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a b s t r a c t

Given two graphs G = (V , EG) and H = (V , EH ) over the same set of vertices and given
a set of colors C , the impact on H of a coloring c : V → C of G, denoted I(c), is the
number of edges ij ∈ EH such that c(i) = c(j). In this setting, the maximum-impact
coloring problem asks for a proper coloring c of G maximizing the impact I(c) on H .
This problem naturally arises in the context of classroom allocation to courses, where
it is desirable – but not mandatory – to assign lectures from the same course to the
same classroom. In a previous work we identified several families of facet-inducing
inequalities for a natural integer programming formulation of this problem. Most of
these families were based on similar ideas, leading us to explore whether they can be
expressed within a unified framework. In this work we tackle this issue, by presenting
two procedures that construct valid inequalities from existing inequalities, based on
extending individual colors to sets of colors and on extending edges of G to cliques in G,
respectively. If the original inequality defines a facet and additional technical hypotheses
are satisfied, then the obtained inequality also defines a facet. We show that these
procedures can explain most of the inequalities presented in a previous work, we present
a generic separation algorithm based on these procedures, and we report computational
experiments showing that this approach is effective.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A recurring problem in course scheduling consists in determining which classrooms are to be assigned to each lecture
f each course, in such a way that overlapping lectures receive different classrooms [5], where the starting and ending
imes of each lecture are given as part of the input. This situation is usually modeled by an undirected graph G = (V , EG),
hose vertices represent the lectures and whose edges join pairs of lectures that cannot receive the same classroom since
he corresponding time intervals have nonempty intersection, and by a set C of classrooms. The graph G is usually referred
o as the conflict graph associated with the lectures. This problem corresponds to the classical vertex coloring problem,
s any C-coloring c (i.e., an assignment c : V → C such that c(i) ̸= c(j) whenever ij ∈ EG) corresponds to a feasible
ssignment of classrooms to lectures. This problem is feasible if and only if |C | ≥ χ (G), where the chromatic number χ (G)
epresents the minimum number of colors in any feasible coloring of G.

A usual requirement in practical environments asks for all the lectures from the same course to be assigned to the
ame classroom. However, this requirement is not strict, and it can be violated if not enough classrooms are available. In
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rder to take this requirement into account, the following combinatorial optimization problem was proposed in [1]. In
ddition to G, we have a second graph H = (V , EH ) defined over the same set of vertices, in such a way that ij ∈ EH if and
nly if i and j are lectures from the same course. We assume EG ∩ EH = ∅. If c is a coloring of G, we define the impact of c
n H to be I(c) = |{ij ∈ EH : c(i) = c(j)}|, i.e., the number of edges from H whose endpoints receive the same color. Given
wo graphs G = (V , EG) and H = (V , EH ) and a set C of colors, the maximum-impact coloring problem (MICP) consists in
inding a C-coloring of G maximizing the impact on H . MICP is NP-hard [6], even when restricting G to be an interval
raph and H to be the union of disjoint cliques [1], a situation usually arising in the context of classroom allocation.
Several formulations and techniques for the classical vertex coloring problem were applied in a wide range of

pplications (see, e.g., [3,4,7,10]). Additionally, some of these applications have given place to scheduling software as
n [8,9].

Since integer programming techniques have been shown to be quite successful for the classical vertex coloring
roblem and for similar scheduling and timetabling problems, in [1] we proposed to tackle MICP with such techniques.
e presented a natural integer programming formulation for MICP and identified several families of facet-inducing

nequalities that turned out to be successful at enhancing the performance of a branch and cut procedure. Many of these
amilies of valid inequalities are based on similar ideas and, consequently, the corresponding proofs of facetness contain
epeated arguments. Moreover, similar ideas are present in the separation procedures associated with these families. These
bservations suggest the existence of general results explaining the facetness properties of the identified inequalities, and
he design of a unified separation framework for them.

In this work we explore these issues, by presenting two validity- and facetness-preserving procedures that construct
alid inequalities from existing inequalities, enlarging their supports (i.e., the set of indices with nonzero coefficients in
he inequality) in the process. We also introduce a generic separation algorithm based on these procedures, which starts
rom a set of inequalities with small supports and seeks to apply these procedures in order to obtain cuts with supports as
arge as possible. We present computational experiments suggesting that this approach may be competitive with respect
o the application of individual separation algorithms for each family of valid inequalities.

This paper is organized as follows. Section 2 presents the integer programming formulation for MICP and states some
nown results on this formulation. Section 3 presents the two procedures for constructing valid inequalities. Finally,
ection 4 reports our computational experiments, and Section 5 includes concluding remarks and ideas for future work.
he theoretical results contained in this work appeared without proofs in the conference paper [2].

. Integer programming formulation

The following integer programming formulation for MICP, introduced in [1], is based on the standard model for vertex
coloring. For i ∈ V and c ∈ C , we define the binary assignment variable xic to be xic = 1 if the vertex i is assigned the color
c , and xic = 0 otherwise. For every ij ∈ EH with i < j we define the binary impact variable yij to be yij = 0 if the vertices i
and j are assigned different colors. For ij ∈ EH , i < j, we define yji = yij as a notational convenience. In this setting, MICP
can be formulated as follows.

max
∑

ij∈EH ,i<j

yij

s.t.
∑
c∈C

xic = 1 ∀i ∈ V (1)

xic + xjc ≤ 1 ∀ij ∈ EG, ∀c ∈ C (2)

yij ≤ 1+ xic − xjc ∀ij ∈ EH , i < j, ∀c ∈ C (3)

yij ≤ 1+ xjc − xic ∀ij ∈ EH , i < j, ∀c ∈ C (4)

xic ∈ {0, 1} ∀i ∈ V , c ∈ C (5)
yij ∈ {0, 1} ∀ij ∈ EH , i < j (6)

The objective function asks for the total impact to be maximized. Constraints (1) and (2) ensure that the x-variables
define a proper vertex coloring of G, whereas constraints (3) and (4) force yij = 0 if i and j receive different colors (if,
e.g., xjc = 1 and xic′ = 1 for c ′ ̸= c , then (3) implies yij = 0). We do not impose constraints forcing yij to take value 1 if i
and j get the same color, since in any optimal solution this situation is guaranteed, and this property makes the resulting
polytope much easier to study. Finally, constraints (5) and (6) ask the variables to be binary.

Definition 1 (Maximum-impact Coloring Polytope). Given two graphs G = (V , EG) and H = (V , EH ) with EG ∩ EH = ∅
nd a finite set C , we define PMIC(G,H, C) ⊆ R|V∥C |+|EH | to be the convex hull of the points (x, y) ∈ R|V∥C |+|EH | satisfying

constraints (1)–(6).

The definition of PMIC(G,H, C) implies Propositions 1 and 2, which will be used throughout this work. The converse
implications do not hold in general, although they are true for most of the particular inequalities considered in this section.
Similar assertions for facetness are also not true in general. For S ⊆ V , we define G to be the subgraph of G induced
S
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y S. If π ∈ R|V∥C | and C ′ ⊆ C , we define πC ′ to be the projection of π onto the entries associated with colors in C ′,
i.e., πC ′ = (πic)i∈V ,c∈C ′ . For S ⊆ V , we define πS to be the projection of π onto the entries associated with vertices in S,
i.e., πS = (πic)i∈S,c∈C . Similarly, if µ ∈ R|EH | and S ⊆ V , we define µS = (µij)ij∈EH :i,j∈S .

Proposition 1. If πx+ µy ≤ π0 is valid for PMIC(G,H, C ∪ D) with C ∩ D = ∅ and πid = 0 for every i ∈ V and d ∈ D, then
πCx+ µy ≤ π0 is valid for PMIC(G,H, C).

Proposition 2. If πSx+µSy ≤ π0 is valid for PMIC(GS,HS, C) with S ⊆ V , πic = 0 for every i ∈ V\S and c ∈ C, and µij = 0
for every ij ∈ EH with i ̸∈ S or j ̸∈ S, then πx+ µy ≤ π0 is valid for PMIC(G,H, C).

Many families of facet-inducing inequalities for this polytope were presented in [1], some of which turned out to be
quite effective within a cutting plane environment. We now summarize some of them, in order to point out the similarities
that motivated the present work.

• Let ij ∈ EH and D ⊂ C be a nonempty subset of colors. The following is the partitioned inequality associated with ij
and D.

yij ≤ 1+
∑
d∈D

xjd −
∑
d∈D

xid. (7)

• Let K ⊆ V be a clique in G and let i ∈ V\K be a vertex such that ik ∈ EH for all k ∈ K . The following is the vertex-clique
inequality associated with K and i.∑

k∈K

yik ≤ 1. (8)

• Let K ⊆ V be a clique in G and let i ∈ V \ K such that ik ∈ EH for all k ∈ K . Let D ⊆ C such that |D| ≤ |C | − |K |. The
following is the clique-partitioned inequality associated with the clique K , the vertex i, and the color set D.∑

k∈K

yik ≤ 1+
∑
d∈D

∑
k∈K

xkd −
∑
d∈D

xid. (9)

• Let ij ∈ EH and k ∈ V such that ik, jk ∈ EG, and let c ∈ C and D ⊆ C\{c} with D ̸= ∅. The following is the semi-triangle
inequality associated with the vertex set {i, j, k}, the color c , and the color set D.

yij ≤ 2+ (xjc − xic − xkc)+
∑
d∈D

(xid − xjd + xkd). (10)

• Let {j, k, l} ⊆ V be a triangle in G, and let i ∈ V be a vertex such that ij, ik ∈ EH and il /∈ EH . Let d1, d2 ∈ C with
d1 ̸= d2, and let D ⊆ C\{d1, d2} with |D| ≤ |C | − 3. The following is the semi-diamond inequality associated with the
triangle {j, k, l}, the vertex i, the colors d1 and d2, and the color subset D.

yij + 2yik ≤ 3+
∑
d∈D

(xkd + xjd − xid)+ (xid1 − xkd1 )+ (xkd2 − xid2 )− (xld1 + xld2 ). (11)

• Let K ⊆ V be a clique in G, and let j ∈ K and i ∈ V \K be two vertices such that ij ∈ EH . Let D ⊆ C be a set of colors.
The following is the bounding inequality associated with the clique K , the vertices i and j, and the color set D.

yij ≤ min{|D|, |K |} + 1−
∑
d∈D

∑
k∈K\{j}

xkd −
∑
d∈D

xid. (12)

Within this list, the bounding inequalities are the only ones that do not define facets in general. However, they turned
out to be effective for some instances in the computational experiments presented in [1].

Similar ideas appear throughout the inequalities in this list. Consider, e.g., the partitioned inequality (7), which asserts
that yij must take value 0 if i is not assigned a color from D (hence the first summation in the RHS is null) and j is assigned
a color from D (hence the second summation in the RHS takes value 1). The partitioned inequalities are facet-defining if
|C | ≥ χ (G)+1, and provide a generalization of the model constraints yij ≤ 1−xic+xjc , for ij ∈ EH and c ∈ C , by considering
the set D of colors instead of a single color c (conversely, we can say that the model constraints (3) are a particular case
of the partitioned inequalities, by taking D = {c}). This same construction appears in the inequalities (9)–(12). A similar
situation holds for inequalities (8), (9), and (12), this time with the appearance of a clique within G in the inequalities,
coupled with the idea that at most one vertex from the clique can receive a fixed color. Similar ideas appear in further
families of valid inequalities presented in [1].

These repetitions cause the facetness proofs for these inequalities to be quite similar, and the separation procedures for
these inequalities to contain replicated fragments of code. From a mathematical viewpoint, the appearance of the same
idea more than once in several proofs suggests that there could be a unifying result explaining all these facets (or at least a
common lemma that could be used in all these proofs), besides hindering the elegance of the proofs. From a computational
98



M. Braga and J. Marenco Discrete Applied Mathematics 323 (2022) 96–112

v
m
m
c
o
e

3

j

iewpoint, the existence of similar code in different separation routines makes the code more difficult to maintain and
ore error-prone to create due to copying-and-pasting, besides the obvious elegance issues. These observations are the
ain motivations for the present work, namely we aim to unify these proofs within a single framework, which ideally
ould lead us to unified separation procedures. This can be achieved by so-called facet-preserving procedures, and it turns
ut that the two ideas mentioned in the previous paragraph can be formalized into such procedures. These ideas are
xplored in the next section.

. Facet-preserving procedures

We introduce in this section the two validity- and facetness-preserving procedures for PMIC(G,H, C). Both procedures
take as input a valid inequality and produce a new inequality that is also valid and has a larger support than the original
one. If, furthermore, the original inequality is facet-inducing, |C | > χ (G), and additional technical hypotheses are met,
then this new inequality is also facet-inducing.

3.1. Procedure 1: Replacing a color by a set of colors

The first procedure takes as input a valid inequality for an instance (G,H, C) of the problem, such that the inequality
involves at least one color c ∈ C (i.e., there exists i ∈ V such that the variable xic has nonzero coefficient in the inequality),
and replaces all variables associated with this color by the variables associated with a set D of colors and the involved
vertices. This new inequality is valid for the instance (G,H, (C\{c}) ∪ D), namely the instance constructed by replacing
the color c by the set D.

As defined previously for π , if (x, y) ∈ PMIC(G,H, C ∪D) is a feasible solution, where C and D are two disjoint sets, we
define xC to be the projection of x onto the variables associated with colors in C , i.e., xC = (xic)i∈V ,c∈C . We say that the
colors in C are consecutive if there is a linear ordering among them. This is satisfied if, e.g., C = {1, . . . , |C |}. Finally, for
i ∈ V , we define NG(i) = {j ∈ V : ij ∈ EG} to be the set of neighbors of i in G. The set NH (i) is defined similarly for the
graph H .

Procedure 1. Let πx+µy ≤ π0 be a valid inequality for PMIC(G,H, C). Fix c ∈ C, let D be a nonempty set of consecutive colors
such that C ∩D = ∅, and define C ′ = (C\{c})∪D. Define A and B to be the sets A = {i ∈ V : πic ̸= 0} and B = {i ∈ V : µij ̸= 0
for some j ∈ NH (i)}. Finally, for any feasible solution (x, y) ∈ PMIC(G,H, C ′), define I(x, y) = {i ∈ B : yij = 1 for some
∈ B ∩ NH (i)}. Assume that

(i) for every (x, y) ∈ PMIC(G,H, C ′) ∩ Z|V∥C
′
|+|EH |, I(x, y) induces a stable set in G,

(ii) for every i ∈ A, if there exist (x, y) ∈ PMIC(G,H, C ′) ∩ Z|V∥C
′
|+|EH | and a maximal stable set I ′ in GB such that I(x, y) ⊆ I ′

and i /∈ I ′, then πic ≤ 0, and
(iii) πxC + µy ≤ π0 is valid for PMIC(G,H, C ∪ D).

In this setting, the procedure generates the inequality∑
i∈A

∑
d∈D

πicxid +
∑
i∈V

∑
d∈C\{c}

πidxid +
∑
ij∈EH

µijyij ≤ π0, (13)

for the instance (G,H, C ′).

The application of Procedure 1 to the model constraint yij ≤ 1+xic−xjc , for ij ∈ EH and c ∈ C , provides the partitioned
inequality (7), namely

yij ≤ 1+
∑
d∈D

xid −
∑
d∈D

xjd,

when replacing c by the color set D. The variable xic is replaced by
∑

d∈D xid, and the variable xjc is replaced by
∑

d∈D xjd.
In this case we have A = B = {i, j} with ij ∈ EH (so ij ̸∈ EG), hence the hypotheses (i) and (ii) of the procedure are trivially
satisfied. The inequality (7) is valid for the extended instance with color set C ′, and the following result shows that this
is the case in general when the hypotheses of Procedure 1 are satisfied.

Theorem 1. If the hypotheses of Procedure 1 hold, then the inequality (13) is valid for PMIC(G,H, C ′).

Proof. Let (x, y) ∈ PMIC(G,H, C ′)∩Z|V∥C
′
|+|EH | be an arbitrary feasible solution of PMIC(G,H, C ′). We shall show that (x, y)

satisfies the inequality (13).
Let I ′ ⊆ B be a maximal stable set in GB such that I(x, y) ⊆ I ′ (the hypothesis (i) ensures the existence of I ′). Define

′ ′ ′
∑

also M ⊆ I to be the set of vertices in I receiving a color from D in x, i.e., M = {i ∈ I : d∈D xid = 1}.
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Construct a new solution (x′, y′) ∈ PMIC(G,H, C ∪ D) as follows. Set x′ic = 1 for all i ∈ M , and keep in x′ the color
ssigned in x to each vertex in V\M , i.e.,

x′kt =

⎧⎪⎨⎪⎩
1 if k ∈ M and t = c ,
0 if k ∈ M and t ̸= c ,
xkt if k ̸∈ M and t ̸= c ,
0 if k ̸∈ M and t = c ,

or k ∈ V and t ∈ C ∪ D. Also set y′ij = 0 for ij ∈ EH with i ∈ M and j ̸∈ M (or viceversa), and y′ij = yij otherwise.
We first show that this new solution is feasible. In order to verify that x′ induces a proper coloring of (G, C ∪ D), we

show that i and j are assigned different colors if ij ∈ EG. To this end, we only need to consider the vertices in M (since
the colors assigned to the remaining vertices are unchanged in the construction of x′ from x). As M ⊆ I ′ and I ′ is a stable
set in G then there are no edges in G between pairs of vertices in M , hence no conflict is generated by assigning in x′ the
same color (namely, the color c) to a subset of vertices from I ′.

It remains to verify that y′ij = 1 implies that i and j are assigned the same color in x′, for every ij ∈ EH . Suppose, on
the contrary, that there exists some ij ∈ EH such that y′ij = 1 but i and j receive distinct colors in x′. By the construction
of y′, this implies that yij = 1, hence i and j are assigned the same color in x. Since i and j receive distinct colors in x′ but
the same color in x, we conclude that i ∈ M and j ̸∈ M (or viceversa), a contradiction since in this case we set y′ij = 0.
We have, therefore, that (x′, y′) ∈ PMIC(G,H, C ∪ D), hence πx′C + µy′ ≤ π0 by the hypothesis (iii).

Call LHS1(x, y) to the LHS of (13) with the point (x, y). The following calculation shows that (x, y) satisfies (13).

LHS1(x, y) =
∑
i∈V

∑
d∈C\{c}

πidxid +
∑
i∈A

∑
d∈D

πicxid +
∑
ij∈EH

µijyij

=

∑
i∈V

∑
d∈C\{c}

πidx′id +
∑
i∈I ′

πicx′ic +
∑
i∈A\I ′

∑
d∈D

πicx′id +
∑
ij∈EH

µijy′ij

≤

∑
i∈V

∑
d∈C\{c}

πidx′id +
∑
i∈I ′

πicx′ic +
∑
ij∈EH

µijy′ij

= πCx′C + µy′ ≤ π0.

The second equality stems from the facts that (a) xid = x′id for all i ∈ V and d ∈ C \ {c}, (b) all the vertices in I ′ that
receive a color in D in x, receive color c in x′, (c) the x-variables corresponding to vertices in A\I ′ and colors in D remain
unchanged in x′, and (d) if µij ̸= 0 and yij = 1, then i and j are both in I(x, y) and share the same color in x, thus implying
that y′ij = yij. Each of these claims corresponds to each summation in the second expression. The first inequality stems
from the fact that the hypothesis (ii) implies πic ≤ 0 for every i ∈ A \ I ′. The last inequality is implied by the hypothesis
(iii), since (x′, y′) ∈ PMIC(G,H, C ∪ D). This shows that (x, y) satisfies (13) which is, therefore, valid for PMIC(G,H, C ′). □

Although technical, the hypotheses (i)–(iii) are necessary for Theorem 1. Consider, e.g., the inequality

yik + yjℓ ≤ 3− (xic + xjc), (14)

for ik, jℓ ∈ EH and kℓ ∈ EG. This inequality asserts that if i and j are assigned the color c , then it cannot be the case
that yik = yjℓ = 1, since this would imply that k and ℓ receive color c , and this is not possible since kℓ ∈ EG. Thus, this
inequality is valid (although not facet-inducing in general). However, for the color c this inequality does not satisfy the
hypothesis (i), as any solution (x, y) with yik = yjℓ = 1 has I(x, y) = {i, j, k, ℓ}, which is not a stable set in G. If we applied
Procedure 1 to this inequality with color c , we would get

yik + yjℓ ≤ 3−
∑
d∈D

(xid + xjd),

which is not valid for PMIC(G,H, C ′), as any solution with xid = xkd = xjd′ = xℓd′ = 1 for d, d′ ∈ D, d ̸= d′, and yik = yjℓ = 1
shows.

The hypothesis (ii) is also necessary for ensuring validity in Procedure 1. Consider, e.g., the simple semi-triangle
inequality

yij ≤ 2+ (xjc − xic − xkc)+ (xic′ − xjc′ + xkc′ ) (15)

for ij ∈ EH and k ∈ V such that ik, jk ∈ EG, and for c, c ′ ∈ C , c ̸= c ′. The inequality (10) corresponds to applying Procedure 1
for the color c ′, replacing c ′ by the set D ⊆ C . However, we cannot apply Procedure 1 to (15) for the color c , since it does
not satisfy the hypothesis (ii): since I = B = {i, j} but A = {i, j, k}, then the hypothesis (ii) asks πkc ≤ 0, and this is not
the case. Indeed, if we applied Procedure 1 to (15) for the color c , we would obtain the inequality

yij ≤ 2+
∑
d∈D

(xjd − xid − xkd)+ (xic′ − xjc′ + xkc′ ), (16)

which is not valid for PMIC(G,H, C ′), namely its RHS can take a negative value by assigning xid = xkd′ = 1 for d, d′ ∈ D,
d ̸= d′, and x ′ = 1.
jc
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The hypothesis (iii) simply states that the original inequality πx+πy ≤ π0 remains valid when new colors are added to
he instance (but the inequality remains unchanged). This is not always true, and may depend on the particular statement
f the inequality. For example, let ij ∈ EG and consider the inequality xic+xjc ≤ 1. This inequality is valid for PMIC(G,H, C)
nd is also valid for PMIC(G,H, C ∪ D). However, if we rewrite this inequality as xic ≤

∑
d∈C\{c} xjd (by combining it with

he model constraint (1)), then this new inequality is no longer valid for PMIC(G,H, C ∪ D). In this sense, the hypothesis
(iii) is a way of ensuring that the initial inequality πx + πy ≤ π0 is expressed in such a way that adding colors to the
nstance does not affect its validity.

Hypotheses (i) and (ii) can be replaced by stronger statements that do not depend on checking conditions on feasible
olutions. For example, if we ask A ∪ B to induce a stable set in G, then both hypotheses are satisfied. Alternatively, if (i’)
A∪B is composed by a clique K and an isolated vertex and (ii’) πic ≤ 0 for every i ∈ K , then also the hypotheses (i) and
ii) are satisfied. This observation gives rise to the following corollaries, which are used in Section 4 in order to identify
alid inequalities that can be subjected to Procedure 1.

orollary 1. Assume the setting of Procedure 1. If (i’) A ∪ B induces a stable set in G and (ii’) πxC + µy ≤ π0 is valid for
MIC(G,H, C ∪ D), then the inequality (13) is valid for PMIC(G,H, C ′).

orollary 2. Assume the setting of Procedure 1. If (i’) GA∪B is composed by a clique K and an isolated vertex, (ii’) πic ≤ 0 for
very i ∈ K , and (iii) πxC + µy ≤ π0 is valid for PMIC(G,H, C ∪ D), then the inequality (13) is valid for PMIC(G,H, C ′).

We now show that Procedure 1 also preserves facetness, namely if πx+πy ≤ π0 induces a facet of PMIC(G,H, C) (and
there are enough colors in order to characterize the dimension of this polytope) then (13) induces a facet of PMIC(G,H, C ′).
This result relies on the following fact.

Lemma 1 ([1]). If |C | > χ (G), then PMIC(G,H, C) has dimension |V |(|C | − 1)+ |EH |, and the model constraints (1) define a
inimal equation system for this polytope.

Define A(d) = {xid}i∈V to be the set of x-variables involving the color d, for any d ∈ C . Call dim(P) the dimension of a
olytope P . Finally, let d0 = min(D).

heorem 2. If the hypotheses of Procedure 1 hold and, furthermore,

(a) µ ̸= 0,
(b) χ (G) < |C |, and
(c) πx+ µy ≤ π0 induces a facet of PMIC(G,H, C),

hen (13) induces a facet of PMIC(G,H, C ′).

roof. Let F = {(x, y) ∈ PMIC(G,H, C) : πx + µy = π0} be the facet of PMIC(G,H, C) induced by πx + µy ≤ π0. Let
= |V |(|C | − 1)+ |EH |. Since χ (G) < |C |, Lemma 1 implies dim(PMIC(G,H, C)) = k, so dim(F ) = k− 1 and there exist k

affinely independent points (x1, y1), . . . , (xk, yk) ∈ F . Construct k affinely independent points in the face of PMIC(G,H, C ′)
induced by (13) as follows. For i = 1, . . . , k, the solution (x̄i, ȳi) is defined by x̄ijd = xijd for j ∈ V and d ∈ C\{c}, x̄ijd0 = 1 for
every j ∈ V such that xijc = 1, and the other variables are set to 0 (i.e., vertices receiving color c in xi are assigned color d0
in x̄i, and the remaining vertices do not change). We also take ȳi = yi. It is not difficult to verify that (x̄i, ȳi) satisfies (13)
with equality. Furthermore, these k constructed solutions are affinely independent, since (x1, y1), . . . , (xk, yk) also are.

Consider now the projection of (x1, y1), . . . , (xk, yk) onto the variables A(c) = {xic}i∈V . Since πx + µy ≤ π0 induces a
facet of PMIC(G,H, C), then the set of projected points must contain |A(c)|+1 affinely independent points (since otherwise
there would exist an equation

∑
i∈V γixic = γ0 satisfied by all points in F , a contradiction since the model constraints (1)

define a minimal equation system and µ ̸= 0), and assume w.l.o.g. that such projected points come from the solutions
(x1, y1), . . . , (xt , yt ), with t := |A(c)| + 1. For each color d ∈ D\{d0}, construct the set of solutions (x̄d1, ȳd1), . . . , (x̄dt , ȳdt )
by setting x̄dijc′ = xijc′ for j ∈ V and c ′ ∈ C\{c}, x̄dijd = 1 for every j ∈ V such that xijc = 1, and the other variables are
set to 0 (i.e., vertices receiving color c in xi are assigned color d in x̄di, and the remaining vertices do not change). We
also take ȳdi = yi. Since the projection of (x1, y1), . . . , (xt , yt ) onto the variables in A(c) is a set of affinely independent
points, and the values of the variables in A(c) for these solutions coincide with the values of the variables in A(d) for the
newly-constructed solutions, then (x̄d1, ȳd1), . . . , (x̄dt , ȳdt ) also are affinely independent.

In order to complete the proof, we claim that the set S := {(x̄i, ȳi)}ki=1 ∪ {(x̄
dr , ȳdr )}d∈D\{d0},r∈{1,...,t} has dimension

|V |(|C ′| − 1) + |EH | − 1. To this end, take (λ, η, λ0) such that λx̄i + ηȳi = λ0 for i = 1, . . . , k and λx̄dr + ηȳdr = λ0
for d ∈ D\{d0} and r = 1, . . . , t . Define C̄ := (C\{c}) ∪ {d0}. Since {(x̄i, ȳi)}ki=1 are affinely independent and have null
values for the variables in A(d), for all d ∈ D\{d0}, then (λC̄ , η) is a multiple of (π, µ) and the coefficient vectors of the
model constraints (1). For each d ∈ D\{d0}, the t equations

λ{d}xr{c} = λ{d}x̄dr{d} = λ0 − λC̄\{d0}x̄
dr
C̄\{d0}

− ηȳdr

= λ − λ xr − ηyr
0 C̄\{d0} C\{c}
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Fig. 1. (a) Graphs G (solid edges) and H (dotted edges), and (b) graphs G[i, p] (solid edges) and H(i, p) (dotted edges), for p = 2.

for r = 1, . . . , t show that λ{d} is uniquely determined by (λC̄\{d0}, η, λ0) and {(xr , yr )}tr=1, since {x̄
dr
{d}}

t
r=1 = {x

r
{c}}

t
r=1 are

affinely independent and λ{d} ∈ Rt−1. Equations with the same coefficients hold for λ{d0}, namely

λ{d0}x
r
{c} = λ{d0}x̄

r
{d0} = λ0 − λC̄\{d0}x̄

r
C̄\{d0}

− ηȳr

= λ0 − λC̄\{d0}x
r
C\{c} − ηyr

for r = 1, . . . , t , showing that λ{d0} = λ{d} for every d ∈ D\{d0}. This implies that (λ, η) is a linear combination of the
coefficient vectors of (13) and the model constraints (1), so the set {(x̄i, ȳi)}ki=1 ∪ {(x̄

dr , ȳdr )}d∈D\{d0},r∈{1,...,t} has dimension
|V |(|C ′| − 1)+ |EH | − 1.

This way, we construct a set of points in F with dimension |V |(|C ′| − 1)+ |EH | − 1, thus showing that (13) induces a
facet of PMIC(G,H, C ′). □

3.2. Procedure 2: Replacing a vertex by a clique

The second procedure generates valid inequalities from inequalities with smaller supports by replacing an edge of G
by a clique in G. Specifically, if ij ∈ EG and c ∈ C , then we replace the variables xic and xjc by the variables {xkc}k∈K , where
K is a clique in G including i and j, and we perform a similar operation on the y-variables incident to i and j. This allows,
e.g., to obtain the clique-partitioned inequalities (9) from the partitioned inequalities (7) when the vertices in K are twins.

We first provide some definitions. The vertices i and j are true twins in G if ij ∈ EG and NG(i) = NG(j), and they are false
twins if ij ̸∈ EG and NG(i) = NG(j). For i ∈ V and p ≥ 1, we define G[i, p] = (V ∪ {i1, . . . , ip}, E ′G) to be the graph obtained
from G by adding p new vertices (i.e., i1, . . . , ip ̸∈ V ) in such a way that the vertices i, i1, . . . ip are true twins. In other
words, E ′G is obtained by adding an edge between it and r , for every r ∈ NG(i) ∪ {i} and t = 1, . . . , p, and between the
new vertices, i.e.,

E ′G = EG ∪ {it r : r ∈ NG(i) ∪ {i} and t = 1, . . . , p}
∪ {it ik : t, k ∈ {1, . . . , p}, t ̸= k}.

We also define H(i, p) = (V∪{i1, . . . , ip}, E ′H ) to be the graph obtained from H by adding p new vertices (i.e., i1, . . . , ip ̸∈ V )
in such a way that the vertices i, i1, . . . ip are false twins. In other words, E ′H is obtained by adding an edge between it and
r , for every r ∈ NH (i) and t = 1, . . . , p, i.e.,

E ′H = EH ∪ {it r : r ∈ NH (i) and t = 1, . . . , p}.

Fig. 1 shows an example of these constructions. Fig. 1(a) shows the graphs G and H , by depicting the edges in EG with
solid lines and the edges in EH with dotted lines (recall that EG ∩ EH = ∅). Fig. 1(b) shows the graphs G[i, p] and H(i, p)
for p = 2 with the same solid/dotted notation for the edges. The clique K = {i, j, i1, i2} is thus constructed in G, with the
new vertices being true twins to i in G and false twins to i in H .

If πx + µy ≤ π0 is a valid inequality, define V(π,µ) to be the set of vertices appearing in variables with nonzero
coefficients in the inequality, i.e.,

V(π,µ) := {i ∈ V : πic ̸= 0 for some c ∈ C}
∪ {i ∈ V : µij ̸= 0 for some j ∈ NH (i)}

We denote by G(π,µ) the subgraph of G induced by V(π,µ). Finally, we define EH(π,µ) := {ij ∈ EH : µij ̸= 0}.

Procedure 2. Consider π ∈ R|V∥C | and µ ∈ R|EH | such that the inequality∑ ∑
πtdxtd +

∑
µtrytr ≤ π0 (17)
t∈V(π,µ) d∈C tr∈EH(π,µ)
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s valid for PMIC(G(π,µ),H(π,µ), C). Fix ij ∈ EG and c ∈ C, and suppose there exists ℓ ∈ V such that ℓ ∈ NH (i) ∩ NH (j). Assume
hat

(i) πic = πjc and πid = πjd = 0 for every d ∈ C\{c},
(ii) µiℓ = µjℓ, µit = 0 for t ∈ NH (i)\{ℓ}, and µjt = 0 for t ∈ NH (j)\{ℓ}, and
(iii) i and j are true twins in G(π,µ) and false twins in H(π,µ).

Define K = {i, j} ∪ {i1, . . . , ip}. In this setting, the procedure generates the inequality∑
k∈K

πicxkc +
∑

t∈V\{i,j}

∑
d∈C

πtdxtd +
∑
k∈K

µiℓykℓ +
∑

uv∈EH\{iℓ,jℓ}

µuvyuv ≤ π0, (18)

for the instance (G[i, p],H(i, p), C).

As an example, consider the inequality yij+yik ≤ 1 for i, j, k ∈ V such that jk ∈ EG and ij, ik ∈ EH . This inequality asserts
that it cannot be the case that yij = yik = 1, since this would imply that j and k are assigned the same color, a contradiction
since jk ∈ EG. The application of Procedure 2 to this inequality yields the vertex-clique inequality

∑
i∈K yik ≤ 1, which is

valid for the instance (G[i, p],H(i, p), C), by taking K = {j, k} ∪ {i1, . . . , ip}.
Let Ḡ = (V̄ , ĒG) and H̄ = (V̄ , ĒH ) be any two graphs with the same vertex set, and ĒG∩ĒH = ∅. Let u, v ∈ V̄ be true twins

in G and false twins in H . Given an integer solution (x, y) ∈ PMIC(Ḡ, H̄, C), we define excuv(x, y) to be the solution (x̄, ȳ)
for the instance (Ḡ, H̄, C), obtained by exchanging the colors assigned to u and v and setting the y-variables accordingly,
namely

x̄wd =

{ xud if w = v,
xvd if w = u,
xwd otherwise,

for w ∈ V̄ and d ∈ C . We also exchange the values of the variables corresponding to edges of H̄ incident to u and v,
i.e., ȳuw = yvw and ȳvw = yuw for every w ∈ NH̄ (u) = NH̄ (v), and we keep the remaining y-variables unchanged. Since u
and v are twins in both Ḡ and H̄ , then the constructed solution (x̄, ȳ) is also feasible.

Theorem 3. If the hypotheses of Procedure 2 hold, then the inequality (18) is valid for the polytope PMIC(G[i, p],H(i, p), C).

Proof. Let (x, y) ∈ PMIC(G[i, p],H(i, p), C) be an arbitrary integer solution. We shall show that (x, y) satisfies (18). To this
end, construct a feasible solution (x′, y′) ∈ PMIC(G(π,µ)[i, p],H(π,µ)(i, p), C) by the following sequential procedure (i.e., we
apply the following steps in sequence):

1. Let (x′, y′) be the restriction of (x, y) onto G(π,µ)[i, p] and H(π,µ)(i, p), namely x′td = xtd for t ∈ V(π,µ) ∪ {i1, . . . , ip}
and d ∈ C , and y′e = ye for every edge e in H(π,µ)(i, p).

2. If xkc = 1 for some k ∈ K\{i, j} (at most one vertex from K can satisfy this property, since K is a clique in G), then
define (x′, y′) := excik(x′, y′).

3. If y′kℓ = 1 for some k ∈ K\{i, j} (again, at most one vertex from K can satisfy this property), then define
(x′, y′) := excjk(x′, y′).

Since i and j are twins in G(π,µ) and H(π,µ) by the hypothesis (iii), then the exchanges in Steps 2 and 3 do not affect the
feasibility of the constructed solution. Since K is a clique in G, then at most one term in

∑
k∈K πicxkc is not null, and such

a contribution is assigned to the vertex i in (x′, y′). Similarly, at most one vertex from K can contribute to
∑

k∈K µiℓykℓ,
and this contribution is assigned to either i or j in (x′, y′). This implies that the LHS of (18) coincides for (x, y) and (x′, y′).

Define now (x′′, y′′) ∈ PMIC(G(π,µ),H(π,µ), C) from (x′, y′) by projecting out the variables corresponding to the vertices
i1, . . . , ip. Then, x′′vd = x′vd for v ∈ V(π,µ) and d ∈ C , and y′′uv = y′uv for every edge uv in H(π,µ). This solution is feasible
for the instance (G(π,µ),H(π,µ), C) since it corresponds to removing the vertices i1, . . . , ip in both graphs and keeping the
color assignment in the remaining vertices. Furthermore, since (x′′, y′′) ∈ PMIC(G(π,µ),H(π,µ), C) then (x′′, y′′) satisfies (17).

Hypotheses (i) and (ii) imply that the LHS of (18) coincides for (x, y) and (x′, y′) and, furthermore, also coincides with
πx′′C + µy′′. This implies that the LHS of (18) for (x, y) is less than or equal to π0, and (18) is satisfied. □

The hypothesis asking (17) to be valid for PMIC(G(π,µ),H(π,µ), C) is stronger than asking πx+ µy ≤ π0 to be valid for
PMIC(G,H, C), which is a more natural hypothesis in this context. However, if we replace the former by the latter, then we
must change hypothesis (iii) to ask i and j to be twins in G and H , a much stronger condition than being twins in G(π,µ)
and H(π,µ), which would make it impossible to apply this procedure in most instances. It is frequent that inequalities
involving an edge ij in G treat i and j symmetrically, and in this situation the hypothesis (iii) is usually satisfied.

A variant of Procedure 2 can be applied to inequalities coming from the classical vertex coloring polytope, i.e., inequal-
ities πx ≤ π not involving the y-variables, as follows.
0
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C

i

orollary 3. Let πx ≤ π0 be a valid inequality for PMIC(G(π,0),H(π,0), C). Fix ij ∈ EG and c ∈ C such that i and j are true
twins in G(π,0), πic = πjc , and πid = πjd = 0 for every d ∈ C\{c}. Define K = {i, j} ∪ {i1, . . . , ip}. Then, the inequality∑

k∈K

πicxkc +
∑

t∈V\{i,j}

∑
d∈C

πtdxtd ≤ π0 (19)

s valid for the instance (G[i, p],H(i, p), C).

Proof. Define V ′ := V ∪ {ℓ}, where ℓ ̸∈ V . Define G′ := (V ′, EG) and H ′ := (V ′, E ′H ), where E ′H := EH ∪ {iℓ, jℓ}. The edge
ij, the color c , the vertex ℓ, and the inequality πx ≤ π0 satisfy the conditions of Theorem 3 for (G′,H ′, C) (with µ = 0),
hence (18) is valid for the polytope PMIC(G[i, p],H(i, p), C). Since µ = 0, the inequalities (18) and (19) coincide, and the
result follows. □

Procedure 2 also preserves facetness if extra colors are available and additional hypotheses are satisfied. To this end,
let D := {d0, . . . , dp}, where D∩ C = ∅, and assume that the inequality (18) is valid for PMIC(G[i, p],H(i, p), C ∪ D) (i.e., it
is expressed in such a way that it remains valid when new colors are added to the instance).

If (x, y) ∈ PMIC(G,H, C)∩ Z|V∥C |+|EH |, we define the extension of (x, y) to the polytope PMIC(G[i, p],H(i, p), C ∪ D) to be
the solution (x̄, ȳ) defined as

x̄vr =

{ xvr if v ∈ V and r ∈ C ,
1 if there exists t ∈ {1, . . . , p} s.t. v = it and r = dt ,
0 otherwise,

for v ∈ V ∪ {i1, . . . , ip} and r ∈ C ∪ D, and by setting

ȳuv =
{

yuv if uv ∈ EH ,
0 otherwise,

for uv ∈ E ′H , i.e., the solution (x̄, ȳ) corresponds to extending to G[i, p] the coloring given by x, and by assigning the color
dt to the vertex it , for t = 1, . . . , p. We denote the extension of (x, y) by ext(x, y). If (x, y) satisfies πx + µy = π0, then
ext(x, y) satisfies (18) with equality too, since the vertices in {i1, . . . , ip} are not assigned color c in ext(x, y) and yit ℓ = 0
for t = 1, . . . , p, hence these vertices do not contribute to the LHS of (18).

Given an integer solution (x, y), a vertex u ∈ V , and a color d ∈ C ∪ D, we define setud(x, y) to be the vector (x̄, ȳ)
obtained by setting x̄ud = 1, x̄ud′ = 0 for d′ ∈ (C ∪ D)\{d}, and yuv = 0 for v ∈ NH (u) with xvd = 0, and leaving the
remaining variables unchanged. This construction amounts to assigning color d to u, setting the y-variables associated
with u accordingly. The vector (x̄, ȳ) is not feasible if a neighbor of u in G is assigned color d in x.

Given an integer solution (x, y) and two twin vertices u, v ∈ V , recall that excuv(x, y) is the solution (x̄, ȳ) obtained
by exchanging the colors assigned to u and v and setting the y-variables accordingly. Again, if (x, y) satisfies (18) with
equality and u, v ∈ K\{j}, then excuv(x, y) also does.

We call an inequality to be a trivial inequality if only one variable has a nonzero coefficient in the inequality. Otherwise,
we say that the inequality is nontrivial.

Theorem 4. Let D = {d0, . . . , dp}, where D∩C = ∅, and assume that the inequality (18) is valid for PMIC(G[i, p],H(i, p), C∪D).
If the hypotheses of Procedure 2 hold and, furthermore,

(a) χ (G) < |C |,
(b) NH (i) = NH (j) = {ℓ},
(c) πx+ µy ≤ π0 is nontrivial and induces a facet F of PMIC(G,H, C),
(d) for every t ∈ V\{i, j, ℓ} there exists a solution (x, y) ∈ F with xtd = 1 for some d ∈ C\{c} with πtd = 0, and with

µtsyts = 0 for every s ∈ NH (t),
(e) there exists a solution (x, y) ∈ F with xid = 1 and yiℓ = 0 (resp. xjd = 1 and yjℓ = 0), for some d ∈ C\{c}, and
(f) there exists a solution (x, y) ∈ F with xid = 1 for some d ∈ C\{c} with πℓd = 0, yiℓ = 1, and µtℓytℓ = 0 for every

t ∈ NH (ℓ)\{i},

then the inequality (18) defines a facet of PMIC(G[i, p],H(i, p), C ∪ D).

Proof. To settle this result, we shall construct k′ := (|V | + p)(|C | + |D| − 1) + (|EH | + p) affinely independent points
satisfying (18) with equality. Since |C | > χ (G), then |C ∪ D| > χ (G[i, p]), hence PMIC(G[i, p],H(i, p), C ∪D) has dimension
k′ and the existence of k′ such affinely independent points will show that (18) induces a facet of this polytope.

Recall that F is the facet of the polytope PMIC(G,H, C) induced by πx + µy ≤ π0, and let (x1, y1), . . . , (xk, yk) ∈ F be
k := |V |(|C | − 1) + |EH | affinely independent integer points in F . The points in P1

:= {ext(xt , yt )}kt=1 satisfy (18) with
equality and, furthermore, are affinely independent since their projections onto the variables in PMIC(G,H, C) coincide
with (x1, y1), . . . , (xk, yk). For t = 1, . . . , k, call (x̄t , ȳt ) := ext(xt , yt ).

For every r ∈ {1, . . . , p}, construct the solution ωr
:= setird0 (x̄

1, ȳ1), which assigns color d0 to ir and leaves the other
vertices unchanged. Since no vertex is assigned color d in (x̄1, ȳ1), then ωr is feasible. Furthermore, since π = π = 0
0 irdr ird0
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nd ȳ1ir ℓ = 0, then ωr satisfies (18) with equality. Finally, ωr is affinely independent w.r.t. the points in P1, since this
olution has xird0 = 1 but this variable is set to 0 in the solutions from P1. This way, we construct a set P2

:= {ωr
}
p
r=1

composed by p affinely independent solutions.
For every r, s ∈ {1, . . . , p}, r ̸= s, construct the solution ωrs

:= setisdr (ω
r ), which assigns color d0 to ir , and color dr to

is. Again, since ir and is are the only vertices in their color classes, then ωrs is feasible, and πirdr = πird0 = πisds = πisdr = 0
and ȳ1ir ℓ = ȳ1isℓ = 0 imply that ωrs satisfies (18) with equality. Finally, ωrs is affinely independent w.r.t. the points in
P1
∪ P2, since this solution has xisdr = 1 but this variable is set to 0 in the previous solutions. This way, we construct a

set P3
:= {ωrs

: r, s = 1, . . . , p, r ̸= s} composed by p(p− 1) affinely independent solutions.
Fix a vertex t ∈ V\{i, j, ℓ} and a color index r ∈ {1, . . . , p}. Let (x̂, ŷ) be the solution specified by the hypothesis (d),

i.e., a solution with x̂td = 1 for some d ∈ C\{c} with πtd = 0, and such that µtsŷts = 0 for every s ∈ NH (t). Consider the
solution ωtr

:= settdr (setird0 (ext(x̂, ŷ))), i.e., a solution assigning color dr to the vertex t , which in this solution is the only
vertex with this color. Since πtd = πtdr = 0 and µtsŷts = 0 for every s ∈ NH (t), then t does not contribute to the LHS of
(18), hence ωtr satisfies (18) with equality. Finally, ωtr is affinely independent with the previously-constructed solutions,
since ωtr has xtdr = 1 but this variable takes null values in the previous solutions. With a similar construction we can get
a solution with xtd0 = 1, thus getting a set P4 with (p+ 1)(|V | − 3) affinely independent points.

Let (x̂, ŷ) be the solution specified by the hypothesis (e), i.e., a solution in F with x̂id = 1 for some d ∈ C\{c} and
ŷiℓ = 0. For r = 1, . . . , p, construct the solution ωir

:= setidr (setird0 (ext(x̂, ŷ))), which is feasible since no other vertex is
assigned color ir . Furthermore, since πid = 0 by hypothesis (i) of Procedure 2, then this new solution also satisfies (18)
with equality. Similarly to the previous constructions, ωir is affinely independent w.r.t. the points in P1

∪ · · · ∪ P4 since
ωir has xidr = 1 but the previous constructions have xidr = 0. A similar construction allows us to construct a solution with
xid0 = 1. By repeating the argument with the vertex j, we construct a set P5 with 2(p+ 1) affinely independent points.

Consider the solution (x̂, ŷ) specified by the hypothesis (f), i.e., a solution in F with x̂id = x̂ℓd = 1 for some d ∈ C\{c}
with πℓd = 0, and ŷiℓ = 1. Let r ∈ {1, . . . , p}. Construct a feasible solution ωℓr from (x̂, ŷ) by setting xℓdr = xidr = xird0 = 1,
keeping yiℓ = 1, and leaving the remaining vertices and y-variables unchanged. We have πℓd = 0 and µtℓytℓ = 0 for every
t ∈ NH (ℓ)\{i}, hence ωℓr satisfies (18) with equality. Finally, ωℓr is affinely independent with the previously-constructed
points, since xℓdr = 1 in this solution but this variable takes value 0 in the previous constructions. A similar argument
allows us to construct a point with xℓd0 = 1, so this construction provides a set P6 with p+1 affinely independent points.

Consider again the solution (x̂, ŷ) specified by the hypothesis (f). For r = 1, . . . , p, construct the solution ω̄ir from
ext(x̂, ŷ) by setting xℓdr = yir ℓ = 1, yiℓ = 0, and leaving the remaining vertices and y-variables unchanged. This
amounts to assigning color dr to ℓ and setting the y-variables accordingly. Since (x̂, ŷ) ∈ F , πℓd = 0, and µtℓytℓ = 0
for every t ∈ NH (ℓ)\{i}, then the solution ω̄ir satisfies (18) with equality. Finally, ω̄ir is affinely independent w.r.t. the
previously-constructed points, which have yir ℓ = 0. This way, we construct a set P7 with p affinely independent points.

Let r ∈ {1, . . . , p} and d ∈ C , and consider a solution (x, y) ∈ F with xid = 1 (such a solution exists since πx+µy ≤ π0
defines a facet of PMIC(G,H, C)). Construct the solution (x̄, ȳ) := exci,ir (ext(x, y)), namely a solution with x̄idr = x̄ird = 1.
Since the previously-constructed points have xird = 0 and this new solution has xird = 1, then this new solution is affinely
independent w.r.t. the previous points. This way, we construct a set P8 composed by p|C | new affinely independent points.

The set P1
∪ · · · ∪ P8 thus contains (|V | + p)(|C | + |D| − 1)+ (|EH | + p) affinely independent solutions satisfying (18)

with equality, hence this inequality induces a facet of PMIC(G[i, p],H(i, p), C ∪ D). □

Some comments on the hypotheses in Theorem 4 are in order. The assumption asking (18) to be valid for
PMIC(G[i, p],H(i, p), C ∪ D) plays a similar role to the hypothesis (iii) in Procedure 1, by supposing that the inequality
remains valid when new colors are added. Since PMIC(G,H, C) admits a nonempty equation system, then the inequalities
can in principle be rewritten in such a way that the same expression is no longer a valid inequality if additional colors
are added to the instance. This condition is satisfied for all the inequalities considered in this work.

The hypotheses (d) and (f) in Theorem 4 ask for the existence of particular solutions in F and may be difficult to
check in general. However, they can be replaced by stronger conditions that may be easier to check in practice. If the
hypothesis (c) holds, then the hypothesis (d) is trivially satisfied if πtd = 0 for every d ∈ C\{c} and µts = 0 for every
s ∈ NH (t). Similarly (although more weakly), the hypothesis (f) is satisfied if πℓd = 0 for every d ∈ C\{c}, µtℓ = 0 for
every t ∈ NH (ℓ)\{i}, and there exists a solution (x, y) ∈ F with yil = 1 and xic = 0, namely a solution in which i and ℓ are
assigned the same color and this color differs from c.

A slightly weaker statement than the hypothesis (e) is implied by the fact that πx+µy ≤ π0 induces a nontrivial facet
F of PMIC(G,H, C). Indeed, there must exist a solution (x1, y1) ∈ F with y1iℓ = 0 (otherwise every point in F satisfies the
equality yiℓ = 1). Since ij ∈ EG, such a solution has x1ic + x1jc ≤ 1, and a similar argument shows that there exists a solution
(x2, y2) ∈ F with y2jℓ = 0 and x2ic + x2jc ≤ 1. However, it may be the case that both x1jc = x2jc = 1, and this would hinder the
construction of P5 in the proof of Theorem 4. Due to this fact, we are forced to add the hypothesis (e) explicitly asking
the existence of two such solutions with x1ic = 0 and x2jc = 0, respectively.

Although Procedure 2 asks πx + µy ≤ π0 to be valid for PMIC(G(π,µ),H(π,µ), C) (hence valid for PMIC(G,H, C)),
in Theorem 4 we need to ask this inequality to be facet-inducing for PMIC(G,H, C). Unfortunately, this asymmetrical
situation seems to be unavoidable, as it is not clear how to extend the facetness property from PMIC(G(π,µ),H(π,µ), C) to
PMIC(G,H, C) in general. Finally, note that Theorem 4 does not hold for trivial inequalities as, e.g., xic ≥ 0 is facet-inducing
for P (G,H, C) but

∑
x ≥ 0 is not, for any clique K ⊆ V in G with |K | ≥ 2.
MIC k∈K ic
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The two procedures can be applied iteratively. For example, the clique-partitioned inequality (9) is obtained by applying

rocedures 1 and 2 to the inequality xic+yij+yik ≤ 1+xjc+xkc , for ij, ik ∈ EH and jk ∈ EG, which is valid and facet-inducing
if |C | > χ (G)+1. To this end, we first apply Procedure 2 in order to replace the edge jk by a clique K in G, thus obtaining

xic +
∑
t∈K

yit ≤ 1+
∑
t∈K

xtc . (20)

We next apply Procedure 1 to (20) in order to replace the color c by the set D of colors. By combining the obtained in-
equality with the model constraint (1), we get the clique-partitioned inequality (9), which is thus valid and facet-inducing
for P(G[i, p],H(i, p), C ∪ D) if |C | + |D| > χ (G)+ p+ 1.

4. Computational experiments

Procedures 1 and 2 provide tools for constructing valid inequalities with potentially large supports starting from
inequalities with small supports, and also preserve facetness when the right hypotheses are satisfied. This suggests a
simple heuristic for trying to find violated valid inequalities within a cutting plane environment: start from a violated or
‘‘almost violated’’ small inequality, and then greedily try to enlarge the support of the inequality by using these procedures.
If the resulting inequality is violated, then it can be added as a cut. In this section, we explore the design of a cut-generating
computational procedure based on these ideas.

The separation procedure has a pool of generic valid inequalities for the polytope PMIC(G,H, C), which we propose to
call templates. In this setting, templates are very simple inequalities with small supports, that are used as starting points
of the search for cuts. In our implementation, we resort to the following pool of templates:

T1: the model constraint yij ≤ 1+ xic − xjc , for ij ∈ EH and c ∈ C ,
T2: the partitioned inequality yij ≤ 1+ xic − xjc + xid − xjd, for ij ∈ EH and c, d ∈ C , c ̸= d,
T3: the edge inequality xic + xjc ≤ 1, for ij ∈ EG and c ∈ C ,
T4: the vertex-clique inequality yij + yik ≤ 1 for i, j, k ∈ V such that jk ∈ EG and ij, ik ∈ EH ,
T5: the semi-triangle inequality yij ≤ 2+ (xjc− xic)+ (xid− xjd)− (xkc− xkd) for i, j, k ∈ V such that ik, jk ∈ EG and ij ∈ EH ,

and for c, d ∈ C , c ̸= d,
T6: the semi-diamond inequality yij + 2yik ≤ 3+ (xkc + xjc − xic)+ (xid − xkd)+ (xke − xie)− (xℓd + xℓe) for i, j, k, ℓ ∈ V

such that jk, jℓ, kℓ ∈ EG and ij, ik ∈ EH , and for c, d, e ∈ D, c ̸= d, c ̸= e, d ̸= e,
T7: the bounding inequality yij ≤ 2− (xic + xkc + xℓc) for i, j, k, ℓ ∈ V such that jk, jℓ, kℓ ∈ EG and ij ∈ EH , and for c ∈ C .

Each template T specifies a set of vertices V T and a set of colors CT , as well as includes some constraints on the vertices
given by pairs of vertices ET

G that must be adjacent in G and pairs of vertices ET
H that must be adjacent in H . For example,

the template T5 corresponding to the semi-triangle inequality has V T5 = {i, j, k} and CT5 = {c, d}, with the additional
constraints that ik, jk ∈ EG and ij ∈ EH , i.e., E

T5
G = {(i, k), (j, k)} and ET5

H = {(i, j)}. In this context, i, j, and k are not
pre-specified vertices of G, but are just symbolic identifiers instead, that will be associated with concrete vertices during
the separation procedure.

For each template T , a subset XCT
⊆ CT of the colors is defined to be the set of expandable colors (and these colors

will be subjected to Procedure 1), and a subset XET
⊂ ET

G of the edges from G is defined to be the set of expandable edges
(which will be subjected to Procedure 2). For each template T , we define the tuple

CT
:= ⟨V T , CT , ET

G , ET
H , XCT , XET

⟩

to be the configuration associated with the template T . We say that a set of vertices A ⊆ V and a set of colors B ⊆ C is
compatible with CT if there exist bijections v : V T

→ A and w : CT
→ B such that v(i)v(j) ∈ EG for each ij ∈ ET

G and
v(i)v(j) ∈ EH for each ij ∈ ET

H .
In our implementation, we take XET

= ET
G for T ∈ {T3, T4}, XET7 = {kℓ}, and XET

= ∅ otherwise. We also take XCT
= {c}

for T ∈ {T1, T2}, XCT5 = {d}, XCT6 = {e}, and XCT
= ∅ otherwise. These definitions ensure that the procedures can be

properly applied. Indeed, expandable colors and edges for each template are chosen in such a way that the hypotheses
of each procedure are satisfied, and this is simple to check for each of them. In particular, these inequalities are not only
valid for PMIC(G,H, C), but they are also valid for PMIC(G(π,µ),H(π,µ), C) (as required by Procedure 2), since the validity
theorems for them do not ask for any conditions for the vertices with null coefficients.

Given a fractional solution (x∗, y∗) ∈ PMIC(G,H, C), the separation procedure first detects all violated and ‘‘almost
violated’’ instances of these templates. We take into account the inequality πx + µy ≤ π0 if πx∗ + µy∗ ≥ π0 + ε,
for some small (usually negative) ε, and we have used ε = −0.25 in our experiments. To this end, for each template
T , all sets A ⊆ V and B ⊆ C that are compatible with CT are identified, and all detected inequalities thus generated
are stored. The search for all subsets of vertices and colors compatible with each template configuration is performed
by a backtracking procedure, in order not to continue the search when the current assignment cannot be extended to a
compatible assignment. Since the templates involve small supports, such a backtracking procedure is not computationally
expensive.
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Each valid inequality thus found is then subjected to Procedures 1 and 2. We greedily apply these procedures in order
o enlarge the support of the obtained inequalities. We first try to apply Procedure 1 for each expandable color in XCT , by
efining D to be the largest set of colors increasing the LHS of the inequality. The contribution of each color to the LHS of
he constructed inequality is independent of the other colors in D, so a set D with maximum cardinality can be obtained
y including in D the colors with a positive contribution to the LHS. We then apply Procedure 2 for each expandable edge
∈ XET , by greedily identifying a clique in G including e that enlarges the LHS of the inequality.
The theoretical formulation of both procedures generates a valid inequality for a modified instance of the problem,

amely the instance with color set (C\{c}) ∪ D in Procedure 1 and the instance (G[i, p],H(i, p), C ∪ D) in Procedure 2.
However, in our implementation we keep the instance fixed and execute the procedures with properly-constructed sub-
instances of the original instance, as follows. Recall that V(π,µ) is the set of vertices appearing as indices of the variables
with nonzero coefficients in πx + µy ≤ π0, and also define Cπ ⊆ C to be the set of colors appearing in x-variables with
nonzero coefficients in π . We apply Procedure 1 to the inequality πx+µy ≤ π0 and a color c ∈ Cπ , which is possible since
validity for PMIC(G,H, C) implies validity for PMIC(G, C, Cπ ). In this setting, we select some color c ′ ̸∈ Cπ and replicate
the x-variables involving c , namely we replace the original inequality∑

d∈Cπ

∑
i∈V

πidxid +
∑
e∈EH

µeye ≤ π0 (21)

by the extended inequality∑
d∈Cπ

∑
i∈V

πidxid +
∑
i∈V

πicxic′ +
∑
e∈EH

µeye ≤ π0. (22)

In the theoretical formulation of Procedure 1, this corresponds to taking C = Cπ , i.e., the set of colors present in the support
of the inequality, and taking D = {c ′, c ′′}, where c ′, c ′′ ̸∈ Cπ and replacing color c ′′ by c in the resulting inequality. Since
the colors are indistinguishable, such a replacement does not impact the validity of the inequality. We iteratively perform
this step for every color c ′ ̸∈ Cπ such that the LHS of (22) evaluated at (x∗, y∗) is larger than the LHS of (21) evaluated at
(x∗, y∗). Note that the iterative application of Procedure 1 with colors d1, . . . , dt amounts to applying Procedure 1 once
for the set D = {d1, . . . , dt}, so the final result amounts to applying this procedure with a potentially large set of colors.

Similarly, when applying Procedure 2, we take an edge ij ∈ EG with i, j ∈ V(π,µ) and select a vertex k ̸∈ V(π,µ) such that
ik, jk ∈ EG, and replicate the variables involving i or j by k, namely by replacing the original inequality πx+ µy ≤ π0 by

πx+ µy+
∑
c∈C

πicxkc +
∑

t∈NH (i)

µitykt ≤ π0.

In this inequality, the variables associated with the vertex k take the same coefficient as the variables associated with
the vertex i, namely xkc is multiplied by πic for c ∈ C , and ykt is multiplied by µit . This amounts to considering p = 1
in Procedure 2, where k = i1 is the vertex from G[i, p] not belonging to G. However, in our implementation, instead
of modifying the graph by adding a new vertex, we take k to be a suitable vertex outside G(π,µ) and so this amounts
to applying Procedure 2 to the instance (G\{k},H\{k}, C). The final result is an inequality involving the triangle {i, j, k}
instead of the edge ij, within the same instance. This allows for a fast implementation with no need of modifying the
graph and the variable set.

In this step, ij is chosen to be an edge associated to an expandable edge in the template (i.e., ij = v(u)v(w) for some
uw ∈ XET in the configuration associated with the template), hence the vertex ℓ is fixed in this construction by the
bijection v. Since the configuration satisfies the hypotheses for Procedure 2, i and j are true twins in G(π,µ) and false twins
in H(π,µ), implying that these hypotheses remain valid in the iterative application of this procedure.

The resulting procedure is summarized in the pseudocode in Algorithm 1. When applying Procedure 2, if there is more
than one vertex k providing the largest increase to the LHS, we take the first such vertex in order.

This procedure can potentially generate cuts coming from most of the families of valid inequalities listed in Section 2
(although it is not guaranteed that cuts coming from every such families will eventually be generated). In Table 1
we summarize how these inequalities can be obtained from the templates via the application of the facet-preserving
procedures. In contrast, the branch and cut procedure presented in [1] resorts to a tailored separation procedure for
each family of valid inequalities. We compared both approaches within the same implementation, in order to assess the
computational effectiveness of the single procedure proposed in this section.

Table 2 shows running times for a set of instances coming from a real setting and for the randomly-generated instances
considered in [1]. The implementation was performed within the Cplex 12.5 environment, and the experiments were
carried out on a computer with an Intel Core 2 Duo CPU, with two T8100 cores running at 2 GHz, and 2 GB of RAM
memory. We have kept all Cplex parameters at their default values. This table shows the improvement achieved when
the separation procedures considered in [1] are employed, and also shows that the performance of the single procedure
presented in this work is quite competitive with respect to these results. The columns labeled ‘‘All templates’’ correspond
to employing all templates mentioned before, whereas the columns labeled ‘‘T2 + T4’’ correspond to considering the
templates T2 and T4 only, which achieved the best performance. We have set a time limit of 10 min for these experiments.

As Table 2 shows, the families of valid inequalities (7)–(12) help reduce the running times of a branch-and-bound
procedure, mainly due to the fact that their application greatly enhances the dual bound provided by the linear relaxation
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Algorithm 1 Expand the valid inequality πx+ µy ≤ π0

for all color c ∈ XCT do
for all color c ′ ∈ C not used in π do
if πx+ µy increases when applying Procedure 1 to (π, µ) then

Apply Procedure 1 to (π, µ) for color c with D = {c ′, c ′′}
Replace color c ′′ by c in the obtained inequality

end if
end for

end for
for all edge ij ∈ XET do

K ← {i, j}
while there exists k ∈ V\V(π,µ) s.t. K∪{k} is a clique in G and the LHS of πx+µy increases when applying Procedure 2
to (π, µ) do

Take k to be the vertex providing the largest increase to the LHS, breaking ties arbitrarily
Apply Procedure 2 to (π, µ) for ij and the clique {i, j, k}

end while
end for

Table 1
Construction of the inequalities presented in Section 2 from the templates considered in
Section 4 by the application of the facet-preserving procedures.
Base template Applied procedures Resulting inequality

T1 Proc. 1 on c (7)
T4 Proc. 2 on jk (8)
T5 Proc. 1 on d (10)
T6 Proc. 1 on c (11)
T7 Proc. 1 on c and Proc. 2 on jk (12)
T3 Proc. 2 on ij

∑
k∈K xkc ≤ 1

of the model (1)–(6). The template-based separation procedure presented in this section achieves a similar performance,
both in terms of the total running time and the nodes in the enumeration tree. This suggests that the separation approach
proposed in this section is effective, at least when compared with standard separation procedures. It is interesting to note
that the instances coming from real scenarios are easier to solve than randomly-generated instances of smaller sizes. This
is probably due to the structure that real instances usually have (e.g., the graph G is usually an interval graph), and that
s not present in randomly-generated graphs.

Table 3 compares the number of cuts generated in each case. It is interesting to note that the procedure presented in
his work finds a much smaller number of cuts, while obtaining a similar performance. This is due to the fact that the
eparation procedure for the semi-diamond inequalities used in [1] generates many inequalities. A better tuning of this
rocedure may generate a smaller number of cuts coming from this family, thus making the difference in the number
f cuts less important. Nevertheless, it is not clear whether such a better tuning may be attained without resorting to
he techniques presented in this work. The iterative application of both procedures within Algorithm 1 allows to find
nequalities with a potentially large set of colors D in Procedure 1 and a potentially large clique K in G in Procedure 2.
n our experiments, the average cardinality of D was 1.25 (with a maximum value of |D| = 7) for the first group of
nstances, and the average cardinality of D was 2.16 (with a maximum value of |D| = 3) for the randomly-generated
nstances. Similarly, the average achieved clique size in Procedure 2 was 2.22 (with a maximum value of |K | = 6) for
he first group of instances, and this average was 3.07 (with a maximum value of |K | = 4) for the randomly-generated
nstances.

The number of matches and the number of generated cuts depend on the value of ε (recall that an inequality coming
rom a template is considered if it is violated by at least ε, and if ε ≤ 0 then non-violated inequalities can be accepted). If ε
akes a large negative value, then many inequalities are selected but not all of them may finally generate cuts (i.e., violated
nequalities) after applying Procedures 1 and 2. On the other hand, if ε takes a large positive value then the template
atching procedure identifies fewer inequalities, although in this case the running time may be smaller. In order to
valuate these observations in practice, Fig. 2 shows the behavior of the template-based separation procedure for the
nstance 2014.02.I as a function of ε. As expected, some of the non-violated inequalities do not generate cuts when ε ≤ 0,
hereas all matched templates identified for ε > 0 generate cuts. Running times of the separation procedure go from
7.29 s (for ε = −0.5) to 4.61 s (for ε = 0) and, with the exception of some spikes, remains around this value for ε > 0.
The number of available colors for the instances in Table 2 are quite close to χ (G), and this may distort the

easurements. In order to evaluate the behavior of the overall procedure when more colors are available, we report in
able 4 the running time needed to solve to optimality the real-world instances considered in this work when up to five

dditional colors can be used. These measurements show a slight trend towards shorter running times when additional
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h all the separation procedures presented in [1] (columns
labeled ‘‘All templates’’), and for a cut-and-branch using

All templates T2 + T4
Time (s) Nodes Time (s) Nodes

2.78 1 2.6 1
13.28 1 12.78 1
2.79 1 2.67 1
5.47 1 5.08 1
6.46 1 6.52 1
4.11 1 3.96 1
2.64 1 2.6 1
4.04 1 3.86 1
2.93 1 2.6 1
2.87 1 2.79 1
5.61 1 5.59 1
401.71 25 242.44 23

1.82 1 1.79 21
7.01 19 3.99 38
56.62 636 5.41 217
15.76 8 3.33 1
238.53 476 22.14 129
343.66 2865 107.21 3011
419.39 6500 177.42 8752
329.52 1716 90.94 1441
12.65% * 5800 3.58% * 21400
26.20% * 3800 18.55% * 15140

109
Table 2
Time to optimality and nodes in the enumeration tree for Cplex as a black-box solver (columns labeled ‘‘Cplex 12.5’’), for the cut-and-branch wit
labeled ‘‘Traditional cuts [1]’’), for a cut-and-branch using the cut-generating procedure presented in this section with all templates (columns
the templates T2 and T4 only (columns labeled ‘‘T2 + T4 ’’), respectively.
Instance |V | |EG| |EH | |C | χ (G) Cplex 12.5 Traditional cuts [1]

Time (s) Nodes Time (s) Nodes

2010.01.I 235 1894 124 21 21 2.57 1 2.59 1
2010.01.II 267 2593 299 22 22 83.98 70 12.97 1
2010.02.I 256 1884 118 18 18 136.87 15741 2.77 1
2010.02.II 279 2914 164 26 26 8.44 32 5.25 1
2011.01.I 265 2092 137 16 15 26.48 72 7.87 1
2011.01.II 255 2295 218 20 20 4.70 3 4.25 1
2012.01.I 182 1381 113 18 18 98.66 2122 2.50 1
2012.01.II 235 2220 189 23 23 44.83 1000 4.09 1
2012.02.I 253 1974 162 20 19 31.09 271 2.72 1
2012.02.II 254 2368 186 22 22 2.42 1 2.42 1
2014.02.I 172 1201 266 20 15 6.88% * 10799 7.00 1
2014.02.II 238 2294 498 20 20 29.13% * 105 459.26 21

rand.01 20 47 40 15 15 5.54 781 2.33 5
rand.02 22 60 53 16 16 18.64 1614 10.91 31
rand.03 24 72 56 18 18 51.42 5005 35.26 527
rand.04 26 83 68 19 19 46.59 1133 25.35 45
rand.05 28 110 77 21 21 28.90% * 11300 95.26 324
rand.06 30 103 96 22 22 34.88% * 6043 398.52 4913
rand.07 32 123 103 24 24 49.66% * 5788 488.8 7038
rand.08 34 141 124 25 25 81.11% * 2729 233.74 1301
rand.09 36 166 141 27 27 59.61% * 2311 6.03% * 8586
rand.10 38 173 147 28 28 108.65% * 1167 27.99% * 5827

For the instances marked with ‘‘*’’, the time limit of 10 min was attained, and in these cases the achieved optimality gap is reported.
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Table 3
Number of cuts found by the individual separation procedures for each family of valid inequalities (column labeled
‘‘Traditional cuts [1]’’), and by the procedure presented in this section (remaining columns), respectively. For the
template-based cuts, the number of matched templates is reported in the column ‘‘Attempts’’, and the number of
violated inequalities is reported in the column ‘‘Cuts’’.
Instance Traditional cuts All templates T2 + T4

Attempts Cuts Attempts Cuts

2010.01.I 0 0 0 0 0
2010.01.II 6020 77 7 63 7
2010.02.I 4200 61 9 47 9
2010.02.II 3652 53 5 41 5
2011.01.I 5590 95 17 65 17
2011.01.II 2440 16 4 12 4
2012.01.I 5472 76 16 68 16
2012.01.II 4531 93 43 33 7
2012.02.I 4736 42 12 36 12
2012.02.II 0 0 0 0 0
2014.02.I 22538 341 42 309 42
2014.02.II 278312 12087 4429 3968 330

rand.01 2125 599 359 287 47
rand.02 8023 4201 3565 697 61
rand.03 14247 12467 11347 1187 67
rand.04 17613 7238 6422 902 86
rand.05 48733 33949 32409 1669 129
rand.06 27244 9572 8420 1268 116
rand.07 34685 10973 9737 1373 137
rand.08 76319 21919 20431 1711 223
rand.09 124559 32317 30625 1981 289
rand.10 103798 26299 24535 2011 247

Table 4
Time to optimality for a cut-and-branch using the cut-generating procedure presented in this section with all templates, for increasing numbers of
colors. The column ‘‘c ’’ contains the number of colors used in Table 2, and the subsequent columns report the time to optimality when considering
c, . . . , c + 5 colors, respectively.
Instance c Time (sec)

|C | = c |C | = c + 1 |C | = c + 2 |C | = c + 3 |C | = c + 4 |C | = c + 5

2010.01.I 21 2.78 2.80 2.82 3.57 2.20 3.17
2010.01.II 22 13.28 6.79 8.17 9.39 6.94 8.21
2010.02.I 18 2.79 3.12 2.79 2.35 2.03 2.25
2010.02.II 26 5.47 5.07 4.49 5.49 4.90 5.04
2011.01.I 15 6.46 5.66 4.11 3.85 3.26 2.78
2011.01.II 20 4.11 4.13 3.38 3.57 3.22 2.82
2012.01.I 18 2.64 3.33 1.98 2.50 2.04 1.86
2012.01.II 23 4.04 2.96 3.01 3.64 3.22 3.13
2012.02.I 19 2.93 2.34 2.87 4.13 3.89 2.34
2012.02.II 22 2.87 2.54 2.62 2.63 3.56 3.02
2014.02.I 15 5.61 3.51 4.01 3.11 5.00 4.54
2014.02.II 20 401.71 193.56 239.91 93.46 59.63 110.16

colors are available, with the exception of the instance 2014.02.II, for which this decrease in the running times is more
marked.

It is also interesting to explore the impact of the graph H on the behavior of the overall procedure. To this end, Fig. 3
eports the time to optimality in seconds and the number of nodes in the enumeration tree for randomly-generated
nstances between 20 and 30 vertices. For each instance, the graph G is kept fixed and the graph H is randomly generated
aving between 0 and 95 edges. This allows to measure the impact of a growing graph H on the performance. Since

instances require different running times (resp. numbers of nodes), we have normalized the measurements of each
instance by dividing the total time (resp. nodes) by the measurement achieved by the instance with |EH | = 0. This allows
us to capture the overall trend by comparing relative values. The instances that could not be solved to optimality within
10 min are not shown in these figures. These experiments show that the larger the graph H , the larger the running time
and number of nodes in the enumeration tree needed to achieve optimality.

5. Conclusions

From a theoretical point of view, it is interesting to provide a unified framework explaining many families of facet-
inducing inequalities. The facetness proofs provided in [1] contain similar ideas that are repeated many times and that
110
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Fig. 2. (a) Matched templates and generated cuts and (b) running time of the separation procedure for the instance 2014.02.I as a function of ε.

Fig. 3. (a) Time to optimality and (b) nodes in the enumeration tree (vertical axis in logarithmic scale) for randomly-generated instances with H
randomly generated from 0 to 95 edges, normalized so the value 1 in the vertical axis corresponds to the measurement for |EH | = 0.

are applied with almost no variations in different proofs, so the facet-preserving procedures presented in this work allow
for more elegant proofs of these results. From a practical point of view, our computational experiments show that – at
least for the instances considered in this work – it is not necessary to resort to a particular separation procedure for each
family of valid inequalities, and that a single cut-generating procedure based on the ideas presented in this work allows
to obtain similar computational results instead. This is interesting when implementing a branch and cut procedure, since
only one separation procedure must be implemented, and the templates considered in such a procedure can be easily
configured.

Not all the inequalities presented in [1] can be explained in terms of simple templates and the procedures presented
in Section 3. For example, we cannot apply Procedure 1 to the template T7, namely

yij ≤ 2− (xic + xkc + xℓc) (23)

for i, j, k, ℓ ∈ V such that jk, jℓ, kℓ ∈ EG and ij ∈ EH , and for c ∈ C , in order to obtain the (indeed valid) bounding inequality

yij ≤ 2−
∑
d∈D

(xid + xkd + xℓd) (24)

or D ⊆ C , since (23) does not satisfy the hypothesis (ii) in Procedure 1 (indeed, πkc > 0). Due to this fact, we take
CT7 = ∅, in order to prevent the application of Procedure 1 to this template. Nevertheless, (24) involves the ideas
resent in the families (7)–(11) by considering a subset D of colors instead of a single color c , hinting that it might be
ossible to state a generalized version of Procedure 1 not having the hypothesis (ii).
The ideas presented in Procedure 2 can be applied to the standard formulation of the classical vertex coloring

ormulation by ignoring the y-variables, as Corollary 3 illustrates. For example, the application of Corollary 3 to the
onstraint xic + xjc ≤ 1, for ij ∈ EG and c ∈ C , yields the clique inequality

∑
k∈K xkc ≤ 1, which is facet-inducing if

C | > χ (G) and K is a maximal clique in G. However, the hypothesis (b) of Theorem 4 asks for edges in H , which exceeds
he setting of the classical vertex coloring polytope, so this theorem cannot be directly applied in order to show that the
lique inequalities define facets when K is a maximal clique in G. It would be interesting to explore whether Theorem 4
can be generalized in order to cover this case as well.
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