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Abstract

Let H be a reproducing kernel Hilbert space of functions on a set X . We study the prob-
lem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces
consisting of functions which vanish on given finite subsets of X . We establish a necessary
and sufficient condition for existence and uniqueness of geodesics, and we then analyze it
in examples. We discuss the relation of the geodesic distance with other known metrics
when the mentioned finite subsets are singletons. We find estimates on the upper and lower
eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which
can be made more precise when the underlying space is the Hardy space. Also for the Hardy
space we discuss the existence of geodesics joining subspaces of functions vanishing on infi-
nite subsets of the disk, and we investigate when the product of projections onto this type
of subspaces is compact.
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1 Introduction

Let H be an infinite dimensional complex Hilbert space. The Grassmann manifold Gr(H) is the
set of all closed subspaces of H, or equivalently, the set of all bounded self-adjoint projections
acting in H. It has the structure of an infinite dimensional manifold, with a linear connection
and a Finsler metric, where the following results about its geodesics were proved. Given two
subspaces S,T ∈ Gr(H), there exists a unique minimal geodesic curve of Gr(H) that joins them
if and only if

S ∩ T ⊥ = S⊥ ∩ T = {0}. (1)

If this is the case, there exists a unique self-adjoint operator X = XS,T acting in H such that

XS ⊂ S⊥, XT ⊂ T ⊥, ‖X‖ ≤ π/2 and eiXS = T . (2)
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The geodesic is given by δ(t) = eitXS. This geodesic has minimal length with respect to the
following Finsler metric on the Grassmann manifold: for a smooth curve St, t ∈ I of closed
subspaces of H, let P (t) = PSt (the orthogonal projection onto St), the length of the curve is
measured by

∫

I

∥

∥

∥

∥

d

dt
P (t)

∥

∥

∥

∥

dt,

where ‖ ‖ denotes the usual norm of operators. For instance, the length of the minimal geodesic
mentioned above is ‖X‖. References for these facts are [37, 16, 7, 6].

The object of this paper is to apply these results to the case when H is a reproducing kernel
Hilbert space of functions on a set X, and the subspaces are sets of functions which vanish at
given subsets of X. Namely, if a = { a1, . . . , an } ⊆ X, take the subspace

Za = { f ∈ H : f(aj) = 0, j = 1, . . . , n }.

Similarly, let Zb be the subspace associated to a set b = { b1, . . . , bm } ⊆ X. Thus, we investigate
the existence of a minimal geodesic in Gr(H) joining the subspaces Za and Zb. We are mainly
interested in the discussion of examples, where specific tools of each reproducing kernel Hilbert
space are used to understand the geodesics of the Grassmann manifold between the special type
of subspaces mentioned. Among the reproducing kernel Hilbert space considered, we put special
emphasis in the Hardy space of the unit disk. Furthermore, this is the only reproducing kernel
Hilbert space where we study the problem for infinite sets a and b.

Notice that given two subspaces it might be difficult to verify condition (1) in practice.
For instance in a previous work [8], it was shown that this condition for two shift-invariant
subspaces turns out to be linked to the deep problem of injectivity of Toeplitz operators [34].
Thus particular examples provided by functional spaces help to understand abstract results on
the structure of geodesics of the Grassmann manifold previously obtained by Porta and Recht
[37], Corach, Porta and Recht [16], Kovarik [30] and the first author [6, 7]. Also it is interesting
to point out here that the Grassmann manifold plays an essential role in the metric theory of
general (infinite dimensional) homogeneous spaces arising on operator theory. Minimality of
geodesics in these spaces was proved by constructing length-reducing maps onto Grassmann
manifolds [17, 20].

The outline and main results of this paper are as follows. In Section 2 we establish a
necessary and sufficient condition for the existence of minimal geodesics between Za and Zb

in general reproducing kernel Hilbert spaces, whenever a and b are finite subsets of the set
X (Proposition 2.2). Geodesics exist if and only if the sets a and b have the same cardinality.
Furthermore, uniqueness of geodesics is equivalent to have a non vanishing determinant in terms
of the reproducing kernel. We then analyze this uniqueness condition in some classical examples
of spaces of analytic functions. For the Hardy space of the disk H2 the uniqueness condition
always holds true, but for the Bergman space we give counterexamples as well as a sufficient
condition (Theorem 2.6). Also it follows immediately that for a shift-invariant subspaceH = θH2

the uniqueness condition is related to the zeros of the inner function θ. For the Bargmann-Segal
space an easy equivalent condition to uniqueness can be written for the case of subsets a, b ⊆ C

with two points.
In Section 3 we consider the case where the sets a and b are singletons. By means of the

geodesic distance associated to our Finsler metric we define a metric Γ in the set X. In Theorem
3.2 we show the relation between the metric Γ and other well-known metrics on X such as the
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Skwarcyński or Kobayashi metrics. The definition of these metrics goes back to the works
[29, 35] for the Bergman kernel. More recently they were introduced in general reproducing
kernel Hilbert spaces [11]. Then we study conditions to guarantee that (X,Γ) is a complete
metric space. This is equivalent to have that Grp(H) := {Za : a ∈ X} is closed in Gr(H)
with the usual operator norm (see Prop. 3.7). We then investigate the action of Moebius
transformations in the case of reproducing kernel Hilbert spaces of analytic functions on the
disk (Corollary 3.11).

Under the assumption of the existence of a unique a minimal geodesic between Za and Zb,
in Section 4 we prove estimates on the norm and least eigenvalue of the self-adjoint operator
Xa,b := XZa,Zb

used to construct the geodesic, which is characterized by the above properties
(2). These results are given in Corollaries 4.2 and 4.3. Further estimates can be obtained for
the Hardy space by using classical results by Adamjan, Arov and Krein on singular values of
Hankel operators, and the Takenaka-Malmquist-Walsh basis (see Subsection 4.1).

In Section 5 we consider in the Hardy space the case of infinite sets a, b ⊆ D. Then these
sets must satisfy Blaschke condition, and existence of geodesics is now related to their sets
of accumulation points lim a and limb contained in the unit circle. Using results of Sarason
and Lee [32], we prove that there is always a geodesic joining Za and Zb when lim a 6⊂ limb

and limb 6⊂ lim a (Proposition 5.2). On the other hand, if lim a = limb = {1}, then there are
examples of both existence and non-existence of geodesics. Based on the existence of co-divisible
infinite Blaschke products in the Sarason algebra and Koosis functions we give examples where
dimZa ∩ Z⊥

b = 0 and dimZa ∩ Z⊥
b = m, for all values 0 ≤ m ≤ ∞ (Theorems 5.5 and 5.7).

We then study when the product of two projections onto subspaces related to Za and Zb are
compact.

2 Finite zero sets

We begin by summarizing basic facts on the geodesics of the Grassmann manifold in the following
remark.

Remark 2.1. Let B(H) be the algebra of all bounded operators acting in H. The Grassmann
manifold Gr(H) is a complemented submanifold of B(H). Its tangent space (TGr(H))P at P is
given by

(TGr(H))P = {Y = iXP − iPX : X∗ = X },
which consists of self-adjoint operators which are co-diagonal with respect to P (i.e. PY P =
(I−P )Y (I−P ) = 0). Denote by B(H)sa the space of self-adjoint operators. A natural projection
EP : B(H)sa → (TGr(H))P is given by

EP (X) = PX(I − P ) + (I − P )XP.

This map induces a linear connection: if X(t) is a tangent field along a curve α(t) ∈ Gr(H),

DX

dt
= Eα(X).

The geodesics of Gr(H) starting at P with velocity Y have the form δ(t) = etỸ Pe−tỸ , where
Ỹ = [Y, P ] is antihermitian and co-diagonal with respect to P . As we already observed in the
Introduction, the operator norm induces a Finsler metric on Gr(H). This metric is neither
smooth, nor convex.
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1. Let P , Q be two orthogonal projections such that ‖P −Q‖ < 1. Then there exists a unique
operator X = X∗ with ‖X‖ < π/2 such that Q = eiXPe−iX , which is co-diagonal with
respect to both to P and Q. The curve

δ(t) = eitXPe−itX (3)

is the unique geodesic of Gr(H) joining P and Q (up to reparametrization). Moreover,
this geodesic has minimal length. The exponent X is indeed an analytic function of P and
Q (see [37]).

2. There is a geodesic (equivalently a minimal geodesic) in Gr(H) joining P and Q if and
only if

dimR(P ) ∩N(Q) = dimR(Q) ∩N(P ). (4)

If both dimensions are equal to zero, then there exists a unique geodesic of minimal length
in Gr(H) joining P and Q. This geodesic has the same form as in (3) for a (unique) self-
adjoint operator X satisfying ‖X‖ ≤ π/2. In particular, note that there can be a unique
minimizing geodesic even if ‖P − Q‖ = 1. If the above dimensions coincide but are non
zero, then there are infinitely many geodesics (see [6, 7]).

The proof of condition (4) (also stated in (1)) about the existence of geodesics uses Halmos’
decomposition: given two subspaces S,T , one can decompose the underlying Hilbert space as

H = S ∩ T ⊕ S⊥ ∩ T ⊥ ⊕ S ∩ T ⊥ ⊕ S⊥ ∩ T ⊕ H0,

where H0 the orthogonal complement of the sum of the first four. The other first summands are
usually denoted by H11, H00, H10 and H01, respectively.

Throughout this work, H is a reproducing kernel Hilbert space consisting of functions on a
set X. We refer to [2, 36] for theory of reproducing kernels Hilbert spaces. For w ∈ X, denote
by kw ∈ H the reproducing kernel of w defined by

f(w) = 〈f, kw〉, f ∈ H.

Let us state the following elementary result for finite sets:

Proposition 2.2. Let H be a reproducing kernel Hilbert space of functions on a set X. Take
a = {a1, . . . , am}, b = {b1, . . . , bk} two disjoint finite sets of points of X. Then the following
conditions hold:

i) There exists a geodesic in Gr(H) joining Za and Zb if and only if m = k.

ii) If k = m, there is a unique geodesic if and only if

det ((kbi(aj))1≤i,j≤k) 6= 0. (5)

Otherwise, there are infinitely many geodesics joining the aforementioned subspaces.

Proof. Throughout the proof, we shall use the matrixK := (kbi(aj))ij , i = 1, . . . , k, j = 1, . . . ,m.
Denote by N(K) and R(K) the nullspace and range of K, respectively. We claim that the map

Φ : Za ∩ Z⊥
b → N(K), Φ

(

k
∑

i=1

αikbi

)

= (α1, . . . , αk)
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is an isomorphism. Indeed, clearly {kb1 , . . . , kbk} is a basis for Z⊥
b . Thus, for each f ∈ Za ∩Z⊥

b ,

there is a unique vector (α1, . . . , αk) ∈ C
k such that f =

∑k
i=1 αikbi , which means that the

above map is well defined. If (α1, . . . , αk) ∈ N(K), then the function f =
∑k

i=1 αikbi satisfies
f(aj) = 0, j = 1, . . . ,m, which says that f ∈ Za ∩ Z⊥

b , and Φ(f) = (α1, . . . , αk). Thus, Φ is
surjective. Clearly, it is also injective, so our claim is proved.

Proof of i): It was proved in [6, Thm 3.1] that there exists a geodesic joining Za and Zb if and
only if

dimZa ∩ Z⊥
b = dimZ⊥

a ∩ Zb.

Using that kw(z) = kz(w), for all z, w ∈ X, we have that K∗ = (kaj (bi))ij , j = 1, . . . , k,
i = 1, . . . ,m. Interchanging the roles of the sets a and b in our previous claim, we also obtain
that Z⊥

a ∩Zb and N(K∗) are isomorphic. Then the above condition to guarantee the existence
of a geodesic holds true if and only if dimN(K) = dimN(K∗). Now the stated condition
m = k follows by using the well-known linear algebra formulas: m = dimN(K) + dimR(K),
k = dimR(K)⊥ + dimR(K) and N(K∗) = R(K)⊥.

Proof of ii): It was proved in [6, 7] that there is a unique geodesic if and only if Za ∩ Z⊥
b =

Z⊥
a ∩ Zb = {0}. This means that N(K) = N(K∗) = {0}, which is equivalent to the stated

condition on the determinant.

It follows that there exists a unique geodesic of the Grassmann manifold between Za and
Zb if and only if the determinant (5) is non zero. Suppose that a and b are two finite sets of
the same cardinality. Suppose additionally that a ∩ b = ∅. The set {kw : w = ai or w = bj} is
linearly independent. It follows that

Z⊥
a ∩ Z⊥

b = {0}.

Therefore, in Halmos’ decomposition of H in terms of Za and Zb, the only non trivial subspaces
are H0 and

H11 = Za∪b.

Apparently, Za∪b has co-dimension 2k. Also from these facts it is apparent that kai and kbj
belong to H0. It follows that H0 is generated by these functions.

Let us examine the determinant condition (5) in some classical examples of spaces of analytic
functions. Our examples consist in the Hardy space, Bergman space, shift-invariant subspaces
and Segal-Bargmann space.

Hardy space. First we recall the definition of the Hardy space, and then we will show that
condition (5) always holds in this space. Let L2 = L2(T) denotes the usual Lebesgue space of
complex valued functions defined on the unit circle T. The Hardy space H2 = H2(D) of the
unit disk D = { z ∈ C : |z| < 1 } is the space of all analytic functions f defined on D for which

‖f‖H2 :=

(

sup
0<r<1

1

2π

∫ 2π

0
|f(reit)|2 dt

)1/2

<∞.

Functions in the Hardy space have non tangential limits which can be used to isometrically
identify these spaces with

H2 =

{

f ∈ L2 :

∫ 2π

0
f(eit)e−nit dt = 0, n > 0

}

.
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In particular, H2 is a closed subspace of the Hilbert space L2. It is a reproducing kernel Hilbert
space, where the reproducing kernels are called Szego kernels:

kHw (z) =
1

1− w̄z
, z, w ∈ D.

Proposition 2.3. Let H = H2 be the Hardy space of the disk, then

det((kHbj (ai))i,j) 6= 0,

for every pair of disjoint subsets a = {a1, . . . , an} and b = {b1, . . . , bn} of the disk D.

Proof. Instead of dealing directly with the determinant, we use the subspaces Za and Zb. If
the determinant is trivial, then Za ∩ Z⊥

b is not trivial. Thus, there exists a function f ∈ Z⊥
b =

〈kbj : 1 ≤ j ≤ n〉 such that f(ai) = 0, i = 1, . . . , n. Note that f(z) =
∑n

j=1 βjkbj (z) is a rational
function which can be written

f(z) =
p(z)

∏n
j=1(1− b̄jz)

,

where p is a polynomial of at least degree n− 1. This contradicts the fact that p has n different
roots a1, . . . , an.

Remark 2.4. According to Propositions 2.2 and 2.3, in the Hardy space there are only two
possibilities: either there is no geodesic between Za and Zb, or there is a unique geodesic between
these subspaces. The case of infinitely many geodesics described in Remark 2.1.2 cannot take
place.

Shift-invariant subspaces. As a straightforward consequence of the preceding example, we
can now examine condition (5) when the Hilbert space H is a shift-invariant subspace of H2.
Therefore we have that H = θH2 for some inner function θ, i.e. θ ∈ H2 and |θ(z)| = 1 a.e. on
T. Then H has the reproducing kernel

kθw(z) =
θ(z)θ(w)

1− zw̄
, z, w ∈ D.

Given a = {a1, . . . , an} and b = {b1, . . . , bn} subsets of D, note that

det((kθbj (ai))i,j) =
n
∏

i=1

θ(ai)θ(bi) det((k
H
bj
(ai))i,j).

Then using Proposition 2.3, there is a unique geodesic that joins the subspaces Za and Zb in
Gr(H) if and only if a ∩ b ∩ {z ∈ D : θ(z) = 0} = ∅. Otherwise, there are infinitely many
geodesics joining the mentioned subspaces.

Bergman space. Let dA denote the area measure on the unit disk. The Bergman space
A2 = A2(D) of the unit disk consists of all functions analytic in D for which

‖f‖A2 =

(
∫

D

|f(z)|2dA(z)
)1/2

<∞,
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The quantity ‖ · ‖A2 is called the norm of the function. It is a reproducing kernel Hilbert space,
where

kBw (z) =
1

(1− w̄z)2
, z, w ∈ D,

are the reproducing kernels. Note that the argument of the above proposition, based on degrees,
cannot be carried over with the Bergman kernel. We shall establish that condition (5) does not
hold in general for A2 by means of a counterexample. It does hold though in several cases. Let
us establish the case n = 2 in the following remark (the case of singletons a = {a}, b = {b} will
be treated in the next section).

Remark 2.5. The kernel function kBw (z) is conformally invariant [21, Chap. I]: if ϕ : D → D is a
conformal map, then

kBw (z) = kBϕ(w)(ϕ(z))ϕ
′(z)ϕ′(w).

In particular, it follows that det(kBbj (ai)i,j) 6= 0 if and only if det(kBϕ(bj )(ϕ(ai))i,j) 6= 0. Let

a = {a1, a2} and b = {b1, b2} be disjoint subsets of D. Then to compute

det

(

kBb1(a1) kBb2(a1)

kBb1(a2) kBb2(a2)

)

,

we can take the automorphism of the disk ϕ(z) = z−a1
1−a1z , and assume that a1 = 0. Note that

det

(

1 1
1

(1−b1a2)2
1

(1−b2a2)2

)

6= 0,

holds exactly when a2 6= a1(= 0) and b1 6= b2. .

The next result, shows that if a,b are close to the origin, then condition (5) holds for n ≥ 3.

Theorem 2.6. Let δ = 0.195, and a = {a1, . . . , an} , b = {b1, . . . , bn} be subsets of B
(

0,
√

δ
1+δ

)

⊂
D, with a ∩ b = ∅. Then

det

(

1
(

1− aibj
)2

)

i,j

6= 0. (6)

Proof. Using Borchardt’s identity (see Corollary 5.1 in [5]) we can write

det

(

1

(1− aibj)2

)

i,j

= det

(

1

1− aibj

)

i,j

per

(

1

1− aibj

)

i,j

(7)

where per(m) denotes the permanent of the matrix m. Suppose first that ai 6= 0 for i = 1, . . . , n,
then

det

(

1

1− aibj

)

i,j

=

(

n
∏

i=1

1/ai

)

det

(

1

(1/ai)− bj

)

i,j

Since |1/ai| > 1 > |bj| then
(

1
(1/ai)−bj

)

i,j
is a Cauchy matrix and its determinant has a known

closed form. Moreover, the assumptions ar 6= as, br 6= bs for r 6= s, imply that this determinant
is non zero:

det

(

1

(1/ai)− bj

)

i,j

=

∏

r>s(1/ar − 1/as)(br − bs)
∏n
i=1

∏n
j=1(1/ai − bj)

6= 0. (8)
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In case ai0 = 0 for some i0 then bj 6= 0 must hold for all j = 1, . . . , n because ai 6= bj for all i, j.

Then we can reason similarly with the matrix
(

1
(1/bj)−ai

)

i,j
. Therefore it can be proved that

det
(

1
1−aibj

)

i,j
6= 0 in any case.

Observe now that the condition ai, bj ∈ B
(

0,
√

δ
1+δ

)

implies that |aibj| <
(√

δ
1+δ

)2

= δ
1+δ .

Then using that |aibj| < δ
1+δ < 1 we can state that

∣

∣

∣

∣

1

1− aibj
− 1

∣

∣

∣

∣

=
|aibj |

|1− aibj |
<

|aibj |
1− |aibj |

<
δ/(1 + δ)

1− δ/(1 + δ)
= δ = 0.195.

Then applying Theorem 1.2 of [12] follows that per
(

1
1−aibj

)

i,j
6= 0 and considering (8) we obtain

that (7) is non zero, which completes the proof.

Remark 2.7. Note that in the previous theorem the assumption ai, bj ∈ B
(

0,
√

δ
1+δ

)

can be

weakened to |aibj | < δ
1+δ and ai, bj ∈ D.

Corollary 2.8. Let δ = 0.195, a = {a1, . . . , an} , b = {b1, . . . , bn} ⊂ D, with a ∩ b = ∅ and

|ai| < δ
1+δ for i = 1, . . . , n. Then det

(

1

(1−aibj)
2

)

i,j

6= 0.

Condition (5) does not hold in general in the Bergman space. Consider the following example,
in the case n = 3:

Example 2.9. Let b1 = −257
367 − 17

45 i, b2 = − 62
311 + 337

376 i, b3 =
356
403 + 86

403 i and c1 = 33
68 − 19

411 i, c2 =
244
353 − 16

343 i, c3 =
43
85 − 254

335 i (with b1, b2, b3 ∈ D), then the function

f(z) =

3
∑

j=1

cj

(1− zb̄j)2

has three zeros inside D that are approximately z1 = −0.837508+0.3451006 i, z2 = 0.1723709−
0.832953 i and z3 = 0.466866 + 0.855772 i. Therefore the columns of the matrix

(

1
(1−zibj)2

)3

i,j=1

are linearly dependent and its determinant vanishes.
A different process to obtain exact complex numbers ai, bj ∈ D, i, j = 1, 2, 3 such that

det
(

1
(1−aibj)2

)3

i,j=1
= 0 is the following. With the notation of the previous example we may ap-

proximate z1 with a1 = −67
80 +

88i
255 and z2 with a2 =

101
586 − 369i

443 , a1, a2 ∈ D. Then consider a3 = z

and define the polynomial p(z) consisting of the numerator of the map 1
(z−a1)(z−a2) det

(

1
(1−aibj)2

)3

i,j=1
.

Since z = a1 and z = a2 are roots of p it can be proved that the p(z) has degree 2. Then two
roots of p can be found explicitly. One of them belongs to D. Then if we chose this root as a3

we obtain b1, b2, b3 and a1, a2, a3 in the disk D such that det
(

1
(1−aibj)2

)3

i,j=1
= 0.

We have also found numerical examples for n = 4, . . . , 8 such that det
(

1
(1−aibj)2

)n

i,j=1
= 0.
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Segal-Bargmann space. Let H(C) be the space of holomorphic functions in C. Our next
example is given by the Bargmann space, or Segal-Bargmann space, which is defined as

F1 =

{

f ∈ H(C) :

∫

C

|f(z)|2e−|z|2dz <∞
}

.

It has a reproducing kernel, kSw(z) = ezw̄, z, w ∈ C. Now condition (5) does not always hold
in this space. An easy necessary and sufficient condition can be established for the case of two
zeros. Take the sets a = {a1, a2} ⊆ C, and b = {b1, b2} ⊆ C with a ∩ b = ∅. There is a unique
geodesic joining Za and Zb if and only if

det

(

ea1 b̄1 ea1 b̄2

ea2 b̄1 ea2 b̄2

)

= ea1 b̄1+a2 b̄2 − ea1 b̄2+a2 b̄1 6= 0,

which can be rewritten as
ea1 b̄1+a2 b̄2−(a1 b̄2+a2 b̄1) 6= 1.

This, in turn, is equivalent to the condition:

(a1 − a2)(b̄1 − b̄2) 6= 2kπi, k ∈ Z.

When this last condition does not hold, there are infinitely many geodesics in F1 joining Za and
Zb.

3 Singletons

Let H be a reproducing kernel Hilbert space consisting of functions on a set X. Throughout
this section, we assume that the reproducing kernel satisfies the following conditions:

i) ka is not the zero function, for any a ∈ X;

ii) the set {ka , kb} is linearly independent if a 6= b.

In our next remark we recall three important metrics in the context of reproducing kernel
Hilbert spaces. We follow the exposition in [11]. We omit the proofs, the details can be found
in this work and the references therein.

Remark 3.1. By the first condition above, we can normalize the functions ka. On the other
hand, the three metrics below turn into pseudo-metrics if and only if the second condition is not
assumed. This follows straightforward using the equality case in the Cauchy-Schwartz inequality.

1. The first metric is given by

δ(a, b) = δH(a, b) :=

√

1−
( | 〈ka, kb〉 |
‖ka‖‖kb‖

)2

.

See [2] for a proof of the triangle inequality. It can be interpreted as a measure between points
in X, which takes into account properties of H. For instance, the following relation holds:

δ(a, b) =
sup{|f(b)| : f ∈ H, ‖f‖ = 1, f(a) = 0}

sup{|f(b)| : f ∈ H, ‖f‖ = 1} .

9



Let Pa be the orthogonal projection onto the subspace generated by ka. The metric δ is also
useful to provide Lipschitz estimates of the Berenzin transform. For this purpose in [15], the
following characterization of δ was proved:

δ(a, b) = ‖Pa − Pb‖ = 2−1/p‖Pa − Pb‖p, p ≥ 1. (9)

Here ‖ ‖p denote the Schatten p-norms. Indeed, this was first showed for the operator and trace
norms [15], and later observed for the other p-norms [11]. In addition, δ might be viewed as a
generalization of the pseudo-hyperbolic metric for arbitrary reproducing kernel Hilbert spaces.
Recall that the pseudo-hyperbolic metric is defined by

ρ(a, b) =

∣

∣

∣

∣

a− b

1− āb

∣

∣

∣

∣

, a, b ∈ D.

It is well-known that for the Hardy space H2 we have

δH2(a, b) = ρ(a, b).

2. The Skwarcyński metric was first considered for the Bergman kernel on a domain [35]. It can
be extended to an arbitrary reproducing kernel Hilbert space as

δ̂(a, b) = δ̂H(a, b) :=

√

1− | 〈ka, kb〉 |
‖ka‖‖kb‖

, a, b ∈ X.

It can be realized as a multiple of a quotient metric as follows. Let P (H) the projective space
over H, i.e. P (H) ≃ S(H)/ ∼ , where S(H) denotes the unit sphere of H and f ∼ g if f = λg,
for some λ ∈ T. Then the Skwarcyński distance between a and b can be computed as a multiple

of the quotient distance between the classes
[

ka
‖ka‖

]

and
[

kb
‖kb‖

]

, that is,

δ̂(a, b) =
1√
2
inf

{∥

∥

∥

∥

ka
‖ka‖

− λ
kb

‖kb‖

∥

∥

∥

∥

: λ ∈ T

}

.

3. Our third metric is usually known as the Kobayashi metric [29]. In order to define it, recall
that the tangent space (TP (H))[f ] of the projective space at [f ] is (TP (H))[f ] = (TS(H))f/ ∼,
where v ∼ w if v − w = iaf , a ∈ R and the tangent space to sphere is given by (TS(H))f =
{v ∈ H : ℜ 〈v, f〉 = 0}. The following Riemannian metric is the infinite dimensional version of
the Fubini-Study metric: for [v] ∈ (TP (H))[f ],

‖[v]‖[f ] = dist(v, iRf) = (‖v‖2 − | 〈v, f〉 |2)1/2.

Given a piecewise smooth curve γ : [0, 1] → P (H), its length is then measured by

L(γ) =

∫ 1

0

(

∥

∥

∥
Γ̇(t)

∥

∥

∥

2
−
∣

∣

∣

〈

Γ̇(t),Γ(t)
〉∣

∣

∣

2
)1/2

dt.

Here Γ ⊆ S(H) is any piecewise smooth lift of γ, i.e. [Γ(t)] = γ(t) for all t ∈ [0, 1]. The
Kobayashi metric is defined by using the corresponding geodesic distance:

δ̌(a, b) := inf

{

L(γ) : γ piecewise smooth joining

[

ka
‖ka‖

]

and

[

kb
‖kb‖

]}

.
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Let us consider the case when the sets a and b consist of single terms a and b in X. We
denote by Za and Zb the corresponding subspaces of functions in H that vanish in the points a
and b, respectively. We have defined the length of curves by using a Finsler norm given by the
operator norm. Recall that if γ : [0, 1] → Gr(H) is a piecewise smooth curve, then its length is
measured by

L(γ) =

∫ 1

0
‖γ̇(t)‖dt.

Thus, we have a geodesic distance d(S,T ) defined as the infimum of all the length of piecewise
smooth curves in Gr(H) joining the subspaces S and T . In particular, this allows us to introduce
another metric in X:

Γ(a, b) = ΓH(a, b) := d(Za,Zb), a, b ∈ X.

The relation of this metric with the three metrics of the previous remark is as follows. Notice
that the second item gives another proof in geometric terms of the above relation (9).

Theorem 3.2. Let H be a reproducing kernel Hilbert space of function on a set X. The following
assertions hold:

1. δ̌ = Γ;

2. δ(a, b) = sin(Γ(a, b)) = ‖PZa
− PZb

‖ = 2−1/p‖PZa
− PZb

‖p, p ≥ 1;

3. δ̂(a, b) =
√
2 sin

(

1
2Γ(a, b)

)

.

Proof. We compute Γ first in the case where Za ∩ Z⊥
b = Z⊥

a ∩ Zb = {0}. Then H0, the generic
part where PZa and PZb

act non-trivially, is a 2-dimensional space generated by ka and kb. Let
us compute Xa,b the exponent of the unique minimal geodesic joining these subspaces. Clearly
Xa,b = 0 in H11. Consider the orthonormal basis {e1, e2} of H0, given by e1 = 1

‖ka‖ka and

e2 =
1

‖h‖h, where

h = kb −
〈kb, ka〉
‖ka‖2

ka.

Then elementary computations show that in this basis,

PZa |H0 =

(

0 0
0 1

)

and PZb
|H0 =

(

1− |γ|2 (1− |γ|2)1/2γ
(1− |γ|2)1/2γ̄ |γ|2

)

where

γ =
〈ka, kb〉
‖ka‖‖kb‖

.

Let γ = eiθ cos(x), where cos(x) = |γ| for 0 < x < π/2, and consider the unitary matrix

Uθ =

(

eiθ/2 0

0 e−iθ/2

)

.

Then

PZa |H0 = UθPZa |H0U−θ and PZb
|H0 = Uθ

(

cos(x)2 cos(x) sin(x)
cos(x) sin(x) sin(x)2

)

U−θ.

11



Therefore, the co-diagonal, selfadjoint matrix (of norm less than π/2) which is the exponent of
the unique geodesic joining these projections is

Xa,b = Uθ

(

0 −ix
ix 0

)

U−θ =

(

0 −ixeiθ
ixe−iθ 0

)

.

Thus, the geodesic distance between Za and Zb is

d(Za,Zb) = ‖Xa,b‖ = x = arccos

( |〈ka, kb〉|
‖ka‖‖kb‖

)

.

In the case where Za ∩ Z⊥
b 6= {0} or Zb ∩ Z⊥

a 6= {0}, note that Z⊥
b ⊆ Za and Z⊥

a ⊆ Zb, or
equivalently ka(b) = 〈ka, kb〉 = 0. Then dimZa ∩ Z⊥

b = dimZb ∩ Z⊥
a = 1, so there are infinitely

many geodesics joining Za and Zb, and the geodesic distance equals π/2. In both cases, we thus
obtain

Γ(a, b) = arccos

( |〈ka, kb〉|
‖ka‖‖kb‖

)

, a, b ∈ X. (10)

In order to show that δ̌ = Γ, we observe that the Fubini-Study metric is invariant under the
action of the unitary group. Also identyfing the Hilbert space H ≃ ℓ2, we may assume that

ka
‖ka‖

= (1, 0, 0, . . .);
kb

‖kb‖
=

(

1

(c2 + 1)1/2
,

c

(c2 + 1)1/2
, 0, . . .

)

, 0 ≤ c ≤ ∞.

This fact was observed in [29], where it is also computed that δ̌(a, b) = arctan(c). Our Finsler
metric is also unitarily invariant, thus we can also assume that the above unit vectors have that
form, so that Γ(a, b) = arccos(c2 + 1)−1/2. This gives δ̌ = Γ.

From the above expression of Γ given in (10), it follows immediately that δ(a, b) = sin(Γ(a, b)).
It is known that (see for instance the survey article [10]), for any given pair of projections that
can be joined by a geodesic curve of the Grassmann manifold, it holds that

sin(d(P,Q)) = ‖P −Q‖.

This also can be generalized to p-norms by similar arguments. Finally notice that δ̂(a, b) =
(1− cos(Γ(a, b)))1/2, which implies that δ̂(a, b) =

√
2 sin

(

1
2Γ(a, b)

)

.

In the previous proof we have seen that

Γ(a, b) = ‖Xa,b‖ = arccos

( |〈ka, kb〉|
‖ka‖‖kb‖

)

, a, b ∈ X.

Examples 3.3. For instance Γ can be computed in the following spaces:

1. Hardy space: ΓH2(a, b) = arcsin
(∣

∣

∣

a−b
1−āb

∣

∣

∣

)

= arcsin(ρ(a, b)), a, b ∈ D

2. Bergman space: ΓA2(a, b) = 2 arcsin
(

2−1/2
∣

∣

∣

a−b
1−āb

∣

∣

∣

)

= 2arcsin(2−1/2ρ(a, b)), a, b ∈ D.

3. Bargmann-Segal space: ΓF1(a, b) = arccos(e−
1
2
|a−b|2), a, b ∈ C.

12



Points a ∈ X can be regarded as subspaces Za ∈ Gr(H). Clearly, the map a 7→ Za is one to
one. This follows from our assumption at the beginning of this section that the set {ka , kb} is
linearly independent if a 6= b. Furthermore, the map

(X,Γ) ∋ a 7→ PZa ∈ Grp(H) := {Za : a ∈ X}

is a homeomorphism. This follows from the relations in Theorem 3.2. Note that we may also
endow X with any other of the metrics δ, δ̂ or δ̌, they all give the same topology on X.

We now investigate when Grp(H) = {Za : a ∈ X} is a closed subset of Gr(H). Since Gr(H)
is closed in B(H), Grp(H) is closed in Gr(H) if and only if Grp(H) is closed in B(H). More
interesting, we have that Grp(H) is closed in Gr(H) if and only if the metric space (X,Γ) is
complete. This again follows immediately from the relation between Γ and the operator norm
established in Theorem 3.2.

For our purpose, we shall need that the space H has the following property.

Hypothesis 3.4. Assume that X is a subset of Y = R
n or Y = C

n. Denote by Ŷ = Y ∪ {∞}
the one-point compactification of Y . Let ∂X be the boundary of X in Ŷ . We suppose that the
following hold: if (wn) is a sequence in X such that wn → w ∈ ∂X \X, then

lim
n→∞

kwn(z)

‖kwn‖
= 0, ∀ z ∈ X.

We now give a useful sufficient condition and examples regarding this hypothesis.

Remark 3.5. Clearly, the above hypothesis is satisfied if the following hold:

1. If (wn) is a sequence in X such that wn → w ∈ ∂X \X, then ‖kwn‖ → ∞.

2. For every z ∈ X, there exists a constant Cz > 0 such that |kw(z)| ≤ Cz for all w ∈ X.

In the case of X being a bounded domain of C
n, condition 1. dates back to the work of

Brenermann [13]. Under this assumption X turns out to be complete with respect to the
Bergmann metric δB defined by means of the Bergman kernel. Although we shall not present
the Bergmann metric here, we observe that δB = 2δ̌ (see [29, 35], or more generally, [11, Prop.
9]), and then by Theorem 3.2, δB = 2Γ. Thus, condition 1. implies that (X,Γ) is a complete
metric space, or equivalently Grp(H) is closed in Gr(H), when X is a bounded domain of Cn

and H is the Bergmann space associated to it.

Examples 3.6. 1. The Hardy and Bergman spaces of the disk clearly satisfy both conditions in
Remark 3.5. A generalization of the Hardy space, which also satisfies these conditions, is the
Drury-Arveson space Dn. It consists in all the holomorphic functions on Bn, the unit ball of
C
n, n ≥ 1, equipped with the reproducing kernel

kDn(z, w) =
1

1−∑n
j=1 zjw̄j

,

where z = (z1, . . . , zn) ∈ Bn, w = (w1, . . . , wn) ∈ Bn.

2. Notice that conditions 1. and 2. are independent of each other. There are examples in
which only one of them holds. Given β = (βn) a sequence of positive real numbers, set R =
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lim inf β
−1/n
n . The weighted Hardy space H2

β consists of all the analytic functions in the disk
BR(0) such that

‖f‖β :=
∞
∑

n=0

β2n|an|2 <∞,

whenever f(z) =
∑∞

n=0 anz
n on BR(0). For details we refer to [36]. Special choices of the weights

(βn) give the following spaces of analytic functions treated in this work: βn = 1 (usual Hardy
space), βn = 1√

n+1
(Bergman space) and βn =

√
n! (Bargmann-Segal space). The reproducing

kernel of H2
β is given by

kw(z) =
∞
∑

n=0

w̄nzn

β2n
, w, z ∈ BR(0).

Now we can show that condition 1. does not necessary hold true. Take βn = n+1, then R = 1,
and for a ∈ D,

‖ka‖2 = ka(a) =

∞
∑

n=0

( |a|
n+ 1

)2

≤
∞
∑

n=0

1

(n+ 1)2
=
π2

6
. (11)

This implies that ‖ka‖ 6→ ∞ as |a| → 1. However, estimating in a similar way, we can find that
condition 2. holds in this space.

On the other hand, the Bargmann-Segal space satisfies condition 1. since ‖kw‖2 = e|w|
2 → ∞

as w → ∞. But it does not satisfy condition 1. For fix z ∈ C, |z| > 1, and take the sequence
wn = z|z|n, then kwn(z) = e|z|

n+2 → ∞ as n→ ∞.

3. Notice that the above Hardy space with weight βn = n + 1 provides an example in which
Hypothesis 3.4 does not hold true. Take z = 0 and (wn) a sequence in the unit disk such that
wn → 1. Then using the estimate in (11), we find that

kwn(0)

‖kwn‖
=

1

‖kwn‖
≥

√
6

π
.

Finally we observe that Hypothesis 3.4 is more general than the conditions in Remark 3.5. For in-
stance, in the Segal-Bargmann space we have that Hypothesis 3.4 holds true: limw→∞ ezw̄−|w|2 =
0 for every z ∈ C. Another example where condition 1. does not hold, but Hypothesis 3.4 can
be verified is the Sobolev space in R, which consists of absolutely continuous functions f such
that f, f ′ ∈ L2(R). It has the inner product

〈f, g〉 =
∫

R

f(x)g(x)dx+

∫

R

f ′(x)g′(x)dx;

and the reproducing kernel k(z, w) = e−|z−w|, z, w ∈ R.

Proposition 3.7. Let H is a reproducing kernel Hilbert space of functions on a set X which
satisfies Hypothesis 3.4. Assume that the kernel k : X ×X → C is a continuous function. Then
Grp(H) is closed in Gr(H).

Proof. At the beginning of this section we assume that ka is not the zero function for any
a ∈ X. Denote by ℓa the normalized kernels, ℓa = 1

‖ka‖ka. Then the orthogonal projection
PZa onto Za is given by PZa = 1 − ℓa ⊗ ℓa, where as is usual notation, f ⊗ g denotes the rank
one operator h 7→ 〈h, g〉f (f, g, h ∈ H). Let an ∈ X and suppose that PZan

→ P in the norm
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topology of B(H) (which is the topology in Gr(H)). We must show that P = 1 − ℓb ⊗ ℓb for
some b ∈ D. First note that the projections ℓan ⊗ ℓan converge to a rank one projection. Indeed,
let f ∈ R(1 − P ) with ‖f‖ = 1, and suppose there exists g ∈ R(1 − P ) such that g ⊥ f . Since
〈f, ℓan〉ℓan = (ℓan ⊗ ℓan)(f) → f , it follows, on one hand, that

|〈f, ℓan〉|2 = 〈ℓan ⊗ ℓan(f), f〉 → 〈f, f〉 = 1,

i.e. |〈f, ℓan〉| → 1. On the other hand,

〈f, ℓan〉〈ℓan , g〉 → 〈f, g〉,

and therefore 〈g, ℓan〉 → 0, and ℓan ⊗ ℓan(g) → (1−P )(g) = 0. That is, ℓan ⊗ ℓan → f ⊗ f . Now
recall that X is contained in Y = R

n or Y = C
n. Then (an) has a subsequence (still denoted

by an) which converges to some element a ∈ Ŷ , where Ŷ is the one-point compactification of Y .
Suppose that a ∈ ∂X \X, then for every z ∈ X, we have

|f(z)| = ‖(f ⊗ f)(kz)‖ = lim
n→∞

‖(ℓan ⊗ ℓan)(kz)‖ = lim
n→∞

|kan(z)|
‖kan‖

= 0

It follows that f = 0, which is a contradiction. Thus we must have a ∈ X. Using that the kernel
is continuous, we obtain that ℓan → ℓa, which implies that f = ℓa.

Remark 3.8. Notice that Hypothesis 3.4 holds when X is closed in Ŷ . On the other hand, we
observe that if the kernel is continuous as we have assumed, then all the functions in H must
be continuous (see [36, Thm. 2.17]).

We end this section discussing the action of Moebius transformations. If a ∈ D and w ∈ T,

denote by ϕa,w : D → D the Moebius transformation ϕa,w(z) = w
a− z

1− āz
. Then, the following is

immediate from the expressions of the metric Γ for the Hardy and Bergman spaces in Examples
3.3.

Corollary 3.9. The transformations ϕa,w are isometries for the metrics ΓH2 and ΓA2:

Γ(ϕa,w(z1), ϕa,w(z2)) = Γ(z1, z2), z1, z2 ∈ D,

both for Γ = ΓH2 and Γ = ΓA2.

Remark 3.10. From this result and Theorem 3.2, it follows that for H = H2 or H = A2, if ϕ is
a Moebius transformation of D, and a, b ∈ D, then

‖PZϕ(a)
− PZϕ(b)

‖ = ‖PZa − PZb
‖.

Denote by Cϕ ∈ B(H) the composition operator Cϕ(f) = f ◦ ϕ. Note that

Zϕ(a) = {f ∈ H : Cϕf(a) = 0} = C−1
ϕ (Za).

In other words, the operators Cϕ, which are invertible but non unitary, preserve the norm
distance between (the projections onto) the subspaces of the form Za, a ∈ D.
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Let us consider now the general case of reproducing kernel Hilbert space H of analytic
functions on the disk. Assume that the group M(D) of Moebius transformations acts on H by
means of composition operators, i.e. f ◦ϕ−1 ∈ H whenever f ∈ H and ϕ ∈ M(D). Then M(D)
also acts on Grp(H), the action is given by

ϕ · Za = Cϕ−1(Za) = Zϕ(a).

Corollary 3.11. Let H be a reproducing kernel Hilbert space consisting of analytic functions on
the disk where the Moebius group M(D) acts by composition operators. Assume that H satisfies
Hypothesis 3.4. Then the space Grp(H) is a closed submanifold of Gr(H), and a homogeneous
space under the action of M(D).

Proof. Since Grp(H) is finite dimensional, it suffices to show that for any fixed a0 ∈ D, the map

πa0 : M(D) → Grp(H) ⊂ Gr(H),

has continuous local cross sections. Clearly, it has continuous sections when regarded as

Grp(H) ∼ D,

it is the quotient map M(D)/T ∼ D. By the above proposition, the map πa0 has continuous local
cross sections. It is clearly a smooth map, whose tangent map at the identity, regarded as a map
from the tangent space of M(D) at the identity to the tangent space of Gr(H) at πa0 = PZa0

,
splits: it has finite dimensional nullspaces, and finite co-dimensional range. It follows from
general facts from differential geometry, that πa0 is a submersion and that its image Grp(H) is
a submanifold of Gr(H).

Remark 3.12. The metric Γ defined on X by means of the geodesic distance can be generalized.
The geodesic distance can be used to define a pseudo-metric in the set of (finite) subsets of X
with the same cardinality. If a = {a1, . . . , an} and b = {b1, . . . , bn}, put

Γn(a,b) = ΓnH(a,b) := ‖Xa,b‖ = arcsin ‖PZa
− PZb

‖.

This becomes a metric when any finite subset consisting of n + 1 kernel functions is linearly
independent. A sufficient condition is that the kernel function is strictly positive definite.

4 Spectral and norm inequalities

In this section we suppose that a,b ⊂ X are disjoint with the same cardinality n and satisfy

the condition det
(

(kbi(aj))
n
i,j=1

)

6= 0. We also focus first on the generic part H0 of Za and Zb,

which, as we saw in the preliminary section, is a 2n dimensional space generated by {kai , kbj :
1 ≤ i, j ≤ n}. Let us denote by Z0

a and Z0
b the intersections of Za and Zb with H0. Then

Z0
a = H0 ⊖ 〈kai : 1 ≤ i ≤ n〉 and Z0

b = H0 ⊖ 〈kbj : 1 ≤ j ≤ n〉.

Denote by Eab = P(Z0
a)

⊥‖(Z0
b
)⊥ , i.e. the idempotent (non orthogonal projection) given by the

direct sum decomposition

H0 = 〈kai : 1 ≤ i ≤ n〉+̇〈kbj : 1 ≤ j ≤ n〉, Eab(f + g) = f.

We recall in the following remark several facts of the theory of two subspaces:
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Remark 4.1. Let S,T be closed subspaces of a Hilbert space H. Denote by α0(S,T ) ∈ [0, π/2]
the Dixmier angle between S and T , whose cosine is defined by

C0(S,T ) = sup{|〈f, g〉| : f ∈ S, g ∈ T , ‖f‖ = ‖g‖ = 1}.

1. This angle can be expressed in terms of orthogonal projections: C0(S,T ) = ‖PSPT ‖. Also
it will be useful for us to recall here that C0(S,T ) < 1 if and only if S + T is closed and
S ∩ T = {0}. In this case C0(S,T ) = C0(S⊥,T ⊥), and consequently, ‖PSPT ‖ = ‖P⊥

S P
⊥
T ‖

(see e.g. [18]).

Furthermore, it is convenient to state now the following equivalences [14]:

(a) S+̇T = H;

(b) S⊥+̇T ⊥ = H;

(c) PS − PT is invertible.

In this case we have the following formula by Ando [4]: if E = PS‖T denotes the idempotent
induced by the decomposition S+̇T = H, then

E = PS(PS + PT )
−1.

2. If the subspaces S and T are in generic position, then there exists a unitary isomorphism
between H and a product space L × L such that, with this isomorphism, the projections
PS , PT are unitarily equivalent to the projections

(

1 0
0 0

)

and

(

C2 CS
CS S2

)

,

where C = cos(Z), S = sin(Z), for a positive operator Z acting in L, with ‖Z‖ ≤ π/2 and
trivial nullspace. These facts were proved by P. Halmos in [26].

3. When S and T are in generic position, there exists a unique geodesic joining them. It is of
the form δ(t) = eitXS, where X = XS,T is identified (by means of the above isomorphism)
with the matrix

X ≃
(

0 iZ
−iZ 0

)

,

where Z is the positive operator given by Halmos’ Theorem.

Note that S = (Z0
a)

⊥ and T = (Z0
b)

⊥ are in generic position as subspaces of H0 and in direct
sum, and therefore the facts above apply. For instance

Eab = P⊥
Z0

a

(P⊥
Z0

a

+ P⊥
Z0

b

)−1.

Denote by Xab the exponent of the unique geodesic joining (Z0
a)

⊥ and (Z0
b)

⊥. Then, it serves
also as the exponent of the unique geodesic joining the orthogonal complements: Z0

a and Z0
b. If

A is a positive operator, we denote by γA the smallest spectral value of A . From the definition
of the Dixmier angle one obtains the following inequalities:

Corollary 4.2. With the current notations, for all 1 ≤ i, j ≤ n we have
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1.
|〈kai , kbj 〉|
‖kai‖‖kbj‖

≤ ‖PZ0
a
PZ0

b

‖ = ‖P⊥
Z0

a

P⊥
Z0

b

‖ < 1.

2. γXab
≤ arccos

(

|kai(bj)|
kai(ai)

1/2kbj (bj)
1/2

)

= arccos

( |〈kai , kbj 〉|
‖kai‖‖kbj‖

)

.

Proof. The first assertion follows from the definition of the Dixmier angle, applied to the nor-
malized elements kai and kbj . For the second assertion, using Halmos representation for the pair

S = (Z0
a)

⊥, T = (Z0
b)

⊥, note that

‖P⊥
Z0

a

P⊥
Z0

b

‖ = ‖P⊥
Z0

a

P⊥
Z0

b

P⊥
Z0

a

‖1/2 = ‖ cos2(Xab)‖1/2 = ‖ cos(Xab)‖,

where the previous to last equality follows from Halmos’ representation:

P⊥
Z0

a

P⊥
Z0

b

P⊥
Z0

a

≃
(

1 0
0 0

)(

C2 CS
CS S2

)(

1 0
0 0

)

=

(

C2 0
0 0

)

.

Thus,
‖P⊥

Z0
a

P⊥
Z0

b

P⊥
Z0

a

‖ = ‖C2‖ = ‖ cos(Xab)‖2.

Note that Xab is positive and invertible. The proof follows observing that since the cosine map
is strictly decreasing, ‖ cos(Xab)‖ is the cosine of the smallest eigenvalue of Xab.

With a similar argument, one obtains:

Corollary 4.3. Let f ∈ Z0
a with ‖f‖ = 1. Then for 1 ≤ j ≤ n,

arcsin

(

|f(bj)|
kbj (bj)

1/2

)

≤ ‖Xab‖.

Proof. The subspaces Z0
a, (Z0

b)
⊥ of H0 are in direct sum. Indeed they have dimension n and

trivial intersection (Z0
a and Z0

b are in generic position). Therefore the facts in the previous
remark hold for these subspaces. As in the previous result, consider the pair S = Z0

a, T = (Z0
b)

⊥.
Then

C0(Z0
a, (Z0

b)
⊥) = ‖PZ0

a
P⊥
Z0

b

PZ0
a
‖1/2.

In this case,

PZ0
a
P⊥
Z0

b

PZ0
a
≃
(

0 0
0 1

)(

C2 CS
CS S2

)(

0 0
0 1

)

=

(

0 0
0 S2

)

,

and thus C0(Z0
a, (Z0

b)
⊥) = ‖S2‖1/2 = sin(‖Xab‖). Now pick a function f ∈ Z0

a with ‖f‖ = 1
and 1

‖kbj ‖
kbj ∈ (Z0

b)
⊥. Then

∣

∣

∣

∣

〈

f,
kbj

‖kbj‖

〉∣

∣

∣

∣

≤ C0(Z0
a, (Z0

b)
⊥),

and the proof follows.
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Example 4.4. For instance, in the case H = H2, for any 1 ≤ j0 ≤ n, one can take

f(z) = (1− |bj0 |2)1/2kHbj0 (z)Ba(z),

where Ba(z) is the Blaschke product with zeros a1, . . . , an. That is, Ba(z) =
∏n
j=1 baj (z), where

b0(z) = z, and for aj 6= 0,

baj (z) =
āj
|aj |

aj − z

1− ājz
, z ∈ D.

Indeed, clearly ‖f‖ = 1 and f(ai) = 0 for i = 1, . . . , n. In this case H0 = H2 ⊖ Ba∪bH2, which
consists of rational functions of the form

p(z)
∏n
i=1(1− āiz)

∏n
j=1(1− b̄jz)

,

with p(z) a polynomial of degree ≤ 2n− 1. Clearly f is of this form, taking

p(z) = (1− |bj0 |2)1/2
n
∏

i=1

āi
|ai|

(ai − z)
∏

j 6=j0
(1− b̄jz),

whenever ai 6= 0 for all i = 1, . . . , n.
If we use the inequality of the above corollary for this function f (for a given fixed 1 ≤ j0 ≤ n),

we obtain
arcsin(|Ba(bj0)|) ≤ ‖Xab‖. (12)

Remark 4.5. The spectrum of the self-adjoint matrix Xab is related to the singular values of the
idempotent matrix Eab. For instance, since P

⊥
Z0

a

and Eab project onto (Z0
a)

⊥, one has that

P⊥
Z0

a

=

(

1 0
0 0

)

and Eab =

(

1 B
0 0

)

,

where B : Z0
a → (Z0

a)
⊥. Then, it is known that (see [4])

P⊥
Z0

a

P⊥
Z0

b

P⊥
Z0

a

=

(

BB∗(1 +BB∗)−1 0
0 0

)

.

Then C2 = cos2(Xab) ≃ BB∗(1 +BB∗)−1, i.e.,

σ(Xab) =

{

arccos

(

t√
1 + t2

)

: t is a singular value of Eab

}

.

Indeed, σ((BB∗)1/2) is the set of singular values of Eab.

4.1 The case of the Hardy space

In the case H = H2, one can use the formulas by Adamyan, Arov and Krein [1] for the singular
values of a Hankel operator to obtain expressions for the eigenvalues of the matrix Xab. Let
P+ be the orthogonal projection of L2 onto H2, and P− be the orthogonal projection onto
H2

− = L2 ⊖ H2. Given ϕ ∈ L∞ = L∞(T), the Hankel operator with symbol ϕ is defined by
Hϕ : H2 → H2

−, Hϕf = P−(ϕf), where f ∈ H2.
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If ϕ ∈ L∞, denote by Pϕ : L2(T) → ϕH2 the orthogonal projection. Recall that ϕH2 is
closed if and only if ϕ is an invertible function in L∞ (see e.g. [8, Lemma 3.1]). Let a,b be
finite disjoint sets of D. If we take Ba and Bb the finite Blaschke products with zeros in a and
b respectively, then

PBa
=MBa

P+MB̄a
and PBb

=MBb
P+MB̄b

.

Proposition 4.6. The eigenvalues λ0 ≥ λ1 ≥ . . . ≥ λn−1 > 0 of Xab are given by

λk = arcsin(sk(HBb/Ba
)),

where sk(HBb/Ba
) denotes the k-th singular value (in decreasing order) of the Hankel operator

HBb/Ba
.

Proof. For the Hardy space it holds that Za = BaH
2 and Zb = BbH

2, then the generic part
of the projections PBa

and PBb
is the 2n dimensional space H0 = 〈kai , kbj : 1 ≤ i, j ≤ n〉. Note

that on the space H0, the projections PBa
and PBb

reduce to PZ0
a
and PZ0

b

. As before,

P⊥
Z0

a

PZ0
b

P⊥
Z0

a

≃ sin2(Xab).

On the other hand, by the above remark the non trivial eigenvalues of P⊥
Ba
PBb

P⊥
Ba

coincide

with those of P⊥
Z0

a

PZ0
b

P⊥
Z0

a

. These, in turn, are the squares of the non trivial singular values of

P⊥
Ba
PBb

: note that

P⊥
Ba
PBb

(P⊥
Ba
PBb

)∗ = P⊥
Ba
PBb

P⊥
Ba
.

Also,
P⊥
Ba
PBb

=MBa
P⊥
+MB̄a

MBb
P+MB̄b

=MBa
P⊥
+MBb/Ba

P+MB̄b
,

which, since MBa
and MBb

are unitary operators, has the same singular values as

P⊥
+MBb/Ba

P+ ≃ HBb/Ba
.

The space of all bounded analytic functions on D with the norm ‖f‖∞ = supz∈D |f(z)| is the
Hardy space H∞ = H∞(D). Analogously as with H2, H∞ may be identified with the subspace
of L∞ = L∞(T) given by H∞ = H2 ∩ L∞. Furthermore, H∞ is a closed subalgebra of L∞.

Now we recall the following theorem:

Theorem 4.7. (Adamjan, Arov, Krein [1]) Let ϕ ∈ L∞, and denote by Hϕ the Hankel operator
with symbol ϕ. Let Rk denote the set of rational functions in C which tend to 0 if |z| → ∞,
with poles in D with total multiplicity ≤ k. Denote by sk(Hϕ) the k-th singular value for k ≥ 0,
in non increasing order, repeated according multiplicity. Then

sk(Hϕ) = min{‖Hϕ −Hψ‖ : rank(Hψ) ≤ k}
= dist(ϕ,Rk +H∞)
= min{‖HBϕ‖ : B is a Blaschke product of degree ≤ k}.
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Example 4.8. Using the last version of the above formula, one can obtain a lower estimate for
the least eigenvalue γXab

of Xab. Note that they are ordered, according to Proposition 4.6,

‖Xab‖ = λ0 ≥ λ1 ≥ . . . λn−1 = γXab
.

We may suppose that ai 6= 0, i = 1, . . . , n. For a fixed 1 ≤ j ≤ n, denote by Baj =
∏

i 6=j
āi
|ai|

z−ai
1−āiz ,

which is a product of degree n− 1. Then by the above formula

sn−1(HBb/Ba
) ≤ ‖HB

aj
Bb/Ba

‖ = ‖H
Bb

|aj |

āj

1−ājz

z−aj

‖.

This last norm equals the distance (in the L∞(T)-norm)

dist

(

Bb

|aj|
āj

1− ājz

z − aj
,H∞

)

= inf
ϕ∈H∞

∥

∥

∥

∥

Bb

|aj |
āj

1− ājz

z − aj
− ϕ

∥

∥

∥

∥

.

Denote g(z) = Bb(1− ājz). Clearly, this infimum equals

inf
ϕ∈H∞

∥

∥

∥

∥

g(z)

z − aj
− ϕ

∥

∥

∥

∥

= inf
ϕ∈H∞

∥

∥

∥

∥

g(aj)

z − aj
+
g(z) − g(aj)

z − aj
− ϕ

∥

∥

∥

∥

= inf
ψ∈H∞

∥

∥

∥

∥

g(aj)

z − aj
− ψ

∥

∥

∥

∥

,

because ψ(z) =
g(z)−g(aj )
z−aj − ϕ(z) ∈ H∞. Note that since a ∩ b = ∅, g(aj) 6= 0. Thus

inf
ψ∈H∞

∥

∥

∥

∥

g(aj)

z − aj
− ψ

∥

∥

∥

∥

= |g(aj)| inf
ψ∈H∞

∥

∥

∥

∥

1

z − aj
− ψ

∥

∥

∥

∥

.

For a ∈ D, denote by

Na = inf

{∥

∥

∥

∥

1

z − a
− ϕ

∥

∥

∥

∥

: ϕ ∈ H∞
}

= dist

(

1

z − a
,H∞

)

= ‖H 1
z−a

‖ (13)

Note that Na ≤ 1
1−|a| . However, this inequality may be strict (see the Lemma below).

In particular, in the above example, we have for any j = 1, . . . , n,

sn−1(HBb/Ba
) ≤ |Bb(aj)|(1 − |aj |2)Naj ≤ |Bb(aj)|(1 + |aj |),

However, a better estimation can be obtained by the following lemma.

Lemma 4.9. If a ∈ D, then Na = 1.

Proof. Write fa(z) =
1
z−a =

∑

k≥0 a
kz−k−1. Note that Na is the norm of (the class of) 1

z−a in

L∞/H∞ ≃ (H1
0 )

∗, where H1
0 denotes the subspace of functions in H1 with mean value 0 (in T).

Denote by m the normalized Lebesgue measure on T. Then

Na = sup

{ ∣

∣

∣

∣

∫

T

fagdm

∣

∣

∣

∣

: g ∈ H1
0 , ‖g‖1 = 1

}

.

Note that since
∫

T
gdm = 0, g(z) =

∑

k≥1 bkz
k, with

∑

k≥1 |bk| = 1. Then

∫

T

fagdm =

∫

T





∑

k≥0

akz−k−1









∑

j≥1

bjz
j



 dm = b1 + ab2 + a2b3 + . . .

so that
∣

∣

∣

∣

∫

T

fagdm

∣

∣

∣

∣

≤
∑

k≥1

|bk||a|k−1 ≤ 1.

Taking functions of the form g(z) = b1z, |b1| = 1, we obtain that Na = 1.
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Combining these facts with Proposition 4.6, and Corollary 4.2, one obtains:

Corollary 4.10. With the current notations,

1. γXab
= λn−1 ≤ min1≤j≤n arcsin |Bb(aj)|(1 − |aj |2).

2. ‖PZa
PZb

‖ ≥
√

1− |Bb(aj)|2(1− |aj |2)2, j = 1, . . . , n.

Proof. Note that in this case ‖PZa
PZb

‖ = ‖PZ0
a
PZ0

b

‖.

Note that |Bb(aj)| =
∏n
k=1

|bk − aj|
|1− b̄kaj |

=

n
∏

k=1

ρ(bk, aj). Thus the above inequalities can be

expressed in terms of the pseudodistance ρ. For instance,

λn−1 ≤ min
1≤j≤n

arcsin
n
∏

k=1

ρ(bk, aj)(1 − |aj |2).

One can also obtain estimations for the eigenvalues of Xab by means of orthonormal bases of
the model spaces. In the notation used in the theory of model spaces, if u is an inner function,
Ku = H2 ⊖ uH2. Then, in our context

H0 = KBa∪b
, Z⊥

a = KBa
and Z⊥

b = KBb
.

Recall the following result ([3], [31]): if {uk} is a possibly finite sequence of inner functions such
that u =

∏

k≥1 uk exists, then

Ku = Ku1 ⊕
⊕

m≥2

(

m−1
∏

k=1

uk

)

Kum . (14)

Remark 4.11. We use first this formula for the pair u1 = Ba, u2 = Bb

H0 = Ka ⊕BaKb.

Note that in particular, this implies that the multiplication operator MBa
acting in H2, which

is an isometry, maps Kb onto H0 ⊖Ka. Then, we have that

MBa
PKb

M∗
Ba

= PH0 − PKa
. (15)

Note that the singular values of PKa
PKb

are strictly between 0 and 1.

Lemma 4.12. The singular values of PKa
PKb

, are of the form (1− s2)1/2, where s is a singular
value of PKb

MBa
PKb

on the space Kb.

Proof. The singular values s of PKa
PKb

are the square roots of the eigenvalues of PKb
PKa

PKb
.

Using the formula (15), one has that

PKb
PKa

PKb
= PKb

− PKb
MBa

PKb
M∗
Ba
PKb

,

which can be regarded as an operator acting in R(PKb
) = Kb, and whose eigenvalues are of the

form 1− λ, where λ is an eigenvalue of PKb
MBa

PKb
M∗
Ba
PKb

. These are, in turn, the squares of
the singular values of PKb

MBa
PKb

.
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One can also apply the formula (14) to obtain an orthonormal basis for Kb = KBb
, as is

usual. Put

ω1 =
kb1
‖kb1‖

, ω2 = Bb1
kb2
‖kb2‖

, ω3 = Bb2Bb1
kb3
‖kb3‖

, . . .

This basis is called the Takenaka-Malmquist-Walsh basis in [22].

Lemma 4.13. The operator PKb
MBa

PKb
acting in Kb is triangular in the basis {ω1. . . . , ωn}.

Proof. Since multiplication by Bbl is isometric,

〈PKb
MBa

PKb
ωi+k, ωi〉 = 〈Baωi+k, ωi〉 = 〈BaBb1 . . . Bbi+k−1

Ba

kbi+k

‖kbi+k
‖ , Bb1 . . . Bbi−1

kbi
‖kbi‖

〉

= 〈BaBbi . . . Bbi+k−1
Ba

kbi+k

‖kbi+k
‖ ,

kbi
‖kbi‖

〉 = 1

‖kbi+k
‖

1

‖kbi‖
〈BaBbi . . . Bbi+k−1

Bakbi+k
, kbi〉 = 0,

because Bbi(bi) = 0.

By a similar computation as above, the diagonal entries of PKb
MBa

PKb
in the basis {ω1, . . . , ωn}

are

λj = 〈Baωj, ωj〉 =
1

‖kbj‖2
〈Bakbj , kbj 〉 = Ba(bj) (16)

Using Weyl’s inequalities for eigenvalues and singular values one obtains the following:

Corollary 4.14. Suppose that the numbers Ba(bj), 1 ≤ j ≤ n are arranged so that |Ba(bj)| are
in decreasing order. Then, if sk(PZ0

a
PZ0

b

), 0 ≤ k ≤ n− 1 denote the singular values of PZ0
a
PZ0

b

(arranged, as is usual, also in decreasing order), one has

1.
m
∏

j=1

|Ba(bj)| ≤
m
∏

j=1

√

1− s2n−j(PZ0
a
PZ0

b

)

for 1 ≤ m ≤ n, with equality for m = n.

2.
m
∑

j=1

|Ba(bj)| ≤
m
∑

j=1

√

1− s2n−j(PZ0
a
PZ0

b

),

for 1 ≤ m ≤ n.

Proof. First recall that the singular values of PKa
PKb

= P⊥
Z0

a

P⊥
Z0

b

coincide with the singular

values of PZ0
a
PZ0

b

. The statement follows by applying Weyl’s inequalities [28] to the operator

PZ0
b

MBa
PZ0

b

. Note that the map s 7→
√
1− s2 which (by Lemma 4.12) is a bijection between

the singular values of PZ0
b

MBa
PZ0

b

and the singular values of PZ0
a
PZ0

b

reverses the order.

In particular, for m = 1:

Corollary 4.15. With the current notations, i.e., |Ba(b1)| = max1≤j≤n |Ba(bj)|, one has

1.
sn−1(PZ0

a
PZ0

b

) ≤
√

1− |Ba(b1)|2.
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2.

‖Xab‖ ≥ arcsin

(

max
1≤j,k≤n

{|Ba(bj)|, |Bb(ak)|}
)

.

Proof. The first assertion is clear. For the second assertion note that s2n−1(PZ0
a
PZ0

b

) is the least

eigenvalue of PZ0
a
PZ0

b

PZ0
a
= cos2(Xab), which, since cos is decreasing, equals cos

2(‖Xab‖). Then

cos2(‖Xab‖) = s2n−1(PZ0
a
PZ0

b

) ≤ 1− |Ba(b1)|2.

Thus,
‖Xab‖ ≥ arccos(

√

1− |Ba(b1)|2) = arcsin(|Ba(b1)|).
The numbers Ba(bj) were arranged so that |Ba(b1)| has maximum modulus. Clearly, the roles
of a and b are symmetric, thus the inequality follows.

Remark 4.16. The inequality 2. of the above corollary, was obtained in (12), in Example 4.4,
by other means.

5 Infinite zero sets in the Hardy space

In this section we only consider the case H = H2 and subsets a = {ak : k ≥ 1}, b = {bj : j ≥ 1}
of the unit disk which are infinite. Recall that the zeros {ak} of a function f ∈ H2 must satisfy
Blaschke condition

∑

k≥1(1−|ak |) <∞. This condition guarantees the convergence on compact
subsets of the infinite Blaschke product B(z) with zeros {ak} given by B(z) =

∏∞
k=1 bak(z),

where b0(z) = z, and for ak 6= 0, bak(z) =
āk
|ak|

ak−z
1−ākz , z ∈ D. We still denote by Ba and Bb the

(now infinite) Blaschke products with zeros a, b, respectively (Note: a, b are regarded as sets
and not sequences, so all zeros are simple zeros).

Remark 5.1. If we denote Za = {f ∈ H2 : f(ak) = 0, k ≥ 1}, Zb = {f ∈ H2 : f(bj) = 0, j ≥ 1},
and note that the Blaschke products Ba and Bb have simple zeros, then it clearly follows that
Za = BaH

2 and Zb = BbH
2. Suppose additionally that a ∩ b = ∅. Then, we have

Za ∩ Zb = Ba∪bH
2 and Z⊥

a ∩ Z⊥
b = {0}.

The first fact is clear. For the second, note that (Z⊥
a ∩ Z⊥

b )⊥ = 〈Za ∨Zb〉. Since a ∩ b = ∅, Ba

and Bb are co-prime inner functions, thus Za ∨ Zb generates H.

So it remains to examine Za ∩ Z⊥
b and Z⊥

a ∩ Zb. Denote by lim a the limit set of a, i.e.
lim a = a \a. Also lim a is usually known as the support of the Blaschke product Ba. Note that
since a,b accumulate only at T: lim a, limb ⊂ T.

Proposition 5.2. Suppose that a,b are disjoint infinite subsets of D, satisfying Blaschke’s
condition, and such that

lim a 6⊂ limb and limb 6⊂ lim a.

Then Za ∩ Z⊥
b = Z⊥

a ∩ Zb = {0}.

Proof. Note that since Bb, Ba ∈ H∞,

TBb/Ba
= TB̄aBb

= TB̄a
TBb

= TB̄a
MBb

,
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where MBa
,MBb

denote the multiplication operators (by Ba and Bb), which are isometries of
H2 onto BaH

2 = Za and BbH
2 = Zb, respectively. As is usual notation, Tϕ = PH2Mϕ|H2

denotes the Toeplitz operator with symbol ϕ ∈ L∞. Thus,

N(TBb/Ba
) = {f ∈ Zb : TB̄a

f = 0} = Zb ∩ Z⊥
a ,

because TB̄a
f = 0 if and only if 0 = 〈B̄af, g〉 = 〈f,Bag〉 for all g ∈ H2, i.e. f ∈ (BaH

2)⊥ = Z⊥
a .

On the other hand, the fact that there exists z0 ∈ limb\lim a, implies, by a result by Lee and
Sarason (Theorem 2 in [32]), that TB̄bBa

has dense range. Or equivalently, that T ∗
B̄bBa

= TB̄aBb

has trivial nullspace. Thus Zb ∩Z⊥
a = {0}. By a similar argument, using that lim a \ limb 6= ∅,

one obtains that Za ∩ Z⊥
b is trivial.

Corollary 5.3. Let a and b be infinite disjoint sets of D which satisfy Blaschke’s condition and
such that lim a 6⊂ limb and limb 6⊂ lim a. Then there exists a unique minimal geodesic of the
Grassmann manifold which joins Za and Zb. That is, there exists a unique self-adjoint operator
Xab satisfying that XabZa ⊂ Z⊥

a and XabZb ⊂ Z⊥
b with ‖Xab‖ ≤ π/2, and

eiXabZa = Zb.

We now examine the case of two infinite sets a, b having the same accumulation points.
We suppose that both sets have only one accumulation point. For instance, let us assume that
lim a = limb = 1. Before we give our main result, we need to recall the following facts (see, for
instance, [19]).

Remark 5.4. Let C denote the algebra of continuous functions on T. The Sarason algebra is the
following algebraic sum

H∞ + C = { f + g : f ∈ H∞, g ∈ C }.
It is known that H∞ + C is a closed subalgebra of L∞. The harmonic extension ĥ to D of a
function h ∈ H∞ + C is well-defined, and plays a fundamental role in the characterization of
invertible functions in this algebra. For h ∈ H∞ +C and 0 < r < 1, set hr(e

it) = ĥ(reit). Then
h is invertible in H∞+C if and only if there exist δ, ǫ > 0 such that |hr(eit)| ≥ ǫ for 1−δ < r < 1
and eit ∈ T. For instance, a Blaschke product is invertible in H∞ + C if and only if it is finite.

This criterion of invertibility allows one to define the index of an invertible function in
H∞ +C. For a non-vanishing function h ∈ C, let ind(h) ∈ Z be the index (or winding number)
of h around z = 0. For h invertible in H∞ + C, set ind(h) = limr→1− ind(hr). This index is
stable by small perturbations and it is an homomorphism of the invertible functions in H∞+C
onto the group of integers.

In their study of division in the algebra H∞ + C, Guillory and Sarason [25] stated without
proof that there exist two Blaschke products which are co-divisible in H∞ + C. Below we give
a proof of this fact, which combined with well-known results on Toeplitz operators allows us to
construct examples of existence and non existence of geodesics between Za and Zb in the case
where lim a = limb = {1}.

Theorem 5.5. Given an integer m ≥ 0, there are two disjoint infinite sets a,b ⊆ D such that

i) a,b satisfy Blaschke condition;

ii) lim a = limb = {1};
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iii) dimZ⊥
a ∩ Zb = 0 and dimZa ∩ Z⊥

b = m.

In this case, there exists a geodesic in Gr(H2) joining Za and Zb if and only if m = 0.

Proof. Take a set a = { ak : k ≥ 1 } ⊆ D \ {0} satisfying Blaschke condition and lim a = 1.
Consider the Blaschke product Ba with simple zeros given by the set a. Next take the set
b = { bk : k ≥ 1 } satisfying the following conditions:

i) bk = ak + ǫk ∈ D \ {0}, ǫk > 0, ∀k ≥ 1;

ii) ǫk < min{ δ(ak,a \ {ak}), δ2(ak,T) , ǫk−1},

where δ is the usual distance to a given set on the complex plane. Notice that the second
condition above guarantees that a ∩ b = ∅, limb = {1} and bk 6= bj if k 6= j. Denote by Bb

the Blaschke product with simple zeros given by the set b. We need to consider the following
Blaschke factors:

ak(z) =
āk
|ak|

ak − z

1− ākz
; bk(z) =

b̄k
|bk|

bk − z

1− b̄kz
.

Claim:

sup
θ∈[0,2π]

∣

∣

∣

∣

bk
ak

(eiθ)− 1

∣

∣

∣

∣

→ 0.

To prove it, we split the function bk/ak into three factors:

bk
ak

(eiθ) =
b̄k
|bk|

|ak|
āk

× bk − eiθ

ak − eiθ
× 1− āke

iθ

1− b̄keiθ
:= F1 × F2 × F3

Using that ǫk → 0, we have that F1 → 1. The next factor can be estimated as follows:

|F2 − 1| =
∣

∣

∣

∣

bk − eiθ

ak − eiθ
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

ǫk
ak − eiθ

∣

∣

∣

∣

≤ δ2(ak,T)

δ(ak,T)
= δ(ak,T) → 0.

Similarly, we proceed with the third factor

|F3 − 1| =
∣

∣

∣

∣

1− āke
iθ

1− b̄keiθ

∣

∣

∣

∣

=
ǫk

|1− b̄keiθ|

=
ǫk

|bk − eiθ| ≤
ǫk

|eiθ − ak| − ǫk
≤ δ(ak,T)

1− δ(ak,T)
→ 0.

This proves our claim. Denote by ‖ ‖∞ the uniform norm on T. Using that the functions ak are
unimodular, and passing to adequate subsequences, we can obtain that

‖bk − ak‖∞ ≤ 1

2k
, ∀k ≥ 1. (17)

From now on, Ba and Bb are the Blaschke products corresponding to the chosen subsequences.
Next we need to recall how to estimate products in terms of sums (see e.g. [24, Lemma 2.1]):

let n ∈ N, and let xj and yj be complex numbers with |xj | ≤ 1, |yj | ≤ 1. Then

∣

∣

∣

∣

∣

∣

n
∏

j=1

xj −
n
∏

j=1

yj

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

|xj − yj|. (18)
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Take the finite Blaschke products B
(n)
a =

∏n
k=1 ak, B

(n)
b =

∏n
k=1 bk. It is well-known that

these finite Blaschke products converge in H2 to the corresponding infinite product (see [27]).

Since B
(n)
a , B

(n)
b , Ba, Bb are unimodular functions, it follows that B

(n)
b /B

(n)
a also converges to

Bb/Ba in H2. Therefore there is a subsequence {nl} such that B
(nl)
b /B

(nl)
a converges pointwise

to Bb/Ba almost everywhere on T. Using the estimates (17) and (18), we get that almost
everywhere on T, the following holds:

∣

∣

∣

∣

∣

Bb

Ba

(eiθ)− B
(nl)
b

B
(nl)
a

(eiθ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∏

k=nl+1

bk
ak

(eiθ)− 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∏

k=nl+1

bk(e
iθ)−

∞
∏

k=nl+1

ak(e
iθ)

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=nl+1

|bk(eiθ)− ak(e
iθ)| ≤

∞
∑

k=nl+1

1

2k
−−−→
l→∞

0

Thus, we have proved that for all ǫ > 0, there is N ≥ 1 such that

‖Bb/Ba −B
(N)
b /B

(N)
a ‖∞ < ǫ. (19)

Notice that B
(N)
b /B

(N)
a ∈ H∞ + C. This follows by recalling that finite Blaschke products are

invertible in H∞ + C, and B
(N)
b ∈ H∞. Therefore we have dist(Bb/Ba,H

∞ + C) = 0, and
consequently, Bb/Ba ∈ H∞ + C. One can see that the same estimates prove that Ba/Bb ∈
H∞ + C. Indeed, note that the estimates depend on the difference of the functions ak(e

iθ) and
bk(e

iθ). Thus, Bb/Ba is an invertible function in H∞ + C.
Now we recall some characterizations of invertible Toeplitz operators (see e.g. [19]). A result

by Douglas states that given a function f ∈ H∞+C, then the Toeplitz operator Tf is Fredholm
if and only if the function f is invertible in H∞+C. Furthermore, ind(Tf ) = −ind(f), where the
last index is that of invertible functions in H∞+C (Remark 5.4). In addition, it is a well-known
fact that for a function f ∈ L∞ such that Tf is Fredholm, then Tf is invertible if and only
ind(Tf ) = 0. Returning to our example, we have that TBb/Ba

is a Fredholm operator satisfying

ind(Bb/Ba) = −ind(TBb/Ba
) = dimN(TBa/Bb

)− dimN(TBb/Ba
)

= dimZa ∩ Z⊥
b − dimZ⊥

a ∩ Zb := r

If necessary, that is, when r 6= m, we may modify a or b to get that ind(Bb/Aa) = m. To this
end note that Coburn’s lemma gives that either N(TBa/Bb

) ≃ Za ∩ Z⊥
b = {0} or N(TBb/Ba

) ≃
Z⊥
a ∩Zb = {0}. For instance, let us suppose that Z⊥

a ∩Zb = {0}; the other case can be treated
similarly. Then consider a finite set c = { ck : k = 1, . . . |m − r| } such that c ∩ a ∩ b = ∅. If
r > m, take a1 = a ∪ c and b1 = b, and if r < m, take a = a1 and b1 = b ∪ c. Therefore we
have ind(Bb1/Ba1) = m ≥ 0, and thus again by Coburn’s lemma, it must be dimZa1 ∩ Z⊥

b1
≃

dimN(TBa1/Bb1
) = m and dimZ⊥

a1
∩ Zb1 ≃ dimN(TBb1

/Ba1
) = 0.

Moreover, one can construct examples in which dimZa∩Z⊥
b = ∞ and dimZ⊥

a ∩Zb = 0. To
do this, it will be convenient to recall the following facts.

Remark 5.6.

1. For a > 0, consider the singular inner function

ψa(z) = exp(a(z + 1)/(z − 1)).
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A Blaschke product B satisfying the condition ψaB̄ ∈ H∞ + C for all a > 0, is called
a Koosis function. Such kind of functions exist in abundance. For example, if B is a
Blaschke product with real simple zeros accumulating at 1, then it is a Koosis function.
We refer to [32] and the references therein.

2. Let ψ be an inner function. Frostman’s theorem states that for all |γ| < 1, except possibly
for a set of capacity zero, the function

Aψ, γ(z) =
ψ(z) − γ

1− γ̄ψ(z)

is a Blaschke product. For instance, sets with zero capacity must have zero planar Lebesgue
measure (see e.g. [23]).

Theorem 5.7. Let B be a Koosis function with real simple zeros b = { bk : k ≥ 1 } such that
limb = {1}. For a > 0, consider the set

a =

{

α+ 2kπ − i(a+ ln(|γ|))
α+ 2kπ + i(a− ln(|γ|)) : k ∈ Z

}

, α = arg

(

γ

|γ|

)

,

for every |γ| < 1 such that Aψa, γ is a Blaschke product and α 6= kπ, k ∈ Z. Then a,b are
disjoint infinite subsets of D such that

i) a,b satisfy Blaschke condition;

ii) lim a = limb = {1};

iii) dimZ⊥
a ∩ Zb = ∞ and dimZa ∩ Z⊥

b = 0.

In particular, there is no geodesic in Gr(H2) joining the subspaces Za and Zb.

Proof. First note that the condition α 6= kπ, k ∈ Z implies that ℑ
(

α+2kπ−i(a+ln(|γ|))
α+2kπ+i(a−ln(|γ|))

)

6= 0, and

thus, we get a∩b = ∅. A direct computation shows that the zeros of A := Aψa, γ are given by the
sequence a. Indeed, we can find them by noting that ψa(z) = γ, z ∈ D, if and only if eiaw = γ,
where w = i(1 + z)/(1 − z) maps D onto the upper half-plane C+. Now a simple computation
gives the solutions wk = uk + iv, where α = arg(eavγ), uk = (α + 2kπ)/a, k ∈ Z and v > 0 is
uniquely determined by eav = |γ|−1. Thus, the zeros of A are given by ak = (wk − i)/(wk + i),
k ∈ Z. Note also that the zeros of A are simple and ak → 1.

As before, denote by Kψa
:= (ψaH

2)⊥, KA := (AH2)⊥ = Z⊥
a , and recall that there is a

unitary map defined by

F : Kψa
→ KA, Fh = (1− |γ|2)1/2 h

1− γ̄ψa
.

Further, note that h(bk) = 0, for all k ≥ 1 if and only if (Fh)(bk) = 0 for all k ≥ 1. Therefore
Kψa

∩ Zb ≃ Z⊥
a ∩ Zb. But if B is a Koosis function, then dimZ⊥

a ∩ Zb = dimN(TB/ψa
) = ∞

(see [32, Thm. 4]). Then by Coburn’s Lemma, we have Za ∩ Z⊥
b ≃ N(TA/B) = 0.

Remark 5.8.
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1. The kernel of the operator TB/ψa
is related with a classical problem of completeness of

exponentials as follows: set

λk = i
1 + bk
1− bk

,

then by [32, Lemma 7], we have N(TB/ψa
) = 〈eλkx : k ≥ 1〉⊥, where the the orthogonal is

considered as a subset of L2(0, a).

2. As a more concrete example, we observe that in [32, p. 539] the following result by L.
Schwartz is considered as a particular case of the preceding item: if {λk} is a sequence of
pure imaginary numbers satisfying

∑

1/|λk| < ∞, then 〈eλkx : k ≥ 1〉 6= L2(0, a) for all
a > 0.

5.1 Compactness conditions

Under the same assumptions and notations (H = H2, a, b infinite disjoints subsets of D satisfying
Blaschke condition), let us examine the condition that PKb

PZ0
a
= PKb

PH0⊖Ka
is compact. First

note that
PKb

PZ0
a
= PKb

MBa
PKb

M∗
Ba

is compact in H0 = Ka∪b if and only if PKb
MBa

PKb
is compact in Kb. Indeed MBa

is an
isometry in H0.

Remark 5.9. Note also that Lemma 4.13 holds in this (infinite) context: PKb
MBaPKb

is trian-
gular in the Takenaka-Malmquist-Walsh basis

ω1 =
kb1
‖kb1‖

, ω2 = Bb1
kb2
‖kb2‖

, ω3 = Bb2Bb1
kb3
‖kb3‖

, . . .

In particular, the eigenvalues of PKb
MBa

PKb
are {Ba(bj) : j ≥ 1}.

Then, we have the following elementary necessary conditions:

Proposition 5.10. Suppose that PKb
PZ0

a
is compact, then

1. Ba(bj) → 0;

2. limb ⊂ lim a.

Proof. Due to the above considerations, only the second assertion needs a proof. Let z0 ∈ T

be a limit point of b. Then, there exists a subsequence b′ = {bj1 , bj2 , . . . } such that bjk → z0.
Since Kb′ ⊂ Kb, we have that PK

b′ ≤ PKb
. Note that PKb

PZ0
a
is compact if and only if

(PKb
PZ0

a
)∗PKb

PZ0
a
= PZ0

a
PKb

PZ0
a

is compact. Then the fact that

0 ≤ PZ0
a
PK

b′PZ0
a
≤ PZ0

a
PKb

PZ0
a

implies that PZ0
a
PK

b′PZ0
a
is compact, and thus PK

b′PZ0
a
is compact. Here we have used the

following elementary fact: if 0 ≤ A ≤ B in B(H) and B is compact, then A is compact.
Indeed, consider the projection π : B(H) → B(H)/K(H) onto the Calkin algebra. Since it is
a ∗-homomorphism, it preserves the order of operators, then 0 ≤ π(A) ≤ π(B) = 0, and then
π(A) = 0.

Thus we may apply the first assertion of this Proposition to a and b′: Ba(bjk) → 0. By
Lemma 2 in [32], we have that z0 ∈ lim a.
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Corollary 5.11. If both PKb
PZ0

a
and PKa

PZ0
b

are compact, then lim a = limb.

Remark 5.12. Note that PKb
PZ0

a
= PKb

MBa
PKb

M∗
Ba

is compact (or more generally, belongs to
a p-Schatten class) if and only if PKb

MBa
PKb

is compact (resp. belongs to a p-Schatten class).
Also it is clear that these assertions hold if and only inf they hold for

PKb
MBa

|Kb
,

which is what in the literature is known as a truncated Toeplitz operator (with symbol Ba) [38].
In Theorem 3 of [33] it was shown that if θ is analytic and the set b is an interpolating sequence,
meaning that they satisfy the Carleson condition

inf
j≥1

∏

k 6=j

∣

∣

∣

∣

bj − bk
1− b̄jbk

∣

∣

∣

∣

> 0,

then
PKb

Mθ|Kb

1. is compact if and only if θ(bj) → 0;

2. belongs to the p-Schatten class (1 ≤ p <∞) if and only if {θ(bj)} ∈ ℓp.

Proposition 5.10 shows that if θ = Ba is a Blaschke product, condition 1. is necessary for
compactness, for arbitrary Blaschke products Bb (satisfying Blaschke condition). Note that,
again in this context, condition 2. is also necessary. Indeed, it is well known that the pinching
map of a given orthonormal basis, which sends an operator to the diagonal operator whose
entries are the diagonal entries of the original operator, preserves the p-Schatten classes [28].
Thus, if PKb

PZ0
a
belongs to the p-Schatten class, so does PKb

MBa
|Kb

, and therefore its diagonal
entries, namely {Ba(bj)}, belong to ℓp.

One can exhibit examples of sequences a , b such that PKb
PZ0

a
is compact:

Example 5.13. Consider b an interpolating sequence, and let a such that |bn − an| tends fast

enough to zero. For instance, consider f(t) = 1− e−1/(t−1)2 and an = f(|bn|)bn. Then

Bb(an) =
bn − an
1− b̄nan

∏

k 6=n

bk − an
1− b̄kan

.

The modulus of the first factor equals
|bn|(1− f(|bn|)
1− |bn|2f(|bn|)

, which tends to zero as n → ∞ (and

|bn| → 1). The modulus of the second factor is less than one.

In fact, for such f , it is easy to see that for |bn| near 1,
|bn|(1− f(|bn|))
1− |bn|2f(|bn|)

∼ 1

e1/(|bn|−1)2(1− |bn|)
,

which tends to zero faster than any power of (1− |bn|), and then, in particular, PKb
PZ0

a
is trace

class

Remark 5.14. In [9], the compactness of the product PQ of two orthogonal projections was
studied. For instance, the following necessary and sufficient condition was established (Theorem
4.1 in [9]):

PQ is compact if and only in there exist orthonormal bases {ξk : k ≥ 1} of R(P ) and
{ψl : l ≥ 1} of R(Q) such that

〈ξk, ψl〉 = 0 if k 6= l, and 〈ξk, ψk〉 → 0.
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Thus, in our case, PKb
PZ0

a
is compact if and only if there exist bi-orthogonal bases {fk} of Kb

and gl of Z0
a such that 〈fk, gk〉 → 0. Or equivalently, since MBa

: Kb → Z0
a = H0 ⊖ Ka is an

(onto) isometry, there exist bases {fk} and {hl} of Kb such that 〈fk, Bahl〉 = 0 if k 6= l and
〈fk, Bahk〉 → 0.
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