curves of matrices which approximates the curve
B defined in (3.4).
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Let Y, be the anti-Hermitian compact operator defined in (3.3) and consider the following decomposition

0 2 3

T
v 0 0 0

Y, =rL+ YW, where L = 7 0 0 0 (4.1)
¥ 0 0 0

Y4 D,

Let Dy be the diagonal bounded operator defined in (3.3). If r > | e

minimal.

then Z, = rL + Y 4+ Dy is

Let us consider for each n € N>3 = {n € N : n > 3} the orthogonal projection P, over the space
generated by {eq,...,e,}. We define the following finite rank operators

Y, =r,P,LP, + P, YU P,, (4.2)

with 7, € Ry for each n € N. For each n € N>3 we define the diagonal operator D,, = iDiag ({d](gn)}kENza)
uniquely determined by the conditions:

1. d" =o;
2. (c1(Yn + Dy),c;(Yo+ Dy)) =0, for each j € N, j # 1;
3. dé") =0, for every k > n.

Thus, each dgcn) is determined for every n € N>3 as

) = -3 <0

RS e RO e G B N s
4.3
di) = =309 <0
d" =0 for all k& > n.

The proof is by induction over the indices k for every n € N>3. Observe that the choice of each dé") is
independent of the parameter 7,,.

The following lemma will be used to prove the minimality of each Y,, + D,, for a fixed r,,.

Lemma 10. Let Y, = r,P,LP, + P,YYP, and D, as defined in (4.2) and (4.3) for each n € Nsg,
respectively. Then

sup PnY[l]Pn + Dy, < 0.
nENZs
Proof. Fix n € N>3. Since sup,,cy dM| < | Do||, for Dg the diagonal operator defined in (3.3), then

|PaY P, 4+ Do | < ||PY IR + 1Dl < 1P [y + sup |af
1<k<n
<[l o] < I+ s o< ] i <o

nENzg
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As a consequence of this lemma, there exists a constant My € R~ such that:

n

My = max< sup
neN>3

,HY[” +DOH}. (4.4)

Now we can prove the minimality of each Y;, + D,, for all n € N.

Proposition 11. Let Y,, = r,P,LP, + P,YWP, and D,, as defined in (4.2) and (}.3) for each n € N>3,
respectively. Consider the constant My as in (4.4) and define r, = %. Then for each n € N>3 the
operator Y, + D,, is minimal in K(H)*" /D(K(H)*"), that is

H[Yn]H = . inf HYn + DH = ||Yn + Dn” = M.
DeD(K(H)ah)

Proof. Fix n € N>3. Without loss of generality, we can consider Y;, + D,, as an n X n matrix. Then

. d(”):O
1 )

o (c1(Y,+D,),c;(Yn+ Dy)) =0, foreach j €N, 2 <5 <mn;
{er( j J J
ler (Yo + D)l = i [ler (PoLP,) || = Mo > || P, YR, + Dy .

As an n x n matrix, D,, is the unique minimal diagonal operator for Y,, (see Theorem 8 in [5]). Since

DeD()C(H)ah Yo + DI ~ B min |
€D(Mp(C)ah)

follows that
IYalll = ¥ + Daull. O
Observe that the norm of the minimal operator Y;, 4+ D,, is My for every n € N>3.
Remark 12. For every n € N>3

1Yo + DI = Vo + D'l = [[Yo + Dnl|,
DeD(IC(H)“” D'e D(M ((C) ah)
but there is no uniqueness of the D’ € D(K(H)*") that attain the minimum. Moreover, every block operator

of the form C,, = <D0” 8 ), with D, diagonal and such that | D.|| < |lc1(Y,,)| satisfies

1Yo + Crll = max {||Y, + Dyl ;[ Dell} = [|[Yn + Dl = [[[Yalll -

Reconsider the operator Y, = L + YU fixing r = Note that

_ Mgy
Tex (DI

(1]
el

e (D~

where the last inequality holds due to Lemma 10. Then, Z, = Y,.+ D, satisfies the hypothesis of Theorem 2
and is a minimal operator with Dy, the unique (non-compact) bounded diagonal operator such that

Y.l = f Y.+ D| =2
I3l = , int ¥+ DI =12
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Moreover,
Y2 ]Il = ller(Ze)ll = llex (V)| = Mo.
Therefore,

Y]l = |

[Yo]ll, for all n € N>g. (4.5)
The following result relates Y, with Y,,.

Proposition 13. Let Y, be the operator defined in (4.1) and {Y,}2 4 the family of finite rank operators
defined in (4.2). If My is the real constant defined in (4.4) such that r = Hc%—i)” and r, = W\fw for
each n € N>3, are fived. Then

1. lim r, =7.
n— oo

2. Y, =Y. when n — oo in the operator norm.

Proof.
N 3 1
1. Since [leg (PaLPy)|| = (315 9%) " and flea (D)) = (252, 7%)?, follows that lim 7, = 7.
n—,oo
2. Y, =Yl = ||rL + YW =, P,LP, — P,YUIP,||
< |rL +roL — ry P, LP, | + [|[YI — P, YR, ||
< |r—=ral |LI| + [Pl |1 L — PoLP,|| + ||YM = P, YR, || — 0

when n — oo, since L and Y are Hilbert-Schmidt operators and r, — 7. O

Observe that the numerical sequence {d,(cn)}nel\l23 defined in (4.3) converges to d when n — oo, for each
keN

n 0o . 2
dg ) \( _ijl 72] = _1272 = d2a
k—2

n k-3 oo j - k
BN TR - et = Sz

As a consequence, the sequence of diagonal operators {Dy,}nen., converges SOT to the unique best ap-
proximant (non-compact) diagonal Dy € D(B(H)) for ;..

Proposition 14. Let Y, be the operator defined in (3.3) and Dqy the unique bounded diagonal operator such
that [|[Ye]ll e 3yen /e ryeny = 1Y + Doll- Let {Dy}nens, be the sequence of finite rank diagonal operators
defined in (4.3). Then

D,, — Dy SOT when n — oo.

Proof. {D,, — Dy} is a bounded family of B(#) and

’I’LENZQ;
(Dy = Do) (ex) = d” — dj, — 0

when n — oo for every e; that belongs to the fixed orthonormal basis. Then standard arguments of operator
theory imply that D,, — Dy SOT when n — oo (see [3]). O
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Observe that Propositions 13 and 14 imply that lim Y, + D, = Z, SOT. Since D,, € K(H)*" for all
n—oo

n € N>z and Dy ¢ D(K(H)"), the convergence cannot be in the operator norm. To establish the second
main result of this section we prove first the convergence in the operator norm of Y,, + D,, + ol to Z, + «al,
for a particular a € R.

Proposition 15. Let Y;., Do, {Yn}nens;, {DnfneNsss { Pulnens, be the operators and sequence of operators
defined previously in (4.1), (4.2) and (4.3). Then

Yo+ Dy + ——P, = Y, + Do+ ——1I,
I—vy 1—v

in the operator norm when n — oco.
Proof. Let ¢ > 0, then

Y, + Do+ ——I—Y,—D,———P,
1—7v 1—v

' p,

)
SM?—KM+HDW+———I—Dn—
1—x 1—v

By Proposition 13, there exists n; € N such that ||Y, — Y, || <, for all n > n;. Focus on the second term.
For each n € N>3

i 1 (n) 1
DngiI D, P,||=supldy + —— —d; ' — (Pn
‘ 1—vy 1y keN 1—y F L—9"")
= max { max Z 2R sup |dy + L
1<k<n | k>n I—v

By Proposition 14, >0 2fﬂ
y Proposition lrélliié{n Z]:nfy

no € N such that for each n > ng

converge to 0 when n — oo. Then, there exists

1
25—k| .
ma. g ssup |d + —— < €.
1<ké(n j 7 k>2 ¥ 1 ’Y‘ ‘

Finally, if ng = max{ni;nz} follows that

n>ng = < 2,

Y.+ Dot —I-v,-D,— " p
1—7 1—7

which means that Y,, + D,, + 1=

when n — oo in the operator norm. 0O

In the above proof we also obtained that {Dn+1= P }nEN>3a which is a sequence of finite rank operators
T (IC(’H) ). Even though Y, +D,, + 117P and Y, +Do+ 1%
are not minimal operators, they are useful to construct minimal length curves in the unitary orbit of A. We

converges in the operator norm to Dy+—

will use the operators Y, + Dy, + 7 P to construct a sequence of minimal length curves that converge to
B defined in (3.4).
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The first result in this direction is the convergence of the sequence of exponential curves in O 4.

Proposition 16. Let b € O and ¢, (t) = e'%nbe=t%n  a sequence of curves in O witht € R and {Z,}nen C
K(H)* such that || Z,, — Z|| — 0 when n — oco. If we define <(t) = e'?bet% then

Sp =S
uniformly in the operator norm when n — 0o for any interval [t1,t5] C R.
Proof. Let ¢ > 0.
lsn(t) = ()| < [|e"Zrbe™tn — e Zbe™ 2| + || Zbe™ o — e Pbe™ ||
< [t — et2) et 4 [t (e - 12)|

< ([l = e[+ fle=" = e Z]) fi]

It is known that the exponential map exp : K(H)*" — U.(H) is Lipschitz continuous in compact sets of
K(H), then there exists ng € N such that

e =] < iy

et = et < i

for all n > ng = {
bl

for each ¢ in a closed interval [t1,t2] C R. Therefore
l[on(t) = <)l <€
for each n > ng and t € [ty, t2], which implies that ¢,, — ¢ uniformly in the operator norm in that interval. 0O

If we consider the sequence {Y,, + D,, + ﬁPn}neNgt and use Proposition 15 then

Yn—l—Dn—i-ﬁPn%Yr-i-Do—&-ﬁI
in the operator norm when n — co. Define for each n € N>3 and ¢y € R the curves parametrized by
Bu(t) = Yt Dt T P) ot Dut 5 Pa) ¢ (0, %) (4.6)
Observe that these can be considered as matricial type curves.

Theorem 17. Let A and b € Oa as in Theorem 8. Let {Bn}nen., be the sequence of curves defined in (4.6),
and 8 be the curve defined in (3.4). Then, for each n € N>g

. Bn(0) =10
| BL(0) = Yb—bY, € (TOL).
2. Bn(t) = etOntDPn)pe=tntDn) for gl t, since ﬁPn commutes with Y,, + D,,.

3. For each tg € [fm, M} = [fQLMO, ﬁ} holds that

L (Bulios) = ol I¥all = lto] Mo =T (Bl ) -
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4. B 1 [0,t0] = O4 with ty € {—ﬁ, ﬁ} is a minimal length curve in O4.
5. B3;,(0) = B'(0) in the norm ||.||, of (TOA)s.

Moreover, by Proposition 16, 8, — B uniformly in the operator norm in the interval {—ﬁ, 2]7\;10},

Proof. The proof of items (1), (2), (3) is analogous to the proof in Theorem 8. The equality ||[Y,]|| = Moy =
l[Y:]|| is due to Proposition 11.
Since for each n € N3 fixed Y;, + D,, is a minimal compact operator, by Theorem I in [4] j,, is a minimal
length curve between all curves in Q4 joining ,(0) = b and f,,(¢t) with [t| < v oLy Fhen (4) is proved.
We proceed to prove (5): fix € > 0. Then there exists ng € N such that if n > ng then ||Y, =Y, | < e
Therefore,

15,(0) = B'(0)l, = inf {||Z]| : Z € K(H)*", [2,0] = (Yo = Y;) b~ b (Yo — Vo) }

= inf Ya— Yt D[ <[Va-Yi| <e
DeD(K(H)ah)

for each n > ng. Then ||5;,(0) — 5(0)||, = 0 when n — co. O

Therefore, we obtained a minimal length curve § C O 4 that can be uniformly approximated by minimal
curves of matrices {8, }. Nevertheless, 3 does not have a minimal compact lifting, although each 3,, has at
least one minimal matricial lifting.

5. Bounded minimal operators Z 4+ D with Z € IC(H) and non-compact diagonal D

Let Y,., Dy be the operators defined in (3.3). To establish the equality 8(t) = eYrtPot 15 o= (Yot Dot 1251)
in Theorem 8 the following properties were essential:

L. Do+ 51 € D(K(H)*") and
2. 1f71 commutes with Z, and b but 1i71 ¢ K(H).

This can be generalized.
Proposition 18. Let Z € K(H)™ and suppose that there exists Dy € D(B(H)*") such that
12 3yar ypic3yany = 12 + Dl

and Dy is not compact. If there exists A € iR such that lim;_,o (D1);; = A, then the curve

(1) = et(Z+D1=AD po—t(Z+D1=AI)

has minimal length between all the smooth curves in O 4 joining b with x(to), for tg € [72|\TFZ||7 QIIETZ]\I}'

Proof. First observe that Re ((D1);;) = 0 for each j € N, since D; € D(B(H)*"). Then,

lim (Dl)]‘j =

j—o0
and A # 0 since D; is not compact. Therefore, using functional calculus and Proposition 6 in [2]

12 + Dy = M| = max{|=[[[Z][] = [All; [[Z]]] = [A[} > [[Z]] -
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Also D1 — M € D(K(H)*"), since |(Dy — M), = |(D1)j; — Al — 0, when j — co. Then, Z + Dy — Al is
not minimal in C(H)%" /D(K(H)*") but the curve parameterized by

X(t) _ et(Z+D1f>\I)beft(ZJrDﬁ)J) c O,

has minimal length, as y is equal to the curve §(t) = e!(Z+Ppe=t(Z+D1) which has minimal length in the
homogeneous space {uAu* : v € U(H)} (Theorem II in [4]). Therefore x has minimal length in O4. O

Given Z € K(H)", it is not true that every diagonal operator D; such that Z + D; is minimal fulfills
the condition

3\ € iR such that lim (Di);; = A

j—o0

Indeed, consider the following operator

0 _5 v _52 ,YQ _53 73 .
-5 0 v _52 72 _53 73 .
Yoy 0 =072 =000
| -2 =2 -2 0 2 -5 .
Zo=1 A2 A2 A2 A2 0 5B AR , with 4,6 € (0,1). (5.1)
_63 _63 _53 _53 _53 0 ,YS .
L L e A A U

It is easy to prove that Z; is a Hilbert Schmidt operator.

Let Dj = iDiag ({d],},,cy) the unique bounded diagonal operator such that

(e1(Zo), cn(Zo + D)) =0, ¥V n € N. (5.2)

Simple calculations show that the condition (5.2) implies that {d/, },cn satisfies the following:

L] d?l :0
o dy, = % + (%—2) 1_172 and for every even, with k e N, k > 1
k-1 k-1 k
‘ . sk+2 2 1
/ 2
2k = Z(;J N _Z’yj +1_52+(5> 1—~2
j=1 J=1
dy=6— 2, — (2) L and for e dd, with k € N, k > 1
¢ a3 = 142 ~ ) 1=s2 very odd, wi eN, k>

k—1 k—2 k1 o\ k
; ; v J y
e POL R DL 2—<—> T
= =1 v

v

If 42 < § and 6% < v both sequences, {d}; }ren and {d}; _; }ren, are convergent.

Jz+,
c1(Zo)

+ Dj is a minimal operator by Theorem 2 and Dj is the unique bounded minimal

If Z([)l] is the operator Zy defined in (5.1) but with zeros in its first column and row and r =

then r(Zy — Z") + Z}!
diagonal operator for r(Zy — Z([)l]) + Z([)l]. Also, if we fix the conditions 42 = ¢ and 62 < v then
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0 ~ 1 ) ~y
lim d, = _ d lim dy, = ——— —1—
e T Tl =l Bl gyl vy

which implies that {(D{)nn}nen has no limit. We call these diagonals “oscillant” in the sense that the
sequence {(De,,, ;) Inen has at least two different limits.

Observe that an approximation to Zy by matrices can be built as the one done in section 4. Consider for
eachn € N>5 = {n € N: n > 5} the orthogonal projection P, and define the following finite rank operators

Zn =1 Po(Zo — Z8NP, + P2 P, (5.3)

with r, € Ry for each n € N>5. For each n € N>5 we define a diagonal operator D], = iDiag ({dl(n)/}leN)
uniquely determined as

1. d" =o;
2. (a1(Z, + D)), cj(Z, + D)) =0, for each j € N, j # 1;
3. d"™ =0, for every | > n.

Then, dl(n)/ is determined for every n € N>5 as follows.

e If ] <mnandliseven, | =2k, then

n—2 n—1
, T2 ZL 2 J 72]
d(n) _ §2i+1 Jj=1
2 Z + 6 9
Jj=1
, k=1 k=1 Eal
dgz) — 5] — ZVj + Z stk | 4
j=1 j=1 j=1
|25 25
. -1
+27—’“77,1f1<kg" (5.4)

6k

If n is odd and k = 25 then dJ) = d{™)| is obtained by the above formula (5.4) without its third
term. If n is even and k = 5 then dg,z), = d%”" is obtained by the above formula (5.4) without its third
and fourth terms.

e IfI<mandlisodd, | =2k—1, then
\_ngl

) 23] 5] s52i
dgn) —§— Z 72]’71 o 2]22
=2

)

Y
, =1 k=2 ==
d =Y - () - | X
j=1 j=1 j=k
Z@c 6% n—1
- S i 2 <k s (5.5)

If nis odd and k = 241 then dg,?;l = d™ is obtained by the above formula (5.5) without its third and
fourth terms. If n is even and k = % then dg,i): L= dgL"_)ll is obtained by the above formula (5.5) without
its third term.
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o If [ > n then
)/
d" =0 (5.6)
The proof is by induction over the indices &k for every n € N>5. Observe the following:

1. The choice of each d;g")/ is independent from the parameter r,.
’ ) o 27
2. lim d{¥ = (Z;x;l 62j+1) + % = d),.

n—oo
’ _ A _ R 00 A ol 27
3. tim i = (02 67) = (Shoiad) + (352, %40 + 257 = ay
: (”)I _ o) 25—1) _ 20'12 5% 7
4. nh_)rréo dy’ = (Zj:Q’Y J ) == =ds.

. n)’ k—1 ¢4 k—2 4 o) - ZJO.; L 6%
5. nlggo dgk)—l = (Zj:l 5]> - (Zj:l ’YJ) - (Zj:k v k+1) - = = dy
6. For every k € N and for each n € N>5:

heoy < dG) ) < dS) < dby

Then, || Dg|| = sup{|dy._,
keN

o[y = (1D -

7. D!, — D} SOT, since Diag ({déz)/}keN) — Diag ({dy;, }ren) SOT and Diag ({dg,z)_/l}keN) —
Diag ({dék—l}kGN) SOT

With the previous properties, there exists M; € Ry such that:

M, = max {sup pr.zMp, + ||, || 2" + D} } . (5.7)
neN
For any injective o : N — N define the projection
P = Z €o(k) ® €o(k)- (5.8)

keN

Thus, the following result is a direct consequence of all previous remarks.

Theorem 19. Let Zy, D{, Z, = rnPy(Zo — Z([)”)Pn + P,LZ([)”Pn and D), be the operators defined in (5.1),

(5.2), (5.3), (5.4), (5.5) and (5.6) for each n € N5, respectively. Consider the real constant My as in (5.7)

and define r, = H <
c1

B VA
‘ for eachn € N and r Hq (ZrZél])H f

My
Pn(ngZ([)l])Pn)|
A= lim d = lim d!
n— o0 2k H n— o0 2k—1
then

1. Z, + D! is minimal in K(H)*" /D(K(H)*") and

IZalll = _inf || Zy+ Dl = |Zn + D, | = M.
DeD(K(H)ah)

2. If P°* and P°2 are the projections defined in (5.8) for o1(k) = 2k and o2(k) = 2k — 1, respectively,
then
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Zn + D), — AP, P°' P, — uP,P?* P, — r(Zy — 2" + 2! + D}, — AP™* — P72
in the operator norm when n — co.
Proof.

1. Observe that if D] is determined as in (5.4), (5.5) and (5.6) the operator —i(Z,, + D;,) fulfills the
conditions stated in Theorem 2 and

inf | Z, + D|l = |Z, + Dy || = l|e1(Zn + Dy,)|| = M.
DeD(K(H)ah)

2. Let € > 0. Since Zj is compact and r, — 7 then there exists n; € N such that

for each n > ny. Similarly than in the case of diagonal with one limit point (see proof of Proposition 15),

Zn -2 - 2+ 2| < 5,

for each n € Nx>5:

|D;, = AP, P Py — P, P7* P, — Djy + AP7* + uP? |

d; — X\ (P,P"'P,), — i (P.P72P,), —d"™" — X (P™), — u(P°?),,

= sup
lEN

= max max
1<i<n

dj—d"™

ssup |dyy, — Al s sup |dyy,_ —M\}- (5.9)
k>n k>n

Since nlingo dsy, = dby, nhﬁngo doy 1 = dby_4, nhﬁn;o dy, = X and nlirréo dh,._, = p, there exists ny € N such
that the last expression is smaller than § for every n > njy. Therefore, it holds that

|Z, + D, — AP, P"' P, — uP, P"P,
— [r(Zo = 20") + 2§ + Dy — APt — uP7

< |20 = 20 - 281+ 28|

+||D), = AP, P°* P, — P, P°? P, — D, + AP°* + uP%?| < ¢
for every n > max{ni;ns}. O

Remark 20. As r(Zp — Z([)l]) + Z([)l], with Zy and r defined previously, there exist other compact operators
such that its best bounded diagonal approximant oscillates. Moreover, there exist examples of minimal
bounded operators in which the elements on the main diagonal are the union of m subsequences (m € N)
such that each one converges to a different limit. For those m-oscillant operators an analogous result as that
of Theorem 19 can be obtained with essentially the same arguments. Nevertheless, the techniques used in
Theorems 8 and 17 to prove that the curves constructed in (3.4) and (4.6) belong to O4 cannot be adapted
to the case of an oscillant minimal diagonal for a compact Z € K(H)".
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