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The set of partial isometries as a quotient Finsler space

E. Andruchow∗
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Abstract

A known general program, designed to endow the quotient space UA/UB of the unitary

groups UA, UB of the C∗ algebras B ⊂ A with an invariant Finsler metric, is applied to

obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a

quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear

operators in H. Under this program, the solution of a linear best approximation problem

leads to the computation of minimal geodesics in the quotient space. We find solutions of

this best approximation problem, and study properties of the minimal geodesics obtained.
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1 Introduction

Let H be a complex Hilbert space, a partial isometry V in H is an operator which is an isometry

V : Si → Sf between two closed subspaces Si,Sf ⊂ H (called initial and final subspaces of V ,

respectively), and is zero on S⊥
i . Algebraically, this is equivalent to V V ∗V = V , and in this case

V ∗V and V V ∗ are the orthogonal projections onto the spaces Si and Sf . Denote by

I(H) = {partial isometries in H}.

The geometry of this set was thoroughly studied. Starting with Halmos and Mc Laughlin [14],

who characterized the connected components. Later on, other papers appeared studying geo-

metric or topological aspects of the set of partial isometries, for instance: [16], [18], [19], [1], [2],

[4], [8], [9].

Perhaps the main feature of I(H) is the left action of the group U(H)× U(H), where U(H)

denotes the unitary group of H:

(U,W ) · V = UVW ∗ , (U,W ) ∈ U(H)× U(H), V ∈ I(H). (1)

The purpose of this note is to apply the program by C. Durán, L. Mata-Lorenzo and L. Recht

[13], devised for the study of curves of minimal length in quotient spaces of the group of unitary
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elements in a C∗-algebra, to the space I(H). Indeed, I(H) is a quotient of the unitary group of

the C∗-algebra B(H) × B(H). The program in [13] proceeds (roughly) as follows. If M admits

the transitive action of the unitary group UA of the C∗-algebra A, then M can be regarded as a

quotient UA/G for G a Banach-Lie subgroup of UA. The program requires that G be the unitary

group of a unital sub-C∗-algebra B ⊂ A (though this requirement can be sometimes relaxed

or bypassed, as it is done here). Therefore, the tangent spaces TM are naturally isomorphic to

the quotient of the (real) Banach spaces Ah/Bh, where Bh ⊂ Ah denote the sets of selfadjoint

elements of B and A, respectively. Using this isomorphism, Durán, Mata-Lorenzo and Recht [13]

endowed TM with quotient metric of Ah/Bh. The metric, by design, is invariant under the action

of UA on M . Therefore, tangent vectors can be lifted to selfadjoint elements in A: the norm of

such a vector is given by the infimum of the norms (measured in A) of all possible liftings.

Their main result states that if m ∈ M and v ∈ (TM)m are given, and one can find a lifting

x0 ∈ Ah of v, whose norm ‖x0‖ attains the infimum of all possible liftings of v, then the curve

obtained as the uniparametric subgroup eitx0 acting on m, which at t = 0 passes through m

with velocity v, has minimal length for this metric, at least for time |t| ≤ π
2‖x0‖

. Such liftings x0

are called minimal liftings, their existence is not guaranteed, and even when they do exist, their

characterization is an interesting problem, even in the case of finite dimensional algebras (i.e.,

matrix algebras): see for instance [5], [7], [15]. This problem is also related with non-commutative

C∗-metrics and Leibniz seminorms [22]. An important background to the present work are the

papers by E. Chiumiento [8], [9]. In these papers, quotient metrics and minimal liftings are

studied in the orbits of partial isometries under the action of the so called restricted groups of

unitaries (i.e., unitaries which are of the form 1 +K, for K in an operator ideal).

Therefore, in dealing with particular examples, as is the case here, the focus is on the com-

putation of such minimal liftings.

Another antecedent of this aproach can be found in [3], where the space of isometries was

studied, though not with the quotient norm considered here

The contents of this note are the following. In Section 2 we state the basic facts on the space

I(H) and the action of U(H) × U(H). In Section 3 we present an embedding of I(H) into the

manifold of selfadjoint elements ǫ of H ×H which satisfy ǫ3 = ǫ, i.e., are operators of the form

ǫ = E+−E−, with E+, E− mutually orthogonal projections. In Section 4 we recall from [13] the

program of Durán, Mata-Lorenzo and Recht. Following these ideas, in Section 5 we introduce

Finsler metrics in I(H) and in the space of the operators ǫ described in Section 3; with these

metrics, the embedding of Section 3 is isometric. We show that the Finsler norm in TI(H) is

equivalent to the usual operator norm in B(H). We also prove the main theorem of this note:

that curves obtained by the method of [13] are not only minimal in I(H), but also minimal in

the bigger manilfold of the operators ǫ of Sectin 3. In Section 6 we consider the initial and final

projections maps

α(V ) = V ∗V , ω(V ) = V V ∗.

It is shown that if the set of projections is considered with its natural Finsler metric (see [11]),

both maps are distance decreasing.
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2 Preliminaries

Let us recall the basic facts of the space I(H) and the action (1):

Remark 2.1. Let V, V0, V1, V2 ∈ I(H).

1. The connected components of I(H) are parametrized by three non negative integers ≤ +∞:

r(V ) = dimR(V ), n(V ) = dimN(V ) and r⊥(V ) = dimR(V )⊥.

Namely, V1, V2 ∈ I(H) belong to the same connected component if and only if r(V1) =

r(V2), n(V1) = n(V2) and r⊥(V1) = r⊥(V2) (see [14]).

2. If ‖V1 − V2‖ < 1, then V1 and V2 lie in the same connected component of I(H) see [14].

3. These components coincide with the orbits of the action (1): V1, V2 lie in the same com-

ponent if and only if there exist U,W ∈ U(H) such that UV1W
∗ = V2.

4. More recently, in [1] we considered the set of partial isometries of a C∗-algebra, as a homo-

geneous manifold. Each connected component / orbit, is a C∞ complemented submanifold

of the algebra. Back to the case when the algebra is B(H), if I(H)V0 denotes the connected

component of V0, then the map

πV0 : U(H)× U(H) → I(H)V0 , πV0(U,W ) = UV0W
∗ (2)

is a C∞-submersion (see [1]). Note then that the whole space I(H) is a discrete union of

complemented submanifolds (any two different components lying at distance of at least 1),

and therefore is itself a complemented submanifold of B(H).

5. Given V0, the subgroup of elements in U(H) × U(H) which fix the element V0, usually

called the isotropy subgroup of V0, is given by

IV0 = {(G,H) ∈ U(H)× U(H) : GV0 = V0H}. (3)

It is a C∞ Banach-Lie group, whose Banach-Lie algebra is

ιV0 = {(iX, iY ) ∈ B(H)× B(H) : X∗ = X,Y ∗ = Y and XV0 = V0Y }. (4)

V ∈ I(H) is called balanced if n(V ) = r⊥(V ). This type of partial isometries comprise full

connected components of I(H). Note that V ∈ I(H) is balanced if and only if there exists an

orthogonal projection P and unitaries U,W such that V = UPW ∗. Indeed, if V = UPW ∗,

then V and P lie in the same connected component, and therefore, by Halmos-McLaughlin’s

characterization, n(V ) = n(P ) = r⊥(P ) = r⊥(V ). The converse statement is clear.

Non-unitary isometries are examples of non balanced partial isometries.

The purpose of this note, is to introduce a natural invariant Finsler metric in I(H). That is, a

metric | |V in each tangent space (TI(H))V , which is invariant under the action of U(H)×U(H):

if V ∈ (TI(H))V and U,W ∈ U(H), then

|V|V = |UVW ∗|UVW ∗ .
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Here, note that the action is linear: for fixed U,W ∈ U(H), the map V 7→ UVW ∗ is the restriction

of a global bounded linear map X 7→ UXW ∗.

It will be useful to recall the form of the tangent spaces of I(H). The fact that the map (2)

is a submersion, implies that its tangent maps are surjective. Then

(TπV0)(1,1) : (TU(H)× U(H))(1,1) = {(iX, iY ) : X∗ = X,Y ∗ = Y } → (TI(H))V0
,

(TπV0)(1,1)((iX, iY ) = iXV0 − iV0Y

is surjective, and

(TI(H))V0
= {iXV0 − iV0Y : X∗ = X,Y ∗ = Y }. (5)

The metric that will be considered in TI(H) is a quotient metric, using the homogeneous struc-

ture of I(H) (as a quotient of the group U(H)× U(H)), following the program outlined in the

seminal paper by Durán, Mata-Lorenzo and Recht [13]. We shall describe it in Section 4.

Following this program, one can compute curves of minimal length (metric geodesics) of this

Finsler metric, by finding minimal liftings of tangent vectors in TI(H).

3 2× 2 model for I(H)

Given V ∈ I(H), consider ǫV ∈ B(H×H) given by

ǫV =

(

0 V

V ∗ 0

)

.

Note that ǫ∗V = ǫV ,

ǫ2V =

(

V V ∗ 0

0 V ∗V

)

,

where V ∗V and V V ∗ are the initial and final projections of V , and that

ǫ3V =

(

0 V V ∗V

V ∗V V ∗ 0

)

=

(

0 V

V ∗ 0

)

= ǫV

It follows that ǫ = ǫV is a selfadjoint root of the polynomial x3 − x, and therefore has a simple

spectral decomposition of the form

ǫV = 0 ·E0 + 1 ·E+ − 1 ·E− = E+ − E−,

with

E+ =
1

2
{ǫ2V + ǫV }, E− =

1

2
{ǫ2V − ǫV } and E0 = 1− ǫ2V ,

the mutually orthogonal spectral projections of ǫV .

Remark 3.1. Consider ǫ = ǫ∗ with ǫ3 = ǫ. The unitary orbit of ǫ, under the inner action of the

unitary group of H×H,

Oǫ = {U ǫ U∗ : U =

(

U11 U12

U21 U22

)

∈ U(H×H)},

4



is a complemented C∞-submanifold of B(H×H), and a homogeneous space of the unitary group

U(H×H) (see [10]). The isotropy group of ǫ is given by

Iǫ = {G =

(

G11 G12

G21 G22

)

∈ U(H×H) : G ǫ = ǫ G}.

The Banach-Lie algebra, in the special case where ǫ = ǫV for some V ∈ I(H), is

ιǫV =
{

iX = i

(

X11 X12

X∗
12 X22

)

∈ B(H×H) : X∗
ii = Xii and











X12V
∗ = V X∗

12,

X∗
12V = V ∗X12,

X11V = V X22

}

.

If we restrict the above inner action (on ǫV ) to the diagonal subgroup

∆ =
{

(

U 0

0 W

)

: U,W ∈ U(H)
}

⊂ U(H×H),

we obtain a copy of the connected component (orbit) of V :

Proposition 3.2. Let V ∈ I(H), then

∆ · ǫV =
{

(

0 UVW ∗

(UVW ∗)∗ 0

)

: U,W ∈ U(H)
}

= {ǫUVW ∗ : U,W ∈ U(H)} ≃ IV .

Proof. It is a straightforward computation:
(

U 0

0 W

)(

0 V

V ∗ 0

)(

U∗ 0

0 W ∗

)

=

(

0 UVW ∗

WV ∗U∗ 0

)

Note that

(T∆ · ǫV )ǫV =
{

(

0 iXV − iV Y

iY V ∗ − iV ∗X 0

)

: X∗ = X,Y ∗ = Y
}

.

4 The program of Durán, Mata-Lorenzo and Recht

Let us briefly describe the context and main result of [13]. Let B ⊂ A be unital C∗-algebras

(with the same unit). Denote by UB and UA the unitary groups of B and A, respectively. In

[13] a metric was introduced in the homogeneous (quotient) space M = UA / UB. If u ∈ UA,

let [u] ∈ M be the class of u in the quotient space. The Banach-Lie algebras of UA and UB are,

respectively

uA = {ix : x∗ = x ∈ A}, uB = {iy : y∗ = y ∈ A}.

For [u] ∈ M , let

π[u] : UA → M, π[u](w) = [uw].

The tangent space of M at [u] naturally identifies with the quotient of the Lie algebras of

UA and UB:

(TM)[u] ≃ uA / uB,

since (Tπ[u])[1] : uA → (TM)[u] is an epimorphism with nullspace uB. In this tangent space they

define the natural metric:

5



Definition 4.1. If v = ix+ uB ∈ (TM)[u]

|v|[u] := inf{‖x+ y‖ : y∗ = y ∈ B}, (6)

i.e., the usual metric in the quotient of (real) Banach spaces uA / uB.

Definition 4.2. Let v ∈ (TM)[u]. An element x0 = x∗0 ∈ A is a minimal lifting of v if

v = ix0 + uB

and

‖x0‖ = inf{‖x0 + y‖ : y = y∗ ∈ B} = |v|[u].

That is, x0 attains the norm of the class in the quotient norm.

In general, minimal liftings may not exist (see for instance the paper [7] for an interesting

example). However, when they do exist, they provide curves of minimal length in M :

Theorem 4.3. (Durán, Mata-Lorenzo, Recht [13])

Let [u] ∈ M and v ∈ (TM)[u]. Suppose that v has a minimal lifting x0. Then the curve

δ(t) = [eitx0u]

which satisfies the initial conditions

δ(0) = [u] and δ̇(0) = v,

has minimal length along its path for |t| ≤ π
2|v|[u]

= π
2‖x0‖

.

Here, by minimal length along its path at the given interval of t, means that if [t0, t1] is a

subinterval of [− π
2|v|[u]

, π
2|v|[u]

], and γ(t) (t ∈ I) is an arbitrary smooth curve in M joining δ(t0)

and δ(t1), then

ℓ(δ|[t0,t1]) =

∫ t1

t0

|δ̇(t)|δ(t)dt ≤

∫

I

|γ̇(t)|γ(t)dt = ℓ(γ).

Example 4.4. An example where minimal liftings exist at every tangent vector (at every point),

occurs when both A and B are von Neumann algebras. For instance, if V ∈ I(H), then

M = OǫV ≃ U(H×H) / U(H×H) ∩ {ǫV }
′

is such an example. Indeed, U(H×H)∩{ǫV }
′ is the unitary group of the von Neumann algebra

{ǫV }
′ ⊂ B(H×H).

5 Finsler metric and minimal curves in I(H)

In this section we show that minimal liftings of the homogeneous space

OǫV ≃ U(H) /U(H) ∩ {ǫV }
′

induce in a simple manner minimal liftings in I(H), or more precisely, in the connected compo-

nent I(H)V ≃ U(H)× U(H) / IV of V in I(H).

6



Note that IV is not the unitary group of a selfadjoint algebra in a straightforward fashion.

We shall use the 2 × 2 model for I(H), in order to be able to obtain minimal liftings, and as

a byproduct, a stronger minimality result. Namely, that the metric geodesics obtained are not

only (locally) minimal in I(H), but also in the ambient manifold OǫV (regarding I(H)V as a

subset of OǫV via the isometric embedding I(H)V →֒ OǫV , V 7→ ǫV ).

Following the program in [13], we define the following Finsler metrics in OǫV and in I(H).

If ǫ3 = ǫ∗ = ǫ, and V ∈ (TOǫ)ǫ, we put

|V|ǫ = inf{‖X‖ : (Tπǫ)1(X) = V} = inf{‖X+ Z‖ : Z ∈ ιǫ} (7)

If V ∈ I(H) and V ∈ (TI(H))V , we put

|V|V = inf{‖(A,B)‖ : A,B ∈ B(H), A∗ = A,B∗ = B and iAV − iV B = V}, (8)

where as is usual ‖(A,B)‖ = max{‖A‖, ‖B‖} (i.e., the C∗-norm in B(H)× B(H)).

Remark 5.1. Clearly, definitions (7) and (8) make

I(H) → ∆ · ǫV , V 7→ ǫV

an isometric diffeomorphism.

Before we proceed, we state the following results, which are elementary and known, and will

be used thoroughly. The first fact, is that if one deals with n× n (block) operator matrices, the

diagonal map

E
(













A11 A12 . . . A1n

A21 A22 . . . A2n

. . . . . . . . . . . .

An1 An2 . . . Ann













)

=













A11 0 . . . 0

0 A22 . . . 0

. . . . . . . . . . . .

0 0 . . . Ann













(9)

is positive, linear and contractive. The second fact is the following:

Lemma 5.2. Let A,P in B(H), P an orthogonal projection. Regard A as a 2 × 2 matrix in

terms of P :

A =

(

A11 A12

A21 A22

)

R(P )

N(P )
.

Then
∥

∥

∥

(

0 A12

A21 0

)

∥

∥

∥
≤
∥

∥

∥

(

A11 A12

A21 A22

)

∥

∥

∥
.

Proof. Note that

‖A‖2 = ‖A∗A‖ =
∥

∥

∥

(

A∗
11A11 +A∗

21A21 A∗
11A12 +A∗

21A22

A∗
12A11 +A∗

22A21 A∗
12A12 +A∗

22A22

)

∥

∥

∥ ≥ ‖E(A∗A)‖,

where E is the linear map given in (9),

‖E(A∗A)‖ =
∥

∥

∥

(

A∗
11A11 +A∗

21A21 0

0 A∗
12A12 +A∗

22A22

)

∥

∥

∥

7



Since clearly

(

A∗
11A11 +A∗

21A21 0

0 A∗
12A12 +A∗

22A22

)

≥

(

A∗
21A21 0

0 A∗
12A12

)

we get

‖A‖2 ≥
∥

∥

∥

(

A∗
21A21 0

0 A∗
12A12

)

∥

∥

∥
=
∥

∥

∥

(

0 A∗
21

A∗
12 0

)(

0 A12

A21 0

)

∥

∥

∥
=
∥

∥

∥

(

0 A12

A21 0

)

∥

∥

∥

2

Our next goal is to compare |V|V with the usual operator norm ‖V‖ of V ∈ (TI(H))V , for

V ∈ I(H). In fact, we shall see that for each fixed V ∈ I(H), | |V and ‖ ‖ are equivalent in

(TI(H))V . To do this task, we shall need a classical result by M.C. Krein [17], known as the

extension problem for symmetric transformations (see also the excellent text [23], Section 125,

or also [12], [20] for more nuanced developements on this subject). We state this result in the

following remark, adapted to our particular problem:

Remark 5.3. Let
(

A11 A12

A∗
12 ∗

)

be an incomplete operator matrix, with A∗
11 = A11. Then there exist (non unique) selfadjoint

completions

A =

(

A11 A12

A∗
12 A22

)

with ‖A‖ =
∥

∥

∥

(

A11

A∗
12

)

∥

∥

∥ = ‖
(

A11 A12

)

‖.

Theorem 5.4. Let V ∈ I(H) and V ∈ (TI(H))V . Then

|V|V ≤ ‖V‖ ≤ 2|V|V

Proof. Let us first consider the case of a balanced partial isometry, n(V ) = r⊥(V ). Let U,W be

unitaries such that UP0W
∗ = V , for an orthogonal projection P0. Clearly, pulling back V with

the left action of the pair (U,W ), it suffices to reason in the case V = P0. To this effect, note

that the action of (U,W ) is isometric both for the Finsler norm | |V and the operator norm ‖ ‖.

Let (A,B) be a lifting for V, i.e., A∗ = A, B∗ = B and iAP0 − iP0B = V. Note that, in matrix

form in terms of P0,

V = i

(

A11 A12

A∗
12 A22

)(

1 0

0 0

)

− i

(

1 0

0 0

)(

B11 B12

B∗
12 B22

)

= i

(

A11 −B11 B12

A∗
12 0

)

Let us alter the lifting (A,B). Put

B0 =

(

0 B12

B∗
12 0

)

8



and

A0 =

(

A11 −B11 A12

A∗
12 Z

)

where Z = Z∗ is such that A0 is a solution of Krein’s extension problem for the symmetric

incomplete matrix
(

A11 −B11 A12

A∗
12 ∗

)

Straightforward computations show that (A0, B0) is also a lifting of V: A∗
0 = A0, B

∗
0 = B0 and

iA0P0 − iP0B0 = V. Then

‖A0‖ =
∥

∥

∥

(

A11 −B11

A∗
12

)

∥

∥

∥
=
∥

∥

∥

(

A11 −B11 0

A∗
12 0

)

∥

∥

∥
=
∥

∥

∥

(

A11 −B11 B12

A∗
12 0

)(

1 0

0 0

)

∥

∥

∥

= ‖VP0‖ ≤ ‖V‖.

On the other hand

∥

∥

∥

(

0 B12

B∗
12 0

)

∥

∥

∥ =
∥

∥

∥

(

0 B12

0 0

)

∥

∥

∥ =
∥

∥

∥

(

A11 −B11 B12

A∗
12 0

)(

0 0

0 1

)

∥

∥

∥ = ‖VP⊥
0 ‖ ≤ ‖V‖.

Thus, we have found a lifting (A0, B0) of V such that

‖(A0, B0)‖ = max{‖A0‖, ‖B0‖} ≤ ‖V‖.

It follows that |V|P0 ≤ ‖V‖.

Let us now consider the general case. Consider the Hilbert space H × H. Note that V ⊕ 0

in H ×H defined as V (ξ, η) = (V ξ, 0) is a partial isometry with n(V ⊕ 0) = r⊥(V ⊕ 0) = +∞.

Similarly, if V ∈ (TI(H))V , then V ⊕ 0 ∈ (TI(H×H))V⊕0. Note that

|V ⊕ 0|V ⊕0 ≤ |V|V .

Indeed, any lifing (A,B) of V, provides a lifting (A⊕ 0, B ⊕ 0) of V ⊕ 0. On the other hand, if

(

A11 A12

A∗
12 A22

)

,

(

B11 B12

B∗
12 B22

)

is a lifting of V ⊕ 0. i.e.,

V ⊕ 0 =

(

V 0

0 0

)

= i

(

A11V − V B11 −V B12

A∗
12V 0

)

,

then, in particular (A11, B11) is a lifting for V. Since

‖A11‖ ≤
∥

∥

∥

(

A11 A12

A∗
12 A22

)

∥

∥

∥ and ‖B11‖ ≤
∥

∥

∥

(

B11 B12

B∗
12 B22

)

∥

∥

∥,

it follows that |V|V ≤ |V ⊕ 0|V⊕0. Then, by the first case,

‖V‖ = ‖V ⊕ 0‖ ≤ |V ⊕ 0|V⊕0 = |V|V .

9



The other inequality is trivial:

‖V‖ = ‖AV − V B‖ ≤ ‖AV ‖+ ‖V B‖ ≤ ‖A‖ + ‖B‖ ≤ 2max{‖A‖, ‖B‖},

for any lifting (A,B) of V.

Remark 5.5. The inequality |V|V ≤ ‖V‖ may be strict. The problem of finding completions of

2× 2 matrices with minimal norm has been studied for non-selfadjoint matrix operators (see for

instance [12]). Namely, applied in our context and following the notations of the above theorem,

given the incomplete (non-selfadjoint) matrix operator
(

A11 −B11 B12

A∗
12 ∗

)

There exists a completion C =

(

A11 −B11 B12

A∗
12 Y

)

with minimal norm, that is

‖C‖ = max{‖
(

A11 −B11 B12

)

‖,
∥

∥

∥

(

A11 −B11

A∗
12

)

∥

∥

∥
}.

The row
(

A11 −B11 B12

)

is the first row of the incomplete matrix

(

A11 −B11 B12

B∗
12 ∗

)

which can be completed with minimal norm to the selfadjoint operator

(

A11 −B11 B12

B∗
12 Z ′

)

,

with

‖
(

A11 −B11 B12

)

‖ =
∥

∥

∥

(

A11 −B11 B12

B∗
12 Z ′

)

∥

∥

∥.

By Lemma 5.2,
∥

∥

∥

(

A11 −B11 B12

B∗
12 Z ′

)

∥

∥

∥ ≥
∥

∥

∥

(

0 B12

B∗
12 0

)

∥

∥

∥.

Similarly, reasoning with the first column

(

A11 −B11

A∗
12

)

, we get that there is a selfadjoint

completion

(

A11 −B11 A12

A∗
12 Z

)

such that

∥

∥

∥

(

A11 −B11

A∗
12

)

∥

∥

∥
=
∥

∥

∥

(

A11 −B11 A12

A∗
12 Z

)

∥

∥

∥
.

It follows that

‖C‖ ≥ max{
∥

∥

∥

(

0 B12

B∗
12 0

)

∥

∥

∥
,
∥

∥

∥

(

A11 −B11 A12

A∗
12 Z

)

∥

∥

∥
},

which is the norm of a lifting (A0, B0) of V (as in the first part of the proof of the above Theorem).

That is, ‖C‖ ≥ |V|V . Now, C and −iV are both completions of the same incomplete (non-

selfadjoint) matrix. Since C has minimal norm among these completions, one has ‖C‖ ≤ ‖V‖.

Moreover, it is known that, in general, putting 0 in the 2, 2 place is not the optimal solution (see

[12], [20]): there are examples where ‖C‖ < ‖V‖. Then, for such V, we have |V|V < ‖V‖.
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In order to establish the existence of minimal liftings in I(H), we need the next lemma.

Lemma 5.6. Let V ∈ I(H) and A =

(

A1 0

0 A2

)

be selfadjoint in H×H. Let

X =

(

X11 X12

X∗
12 X22

)

∈ {ǫV }
′, X∗ = X∗,

such that

‖A+X‖ ≤ ‖A+Y‖ for all Y∗ = Y ∈ {ǫV }
′

(which exists, recall Example 4.4). Then X0 :=

(

X11 0

0 X22

)

satisfies

• X0 commutes with ǫV , in particular, iX0 ∈ ιV ;

• ‖A+X0‖ ≤ ‖A+ Z‖ for all iZ ∈ ιV .

Proof. Clearly, X∗
0 = X0. The fact that X commutes with ǫV , means that











X12V
∗ = V X∗

12,

X∗
12V = V ∗X12,

X11V = V X22

and thus also X0 commutes with ǫV , in particular X11V = V X22, which means that iX0 ∈ ιV .

By the same argument, it is also clear that if Z =

(

Z11 Z12

Z∗
12 Z22

)

commutes with ǫV , then also

Z0 =

(

Z11 0

0 Z22

)

also commutes with ǫV . Then

‖A+X‖ ≤ ‖A+ Z0‖.

On the other hand, the linear map E : B(H×H) → B(H×H) given by

E
(

(

T11 T12

T21 T22

)

)

=

(

T11 0

0 T22

)

is contractive. Then

‖A+X0‖ = ‖E(A +X)‖ ≤ ‖A+X‖ ≤ ‖A+ Z0‖, (10)

which completes the proof.

We shall call A0 := A +X0 a diagonal minimal lifting. Note that the above Lemma states

that any vector tangent to ∆ · ǫV has a diagonal minimal lifting A0. Applying Theorem 4.3 [13]

we get

Theorem 5.7. Let V ∈ I(H) and V = iXV − iV Y ∈ (TI(H))V . Let V =

(

0 V

V∗ 0

)

∈

(T∆ · ǫV )V , and pick A0 a diagonal minimal lifting for V. Then the curve

δ(t) = eitA0 ǫV e−itA0
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which satisfies that δ(0) = ǫV and δ̇(0) = V, has minimal length along its path in ∆ · ǫV , for

|t| ≤ π
2|V|V

. Moreover, it also has minimal length among curves in bigger manifold OǫV , in the

same time interval.

Proof. The proof of the above Lemma, in fact shows that A + X0 is a minimal lifting in the

bigger quotient space.

Therefore, if we consider the quotient left invariant metric in I(H), we obtain:

Corollary 5.8. Let V ∈ I(H) and V = iXV − iV Y ∈ (TI(H))V . Then there exist X∗
0 = X0,

Y ∗
0 = Y0 with V = iX0V − iV Y0, such that the curve

δ(t) = eitX0V e−itY0

which satisfies δ(0) = V and δ̇(0) = V, has minimal length along its path in I(H), for |t| ≤ π
2|V|V

.

6 Initial and final projections

If V ∈ I(H), denote by α(V ) = V ∗V and ω(V ) = V V ∗ the initial and final projections of V .

Denote by P(H) the space of (orthogonal) projections of B(H). The space of projections of a

C∗-algebra has been well studied, as a complemented submanifold of the algebra, and as an

homogeneous space of the inner action of the unitary group of the algebra (u · p = upu∗, if u

is unitary and p is a projection). It has also been studied as a Finsler metric space, where each

tangent space is endowed with the usual norm of the algebra (see [21] and [11]). In the specific

case of the algebra B(H), existence of minimal geodesics with given initial conditions or with

given endpoints, have been characterized (see the references above, or [6] for the specific case of

the algebra B(H)).

Clearly, the maps

α : I(H) → P(H), α(V ) = V ∗V and ω : I(H) → P(H), ω(V ) = V V ∗

are C∞. Let us show that, if P(H) is given the above mentioned Finsler metric, i.e., the usual

norm at every tangent space, and I(H) is considered with the quotient metric studied here,

then both maps α and ω decrease distances. This fact is based in Lemma 5.2. As said above, we

consider I(H) and P(H) as metric spaces, with their given Finsler metrics. Recall how a Finsler

metric in the tangent spaces induces a metric in the original space: if M is a manifold with a

Finsler metric | |m at (TM)m (for m ∈ M), then

dM (m1,m2) = inf{ℓ(γ) : γ(t) ∈ M, t ∈ [a, b], γ is smooth , γ(a) = m1, γ(b) = m2},

where

ℓ(γ) =

∫ b

a

|γ̇(t)|γ(t)dt.

Proposition 6.1. The maps

α : I(H) → P(H), α(V ) = V ∗V
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and

ω : I(H) → P(H), ω(V ) = V V ∗

are distance decreasing, i.e., if V1, V2 ∈ I(H), Ei = α(Vi), Fi = ω(Vi), i = 1, 2, then

dP(H)(E1, E2) ≤ dI(H)(V1, V2) and dP(H)(F1, F2) ≤ dI(H)(V1, V2).

Proof. We reason with the map α (the argument with ω is similar). It suffices to show that the

tangent maps (Tα)V : (TI(H))V → (TP(H))α(V ),

(Tα)V (V) = V∗V + V ∗V

are contractive. Pick a pair (iX, iY ), X∗ = X,Y ∗ = Y which lifts V, i.e., V = iXV − iV Y . Then

(Tα)V (V) = (−iV ∗X + iY V ∗)V + V ∗(iXV − iV Y ) = iY α(V )− iα(V )Y = i[Y, α(V )].

Note that the matrix of [Y, α(V )] in terms of the projection α(V ) is

(

Y11 Y12

Y ∗
12 Y22

)(

1 0

0 0

)

−

(

1 0

0 0

)(

Y11 Y12

Y ∗
12 Y22

)

=

(

0 −Y12

Y ∗
12 0

)

,

whose norm equals the norm of

(

0 Y12

Y ∗
12 0

)

=

(

0 −Y12

Y ∗
12 0

)(

1 0

0 −1

)

=

(

0 −Y12

Y ∗
12 0

)

(2α(V )− 1),

bacause 2α(V )− 1 is a unitary operator. By Lemma 5.2

∥

∥

∥

(

0 −Y12

Y ∗
12 0

)

∥

∥

∥ ≤ ‖Y ‖ ≤ max{‖X‖, ‖Y ‖} = ‖(X,Y )‖.

Since this holds for any pair (X,Y ) which lifts V, we have that

|V|V = inf{‖(X,Y )‖ : iXV − iV Y = V} ≥ ‖(Tα)V (V)‖,

as claimed.

6.1 Balanced isometries

Recall that V ∈ I(H) is called balanced if n(V ) = r⊥(V ).

In some special directions, more can be said about minimal liftings and geodesics at balanced

isometries.

Definition 6.2. Let V ∈ I(H) be balanced, with inititial space R(α(V )) = Si and final space

R(ω(V )) = Sf . We call a tangent vector V ∈ (TI(H))V orthogonal at V if V as an operator in

H, satisfies that V(Si) ⊥ Sf . Equivalently, ω(V )Vα(V ) = 0

Let us construct explicit minimal liftings for tangent vectors which are othogonal to V .
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1. Let V ∈ (TI(H))V such that ω(V )V α(V ) = 0. First, using the left action of U(H)×U(H),

we may suppose without loss of generality that V = P0 is an orthogonal projection. Indeed,

there exist U,W ∈ U(H) such that V = UP0W
∗. Then V0 := U∗VW ∈ (TI(H))P0

satisfies

0 = ω(V )Vα(V ) = V V ∗VV ∗V = UP0W
∗(UP0W

∗)∗V(UP0W
∗)∗UP0W

∗ = UP0U
∗VWP0W

∗

= UP0V0P0W
∗,

and thus, P0V0P0 = 0. Suppose that we find (A,B) a minimal lifting for V0 at P0, i.e.,

iAP0 − iP0B = V0 with

‖(A,B)‖ ≤ ‖(A,B) + (X,Y )‖ for all (iX, iY ) ∈ ιP0 .

Then (UAU∗,W ∗BW ) is a lifting for UV0W
∗ = V at V :

iUAU∗V−iV W ∗BW = U{iAU∗VW ∗−iU∗VWB}W ∗ = U{iAP0−iP0B}W ∗ = UV0W
∗ = V,

which is minimal

‖(UAU∗,W ∗BW )‖ = ‖(A,B)‖ ≤ ‖(A,B)+(X,Y )‖ = ‖(UAU∗,W ∗BW )+(UXU∗,W ∗YW )‖,

where (UXU∗,W ∗YW ) parametrizes all elements in Ad(U,W )(ιP0) = ιUP0W ∗ = ιV .

2. Let us construct a minimal lifting for V0 at P0 (with P0V0P0 = 0). Let (A,B), A∗ = A,

B∗ = B such that iAP0 − iP0B = V0. Then P0AP0 = P0BP0. Pick

A0 = P0AP
⊥
0 + P⊥

0 AP0 and B0 = P0BP⊥
0 + P⊥

0 BP0.

Clearly A∗
0 = A0 and B∗

0 = B0. Also, since P0AP0 = P0BP0, after elementary computa-

tions,

V0 = iAP0 − iP0B = iA0P0 − iP0B0.

Finally, if (A′, B′) is another lifting of V0, then

P0V0P
⊥
0 = P0(iA

′P0 − P0B
′P⊥

0 )P⊥
0 = iP0B

′P⊥
0 ,

i.e., P0B
′P⊥

0 = P0B0P
⊥
0 , and therefore also

P⊥
0 B′P0 = (P0B

′P⊥
0 )∗ = (P0B0P

⊥
0 )∗ = P⊥

0 B0P0.

That is, in matrices in terms of P0, B
′ and B0 have the same off-diagonal entries. Clearly

the same happens for A′ and A0. By Lemma 5.2, since A0 and B0 are codiagonal,

‖A0‖ ≤ ‖A′‖ and ‖B0‖ ≤ ‖B′‖,

i.e., (A0, B0) is a minimal lifting.

These special (co-diagonal, minimal) liftings just exhibited for these special velocities, have the

following property:
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Proposition 6.3. Let V ∈ I(H) and V ∈ (TI(H))V such that V is orthogonal to V (i.e.,

ω(V )Vα(V ) = 0). Pick (A0, B0) a codiagonal minimal lifting of V as above. Then the curve

δ(t) = eitA0V e−itB0 (minimal along its path up to |t| ≤ π
2|V|V

), verifies that the initial and final

projection curves

α(δ), ω(δ) ∈ P(H)

are minimal along their paths in P(H), for |t| ≤ π
2‖B0‖

and |t| ≤ π
2‖A0‖

, respectively.

Proof. Note that

α(δ)(t) = δ∗(t)δ(t) = (eitA0V e−itB0)∗eitA0V e−itB0 = e−itB0V ∗V e−itB0 = e−itB0α(V )e−itB0 ,

with B0 co-diagonal with respect to α(V ). Indeed, with the same argument as above, it suffices

to consider V = P0, in which case it is evident. Therefore (see [21]), α(δ) is minimal in P(H)

for |t| ≤ π
2‖B0‖

. The argument with ω(δ) is analogous.

In other words, for balanced isometries, and velocities which are orthogonal to V , locally,

moving from V0 to V1 optimally in I(H), involves the optimal paths for the initial and final

spaces of V0 and V1.

Recall from Theorem 5.4 the comparison between the Finsler norm of V at V and the

ambient norm of V: |V|V ≤ ‖V‖. Note that, for velocities which are orthogonal, at balanced

partial isometries, both norms coincide:

Remark 6.4. Let V ∈ I(H) and V ∈ (TI(H))V such that V is orthogonal to V . Then

|V|V = ‖(A0, B0)‖ = max{‖A0‖, ‖B0‖} = ‖V‖,

its norm as an element in B(H). Indeed, again it suffices to reason in the case V = P0. As seen

in the discussion preceding the above proposition, V has co-diagonal matrix in terms of P0:

V =

(

0 iB0

iA0 0

)

.

Then

‖V‖2 = ‖

(

0 iB0

iA0 0

)∗(

0 iB0

iA0 0

)

‖ = ‖

(

A2
0 0

0 B2
0

)

‖ = max{‖A0‖
2, ‖B0‖

2}.

If γ(t) ∈ I(H), t ∈ I is smooth, denote by ℓ∞(γ) the length of γ with the metric induced by

the ambient norm of B(H):

ℓ∞(γ) =

∫

I

‖γ̇(t)‖dt. (11)

Corollary 6.5. Let V ∈ I(H) be balanced, and V ∈ (TI(H))V orthogonal to V . Let (A,B) be

a minimal lifting for V. Then

δ(t) = eitAV e−itB

is minimal along its path, for |t| ≤ π
2‖V‖ , when the lengths of curves are measured as in (11),

with the ℓ∞ functional.
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Proof. By Corollary 5.8, we know that δ is minimal for the ℓ functional, for |t| ≤ π
2|V|V

= π
2‖V‖ ,

because |V|V = ‖V‖. For an arbitrary smooth curve γ in I(H), Theorem 5.4 implies that

ℓ∞(γ) =

∫

I

‖γ̇(t)‖dt ≤

∫

I

|γ̇(t)|γ(t)dt = ℓ(γ).

Note that

δ̇(t) = eitA{iAV − iV B}e−itB = eitAVe−itB .

Then, the facts that the metric | |V is invariant under the action of U(H)× U(H), and that V

is orthogonal, imply that

|δ̇(t)|δ(t) = |V|V = ‖V‖ = ‖eitAVe−itB‖ = ‖δ̇(t)‖,

and therefore ℓ(δ) = ℓ∞(δ).

Clearly P(H) is a complemented submanifold of I(H). We shall prove another consequence

of Remark 6.4: if P0, P1 ∈ P(H) are regarded as points in I(H), and they can be joined by a

minimal geodesic in P(H), then this path is minimal between P0 and P1 in I(H).

Before, let us recall the necessary and sufficient condition that P0, P1 must satisfy in order

that they can be joined by a minimal geodesic of P(H) (see [6]):

Remark 6.6. Let P0, P1 ∈ P(H), then there exists a minimal geodesic of P(H) (or in fact, any

geodesic) joining P0 and P1 if and only if

dim (R(P0) ∩N(P1)) = dim (R(P1) ∩N(P0)) . (12)

Corollary 6.7. Let P0, P1 ∈ P(H) satisfy condition (12). Let δ(t) ∈ P(H) be a geodesic joining

δ(0) = P0 and δ(1) = P1, and γ(t) ∈ I(H) be any other smooth curve joining P0 and P1. Then

ℓ(δ) ≤ ℓ(γ).

Proof. First, note that if P is a projection and V ∈ (TP(H))P , then V is P -co-diagonal: PVP = 0

(or, in the notation employed here, V is orthogonal at P , regarded as an element in I(H)). This

basic fact is well known in the geometry of P(H) (see [11]): if P (t) is a smooth curve in P(H)

with P (0) = P and Ṗ (0) = V, then differentiating P 2(t) = P (t) yields (at t = 0)

VP + PV = V,

which implies PVP = P⊥VP⊥ = 0. Therefore, by Remark 6.4, |V|P = ‖V‖. It follows that

ℓ∞(δ) = ℓ(δ). On the other hand, by Proposition 6.1,

ℓ∞ (α(γ)) ≤ ℓ(γ);

since δ is minimal in P(H),

ℓ(δ) = ℓ∞(δ) ≤ ℓ∞ (α(γ)) ,

and the proof follows.
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