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Classes of Idempotents in Hilbert space

Esteban Andruchow

December 15, 2015

Abstract

An idempotent operator E in a Hilbert space H (E2 = 1) is written as a 2× 2 matrix in
terms of the orthogonal decomposition

H = R(E)⊕R(E)⊥

(R(E) is the range of E) as

E =

(

1R(E) E1,2

0 0

)

.

We study the sets of idempotents that one obtains when E1,2 : R(E)⊥ → R(E) is a special
type of operator: compact, Fredholm and injective with dense range, among others.

2010 MSC: 47A, 47B, 47B07.
Keywords: Projections, Idempotent operators.

1 Introduction

Let H be a Hilbert space, B(H) the algebra of bounded linear operators in H, Q the set of
idempotent operators, i.e. operators E such that E2 = E, and P the set of orthogonal projections
in H (selfadjoint elements in Q). Given an operator A with closed range, PR(A) and PN(A) will
denote the orthogonal projections onto the rangeR(A) and the nullspaceN(A) of A, respectively.
Given an orthogonal projection P , operators can be written as 2×2 in terms of the decomposition
H = R(P )⊕N(P ). In particular if E ∈ Q, in terms of PR(E),

E =

(

1 E1,2

0 0

)

.

An idempotent E determines, and is determined by, the (non orthogonal) decomposition H =
R(E)+̇N(E) (we shall reserve the symbol ⊕ for orthogonal sums, and the symbol +̇ for direct
sums). There are well known formulas highlighting this correspondence, for instance [2]

PR(E) = E(E + E∗ − 1)−1, PN(E) = (1− E)(1 − E − E∗)−1 (1)

and [7]

E = PR(E)(PR(E) − PN(E))
−1. (2)

Implicit in these formulas are the facts that E+E∗−1 and PR(E)−PN(E) are invertible operators
for any given E ∈ Q.

In this paper we study the following subsets of Q:
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1. The set Qd of idempotents E such that E∗E is diagonalizable (we say the A is diagonal-
izable if there exists an orthonormal system {fn}n≥1 and complex numbers αn such that
Aξ =

∑

n≥1 αn〈ξ, fn〉fn, for any ξ ∈ H).

2. The set Qk of idempotents E such that in the matrix form above, E1,2 is compact.

3. The set Qg of idempotents E such that R(E) and N(E) are in generic position. Two
subspaces S,T ⊂ H are in generic position [13] if

S ∩ T = S⊥ ∩ T = S ∩ T ⊥ = S⊥ ∩ T ⊥ = {0}.

4. The set Qf of idempotents E such that the pair (PR(E), PN(E)) is a Fredholm pair of
projections [5], [1]. A pair of projections (P,Q) is a Fredholm pair if

PQ|R(Q) : R(Q) → R(P )

is a Fredholm operator in B(R(Q), R(P )). The index of this operator is the index of the
pair, and is the integer

ind(P,Q) = dim(R(P ) ∩N(Q)) − dim(N(P ) ∩R(Q)).

5. The set Qc of idempotents E such that the selfadjoint contraction A = PR(E) −PN(E) has
a cyclic vector in H.

The contents of the paper are the following. In Section 2 we recall some preliminary facts,
concerning the Halmos’ decomposition of H induced by a pair of projections. In Section 3
we study the set Qd, we give characterizarions and compute its connected components. Qd is
shown to be dense in Q. In Section 4 we study the set Qk, also here we compute the connected
components. These are closed submanifolds of B(H), not necesarilly complemented. Moreover,
it is shown that Qk admits the action of the linear Fredholm group

Gl∞(H) = {G ∈ B(H) : G is invertible and G− 1 is compact}.

The connected components of Qk are the orbits of this action. In Section 5 we study the set Qg.
Elements E ∈ Qg are characterized by the property that there exists a unique minimal geodesic
of P joining PR(E) and PN(E). Qg is connected. In Section 6 we study Qf . Elements in Qf have
naturally an index. It is shown that the connected components of Qf are open in Q, and are
parametrized by the index. In Section 7 we introduce three symmetries (=selfadjoint unitaries
in H) with remarkable properties with respect to the classes considered. In Section 8 we study
Qc.

The author wishes to thank Gustavo Corach for many helpful comments.

2 preliminary facts

Let us recall the following facts concerning the theory of two projections (see for instance [13]
or [1] or [6]). Let P1, P0 ∈ P. We shall consider the special case P1 = PR(E) and P0 = PN(E),
for some E ∈ Q, which corresponds with the property P1 − P0 invertible, due to the formulas
above. For arbitrary P1, P0 denote

H11 = R(P1)∩R(P0) , H00 = N(P1)∩N(P0) , H10 = R(P1)∩N(P0) , H01 = N(P1)∩R(P0)
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and H0 the orthogonal complement of the sum of the above. This last subspace is usually called
the generic part of the pair P1, P0. Note also that

N(P1 − P0) = H11 ⊕H00 , N(P1 − P0 − 1) = H10 and N(P1 − P0 + 1) = H01,

so that the generic part depends in fact of the difference P1 − P0. In the case P1 = PR(E) and
P0 = PN(E), H11 = H00 = {0}, therefore Halmos’ decomposition consists of three subspaces.
We shall refer it as the three space decomposition induced by E

Halmos proved that there is an isometric isomorphism between H0 and a product Hilbert
space L × L such that in the above decomposition (putting L × L in place of H0), the generic
parts of the projections P1 and P0 are, respectively

(

1 0
0 0

)

and

(

C2 CS
CS S2

)

,

where C = cos(X) and S = sin(X) for some operator 0 < X ≤ π/2 in L with trivial nullspace.
Therefore, in our case P1 = PR(E) and P0 = PN(E), one has (in the three space decomposition
H = H10 ⊕H01 ⊕H0)

P1 = 1⊕ 0⊕

(

1 0
0 0

)

and P0 = 0⊕ 1⊕

(

C2 CS
CS S2

)

.

In particular,

(P1 − P0)
2 = 1⊕ 1⊕

(

S2 0
0 S2

)

,

so that in this case (P1 = PR(E) and P0 = PN(E)) S and X are invertible in L. In the three
space decomposition of H, E is of the form

E = 1⊕ 0⊕

(

1 −S−1C
0 0

)

.

This follows after straightforward matrix computations, using formula (2).
The following lemma applies in any of the subsets of Q studied here, and will be useful in

the study of their connected componentes.

Lemma 2.1. Suppose that E and F are in the same connected component of Q, and in the
same class Qx (x = d, k, g, f or c). Then there exists a unitary operator U in H such that E
and UFU lie again in the same component of Q, the same class Qx, and have the same range.

Proof. The first two assertions are true for any unitary operator: F and UFU∗ are in the same
componwent of Q (the unitary group of H is connected), and in the same class Qx (unitary
conjugation trivially preserves these classes). Then it only remains to find a unitary operator
U such that R(E) = R(UFU∗). Since E and F are in the same component of Q, and the map
E 7→ PR(E) is continuous in Q (using the first of the formulas in (1)). Then PR(E) and PR(F )

lie in the same connected component of P. It is known that the connected components of P
coincide with the orbits of the unitary conjugation. Then there exists a unitary operator U such
that

UPR(E)U
∗ = PR(F ).

The proof follows noting that UPR(E)U
∗ = PR(UEU∗).
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3 Diagonalizable idempotents

In this section we study the set

Qd = {E ∈ Q : E∗E is diagonalizable }.

Remark 3.1. If E ∈ Qd, then there exist orthonormal systems {vn}n≥1 and {wn}n≥1 and real
numbers sn ≥ 1 such that

Eξ =
∑

n≥1

sn〈ξ, vn〉wn,

where 〈wi, vj〉 =
1
si
δij . Moreover, si = 1 if and only if vi = wi.

Indeed, this follows from the polar decomposition of E, E = V (E∗E)1/2. Since E∗E is
diagonalizable, there exists an orthonormal system {vn}, and sn ≥ 0 (the singular values of E)
such that

(E∗E)1/2ξ =
∑

n≥1

sn〈ξ, vn〉vn.

Then Eξ =
∑

n≥1 sn〈ξ, vn〉V vn. Clearly wn = V vn form an orthonormal system. Also, since
wj ∈ R(E),

wj = E(wj) =
∑

n≥1

sn〈wj , vn〉wn,

and thus sn〈wj , vn〉 = δjn. Note that

1 = ‖wj‖ = sj〈wj , vj〉,

and 0 ≤ 〈wj , vj〉 ≤ 1. Equality occurs in and only if vj is a multiple of wj , and thus they are
equal. Apparently, any operator E of this form is an idempotent in Qd.

Remark 3.2. The expression obtained above implies that E ∈ Qd if and only if E∗ ∈ Qd.
Indeed, if E ∈ Qd, using the usual notation w⊗ v for the rank one operator w⊗ v(ξ) = 〈ξ, v〉w,
one has

E =
∑

n≥1

snwn ⊗ vn,

(the series considereed in the strong operator topology) with {vn}, {wn} orthonormal system
satisfying 〈wi, vj〉 =

1
si
δij . Then

E∗ =
∑

n≥1

snvn ⊗ wn

is an idempotent operator of the same type.

Note the following elementary fact:

Lemma 3.3. Let A ∈ B(H) be selfadjoint. Then A is diagonalizable if and only if A2 is
diagonalizable.

Proof. A diagonalizable implies A2 diagonalizable (with the same basis). Suppose A2 diagonal-
izable. Then

A2 =
∑

n≥1

λnPn,
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with λn > 0 (λn 6= λm if n 6= m) and {Pn}n≥1 pairwise orthogonal. Since A commutes with A2,
it commutes with the spectral projections Pn of A2. Then

(PnA)
2 = λnPn.

Thus if we regard PnA as an operator in R(Pn), it is of the form

PnA =
√

λnP
+
n −

√

λnP
−
n ,

with P+
n + P−

n = Pn, P
+
n P−

n = 0. Tnen

A =
∑

n≥1

PnA =
∑

n≥1

√

λnP
+
n −

∑

n≥1

√

λnP
−
n .

With the current notations we have:

Proposition 3.4. The following are equivalent

1. E ∈ Qd.

2. E12E
∗
12 is diagonalizable in R(E).

3. PR(E) − PN(E) is diagonalizable in H.

4. X is diagonalizable in L.

Proof. In matrix form

EE∗ =

(

1 E12

0 0

)(

1 0
E∗

12 0

)

=

(

1 + E12E
∗
12 0

0 0

)

.

Thus apparently EE∗ is diagonalizable if and only if E12E
∗
12 is diagonalizable.

Denote P1 = PR(E) and P0 = PN(E). Using formula (2),

EE∗ = P1(P1 − P0)
−2P1.

Using the (three space) decomposition H = H10 ⊕H01 ⊕ (L × L),

(P1 − P0)
2 = 1⊕ 1⊕

(

S2 0
0 S2

)

and thus

EE∗ = 1⊕ 0⊕

(

S−2 0
0 0

)

.

Apparently EE∗ is diagonalizable if and only if S−2 is diagonalizable in L, which is equivalent
both to S and X being diagonalizable in L. If S2 is diagonalizable, then clearly (P1 − P0)

2 and
P1 − P0 are diagonalizable in H.

Conversely, if (P1 − P0)
2 is diagonalizable, the matrix

(

S2 0
0 S2

)
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is diagonalizable. Any eigenvector (ξn, ηn) of this matrix with eigenvalue sn consists of a pair of
eigenvectors of S2 with the same eigenvalue. On the other hand, any pair of sn-eigenvectors of
S2 is an eigenvector of this matrix. We must show that the linear span of the set of eigenvectors
of S2 is dense in L. Suppose that ξ0 is orthogonal to all the eigenvectors of S2. Then the pair
(ξ0, ξ0) is orthogonal to all pairs of eigenvectors of S2, i.e. all eigenvectors ot the matrix. Then
ξ0 = 0. Thus S2 and S are diagonalizable.

Using Lemma (2.1), one can characterize the connected components of Qd (with the relative
topology given by the norm of B(H)). Recall the elementary fact that two orthogonal projections
lie in the same connected component of P (or are unitarilly equivalent) if and only if they have
the same rank and nullity.

Proposition 3.5. Let E,F ∈ Qd. Then they lie in the same connected component if and only
if

dim(R(E)) = dim(R(F )) and dim(N(E)) = dim(N(F )).

Proof. Using Lemma (2.1), we may reduce to the case R(E) = R(F ). Indeed, the dimension
conditions above occur if and only if PR(E) and PR(F ) lie in the same connected component of
P.

Then

E =

(

1 E12

0 0

)

and F =

(

1 F12

0 0

)

in the same decomposition. Let

E(t) =

(

1 tE12

0 0

)

.

Clearly t 7→ E(t) is a continuous path with values in Qd (E12(t)E
∗
12(t) = t2E12E

∗
12 is diagonaliz-

able), which connects E to PR(E). There is a similar path F (t) connecting F to PR(F ) = PR(E).
Thus E and F lie in the same connected component of Qd.

The following is a straightforward consequence of the Theorem of Weyl and von Neuman:

Proposition 3.6. Qd is dense in Q.

Proof. Pick E ∈ Q. Using the three space decomposition, we can suppose that E is of the form

1⊕ 0⊕

(

1 −S−1C
0 0

)

.

Note that −S−1C is selfadjoint (S and C commute). Then, by the Theorem of Weyl and von
Neumann, for any ǫ > 0 there exists a selfadjoint operator Bǫ acting in L, which is diagonalizable,
such that ‖ − S−1C −Bǫ‖ < ǫ. Let Eǫ be

Eǫ = 1⊕ 0⊕

(

1 Bǫ

0 0

)

.

Apparently, ‖E − Eǫ‖ = ‖ − S−1C −Bǫ‖ < ǫ. Clearly Eǫ ∈ Qd: B
2
ǫ is diagonalizable.
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4 Idempotents with compact off diagonal entry

In this section we study the set

Qk = {E ∈ Q : E12 is compact }

of idempotents with compact off-diagonal entry, or shortly, off-diagonal compact idempotents.

Proposition 4.1. Let E ∈ Q. The following are equivalent:

1. E ∈ Qk.

2. E − E∗ is compact.

3. PR(E) + PN(E) − 1 is compact.

4. C is compact in L.

5. PR(E)PN(E) is compact.

Proof. In matrix form

E − E∗ =

(

0 E12

−E∗
12 0

)

.

Apparently E −E∗ is compact if and only if E12 is compact. As before, denote P1 = PR(E) and
P0 = PN(E). Using the formulas (1),

P1 − P0 − 1 = E(E + E∗ − 1)−1 + (1− E)(1 −E − E∗)−1 − 1 = (E − E∗){E + E∗ − 1}−1,

it follows that E − E∗ is compact if and only if P1 + P0 − 1 is compact.
In the three space decomposition

E − E∗ = 0⊕ 0⊕

(

0 −S−1C
−S−1C 0

)

.

Thus it is compact if and only if C is compact (recall that S in invertible in L).
Finally, note that in this decomposition,

P1P0 = 0⊕ 0⊕

(

C2 CS
0 0

)

,

which is compact in H if and only if C is compact in L.

In particular, E ∈ Qk if and only if E∗ ∈ Qk.

Remark 4.2. If E ∈ Qk is non orthognal, since the operator C = cos(X) has non trivial kernel,
it follows that

X =
∑

n≥1

xnPn,

with xn a strictly increasing sequence converging to π/2, and Pn pairwise ortohogonal of finite
rank, with

∑

n≥1 Pn = 1L.

7



Note that Qk ⊂ Qd.

Proposition 4.3. Let E,F ∈ Qk. Then E and F lie in the same connected component of Qk

if and only if
dim(R(E)) = dim(R(F )) and dim(N(E)) = dim(N(F )).

Proof. Using the same argument as in the analogous result in the previous section, based on
Lemma 2.1, we can suppose that E and F are of the form

E =

(

1 E12

0 0

)

and F =

(

1 F12

0 0

)

in the same decomposition (i.e. R(E) = R(F )). Both idempotents can be connected within Qk

by means of the line segment

E(t) =

(

1 tE12 + (1− t)F12

0 0

)

.

We shall see that Qk is a differentiable submanifold of B(H). It lies inside Q, which is
a complemented submanifold of B(H) [9]. However, Qk is not necessarily a complemented
submanifold. These fact is based on the following result:

Lemma 4.4. Fix an orthogonal projection P in B(H). Then the set

PP = {Q ∈ P : [Q,P ] is compact }

is a closed C∞ submanifold of B(H).

Proof. Apparently Pp is a closed subset of B(H). Let BP be

BP = {A ∈ B(H) : [A,P ] is compact }.

Then BP is a C∗-subalgebra of B(H). Indeed, if

π : B(H) → B(H)/K(H)

is the quotient map onto de Calkin algebra (K(H) is the ideal of compact operators), then

BP = π−1({a ∈ B(H)/K(H) : [a, π(P )] = 0}).

Then BP is a C∗-subalgebra of B(H), being the pre-image of a C∗-algebra by a ∗-homomorphism.
The space PP is the space of selfadjoint projections of BP . In [9] it was proven the the space of
selfadjoint projections of an arbitrary C∗-algebra is a complemented submanifold of the algebra.
Thus PP is a submanifold of B(H), which may not be complemented, since Bp may not be a
complemented subalgebra of B(H).
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Remark 4.5. BP is complemented in B(H) only if P has finite or cofinite rank, in which case
Bp = B(H). Indeed, if we fix P ∈ P and write the elements of B(H) as 2× 2 matrices in terms
of P , a simple comuputation shows that

BP = {A =

(

A11 A12

A21 A22

)

: A12, A21 are compact}.

Note that the subspace

S12 = {B =

(

0 B12

0 0

)

: B12 is compact}

is apparently complemented in Bp. Thus, if BP were complemented in B(H), then also S12 would
be complemented in B(H): S12 ⊕ R = B(H). Pick any operator T ∈ B(N(P ), R(P )), consider
T ′

T ′ =

(

0 T
0 0

)

.

Then there exist unique R′ ∈ R and S ∈ S12 such that T ′ = S + R′. Apparently, R′ is of the
form

R′ =

(

0 R
0 0

)

,

for some R ∈ B(N(P ), R(P )). This would imply that the space of compact operators in
B(N(P ), R(P )) would be complemented in B(N(P ), R(P )), which means that either N(P ) or
R(P ) is finite dimensional.

Let us recall the following fact concerning the geometry of P [9]:

Remark 4.6. Let P,Q ∈ P such that ‖P − Q‖ < 1. Then there exists a unique selfadjoint
operator X which astisfies:

1. eiXPe−iX = Q.

2. ‖X‖ < π/2.

3. X is P -codiagonal: PXP = (1− P )X(1− P ) = 0.

4. X is a C∞ map in the arguments P,Q.

This operator X provides the exponent of the unique (minimal) geodesic of P joining P and
Q, according to the linear connection and the Finsler metric in P, introduced by Corach, Porta
and Recht in [9]. The geodesic is

δ(t) = eitXPe−itX .

Theorem 4.7. Qk is a closed differentiable manifold of Q (and therefore also of B(H)).

Proof. It is apparent Qk is closed in Q, for instance using the characterization that E ∈ Q
belongs to Qk if and only if E − E∗ ∈ K(H) (which is closed in norm).

Fix E0 ∈ Qk, let us construct a local chart for E0. Denote by P1 = PR(E0) and P0 = PN(E0).
It is a known fact that two orthogonal projections P,Q such that ‖P − Q‖ < 1 are unitarily

9



equivalent, with a unitary operator U = U(P,Q) which is a smooth (and explicit) formula in
terms of P and Q. By (1), the map E 7→ PR(E) is continuous (in fact smooth). Thus the set

VE0
= {E ∈ Qk : ‖PR(E) − P1‖ < rE0

≤ 1}

is an open neighbourhood of E0 in Qk. Moreover, there exists a smooth map

µ : {Q ∈ P : ‖Q− P1‖ < 1} → U(H),

such that µ(E)P1µ(E)∗ = PR(E), and µ(E0) = 1 (µ is the unitary operator mentioned above).

By the facts collected in Remark 4.6 above, µ(E) = eiX(E), where X(E) is a selfadjoint operator
with ‖X(E)‖ < π/2, which is codiagonal with respect to P1. Moreover, the map E 7→ X(E)
defined in VE0

is smooth.
Note that

PR(E) + PN(E) − 1 = µ(E){P1 + µ(E)∗PN(E)µ(E)− 1}µ(E)∗

is compact, thus P1 + µ(E)∗PN(E)µ(E)− 1 is compact, or equivalently,

µ(E)∗PN(E)µ(E)P1 is compact.

We can further shrink rE0
in the definition of VE0

(which would make µ(E) closer to 1 and
PN(E) closer to P0), in order that µ(E)∗PN(E)µ(E) lies in a coordinate neighbourhood WP0

of
P0 in the manifold PP0

[9],

ϕP0
: WP0

→ ZP0
= {Z ∈ BP0

: Z∗ = Z is P0 − codiagonal, ‖Z‖ < π/2}.

Then we can define

θE0
: VE0

→ {X ∈ B(H) : X∗ = X, ‖X‖ < π/2,X is P0 − codiagonal} × ZP0
,

θE0
(E) = (X(E), ϕP0

(µ(E)∗PN(E)µ(E))).

Clearly θ is a smooth map whose inverse is θ−1
E0

(X,Z) = F , where F is determined by

PR(F ) = eiXP1e
−iX and PN(F ) = eiX(ϕ−1

P0
(eiZP0e

−iZ))e−iX .

Let Gl∞(H) be the Linear Fredholm group of H, namely,

Gl∞(H) = {G ∈ B(H) : G is invertible and G− 1 is compact}.

This group is an analytic Banach Lie group, whose Banach lie algebra identifies with the ideal
K(H) of compact operators. Note that Gl∞(H) acts in Qk. If G = 1 + K ∈ Gl∞(H) with
G−1 = 1 +K ′, for K,K ′ ∈ K(H), then

GEG−1 − (GEG−1)∗ = (1 +K)E(1 +K ′)− (1 +K ′∗)E∗(1 +K∗) = E − E∗ +K ′′,

for some K ′′ ∈ K(H). Thus GEG−1 − (GEG−1)∗ is compact.

10



Proposition 4.8. Let E ∈ Q. Then E ∈ Qk if and only if there exists G ∈ Gl∞(H) such that
E = GPR(E)G

−1.

Proof. Clearly the selfadjoint projection PR(E) ∈ Qk, thus for any G ∈ Gl∞(H), GPR(E)G
−1 ∈

Qk.
Conversely, suppose that E ∈ Qk. In the three space decompostion induced by E, consider

the operator

G = 1⊕ 1⊕

(

1 S−1C
0 1

)

.

Apparently G is invertible, is of the form 1 plus compact, and satisfies GPR(E) = EG.

Let us characterize the orbits of this action. First note that the group Gl∞(H) is connected
(it is an exponential group: any G ∈ Gl∞(H) is of the form G = eK , for some compact operator
K, by a straightforward argument using the holomorphic functional calculus in the Banach
algebra B(H)). Therefore any pair of elements E,F in the same orbit must lie in the same
connected component: dim(N(E) = dim(N(F )), dim(R(E)) = dim(R(F )).

Let P,Q ∈ P. Recall [15] that a projection Q belongs to the restricted Grassmannian Gres(P )
induced by P if

PQ|R(Q) : R(Q) → R(P )

is a Fredholm operator. The index of this operator parametrizes the connected components of
Gres(P ): two projections Q,Q′ in Gres(P ) belong to the same component if and only if they
have the same index. In [8], A.L. Carey and D.E. Evans proved that the components coincide
with the orbits of the action of the unitary Fredholm group U∞(H),

U∞(H) = {U ∈ B(H) : U is unitary and U − 1 is compact}.

Namely, Q,Q′ in Gres(P ) have the same index if and only if there exists U ∈ U∞(H) such that
Q′ = UQU∗. In order to characterize the Gl∞(H) orbits of elements E ∈ Qk, the following
elementary fact will be useful:

Lemma 4.9. Let G in Gl∞(H). Then the unitary part U in the polar decomposition of G,

G = U |G|,

belongs to U∞(H).

Proof. Since G = 1 + K, |G|2 = G∗G = 1 + K∗K + K + K∗ is of the form 1 plus compact,
and selfadoint. By the diagonalization theorem of compact selfadjoint operators, it follows that
|G| ∈ Gl∞(H). Then

U = G|G|−1 ∈ Gl∞(H).

Proposition 4.10. Let E,F ∈ Qk. Then they lie in the same orbit of the action of Gl∞(H)
if and only if PR(F ) belongs to the connected component of PR(E) in Gres(PR(E)), i.e. the zero
index component of Gres(PR(E)). Or equivalently

PR(E)PR(F )|R(F ) : R(F ) → R(E)

is a zero-index Fredholm operator.

11



Proof. Suppose that E and F lie in the same G∞(H) orbit. By the above Proposition, this
implies that there exists G ∈ G∞(H) such that GPR(E)G

−1 = PR(F ). It is well known (and
an elementary fact, see for instance [9]), that this implies that the unitary part U in the polar
decompositon of G also satisfies UPR(E)U

∗ = PR(F ). Therefore, by the above Lemma and
remarks on the structure of the connected components of the restricted Grassmannian, it follows
that PR(F ) belongs to the zero index component of Gres(PR(E)).

Conversely, suppose UPR(E)U
∗ = PR(F ) for some U ∈ U∞(H). By Proposition (4.8), there

exist G,G′ ∈ Gl∞(H) such that

E = GPR(E)G
−1 and F = G′PR(F )G

′−1.

Then
F = G′U∗G−1E(G′U∗G−1)−1,

with G′U∗G−1 ∈ Gl∞(H).

Using this results, one obtains that

Theorem 4.11. The orbits of the action of Gl∞(H) on Qk coincide with the connected compo-
nents of Qk.

Proof. Fix E ∈ Qk. We claim that the set

{F ∈ Qk : PR(E)PR(F )|R(F ) ∈ B(R(F ), R(E)) is a zero index Fredholm operator},

is an open subset of Qk. Note that by the above Proposition, this set coincides with the Gl∞(H)-
orbit of E. Indeed, by the first of the formulas in 1, the map

Qk → P ×P , F 7→ (PR(E), PR(F ))

is continuous. Thus it suffices to show that the set

{(P,Q) ∈ P × P : PQ|R(Q) : R(Q) → R(P ) is a zero index Fredholm operator}

is open in P × P. The proof of this fact is fairly straightforward ([3]). We include a proof of
this fact in the Section treating Fredholm idempotents (Section 5).

Therefore the Gl∞(H)-orbits OE of elements E in Qk are open. Therefore they are also
closed:

Qk \ OE = ∪OF 6=OE
OF

is open in Qk. It follows that the orbits coincide with the connected components.

Thus we have:

Corollary 4.12. Let E,F ∈ Qk. Then

PR(E)PR(F )|R(F ) : R(F ) → R(E) is a zero index Fredholm operator

if and only if
dim(R(E)) = dim(R(F )) and dim(N(E)) = dim(N(F )).

12



5 Idempotents in generic position

In this section we study the set Qg,

Qg = {E ∈ Q : R(E) and N(E) are in generic position}.

This means that R(E) ∩ N(E)⊥ = N(E) ∩ R(E)⊥ = {0}. Given E ∈ Qg, putting P1 = PR(E)

and P0 = PN(E), in [3] it was proven that these comditions imply that there exists a unique
(minimal) geodesic in P joining P1 and P0:

P0 = eiZP1e
−iZ

for a uniquely determined selfadjoint operator Z which is P1 and P0 codiagonal and satisfies
‖Z‖ ≤ π/2. In terms of the operator X acting in L (in Halmos’ model), C = cos(X), S = sin(X),
eiZ and Z are given by

eiZ =

(

C −S
S C

)

and Z =

(

0 iX
−iX 0

)

.

Chandler Davis in [10] proved that to any decomposition A = P1 − P0 of an operator
as a difference of projections in generic position, there corresponds a unique symmetry V =
V (P1, P0), V

∗ = V = V −1, which anti-commutes with A: V A = −AV . Explicitly

P1 =
1

2
{1 +A+ V (1−A2)1/2} and P0 =

1

2
{1−A+ V (1−A2)1/2}.

Note that this symmetry V satisfies V P1V = P0 and therefore

V EV = 1− E.

The symmetry V and the unique geodesic joining P1 and P0 are related by the formula [4]

V = eiZ(2P1 − 1) = (2P0 − 1)e−iZ .

Proposition 5.1. Let E ∈ Q. The following are equivalent:

1. E ∈ Qg.

2. N(E + E∗ − 2) = N(E + E∗) = {0}.

3. E12 has trivial nullspace and dense range.

4. There exists a unique minimal geodesic of P joining P1 and P0.

Proof. As usual P1 = PR(E) and P0 = PN(E)). As remarked above, H10 = N(P1 − P0 − 1) and
H01 = N(P1 − P0 + 1). Note that

P1 − P0 − 1 = (E + E∗ − 1)−1 − 1 = (E + E∗ − 1)−1{2− E − E∗},

And thus H10 = N(E + E∗ − 2). Similarly H01 = N(E + E∗). This proves that the first two
conditions are equivalent.

13



In matrix form

E + E∗ − 2 =

(

0 E12

E∗
12 −2

)

.

Then (ξ1, ξ2) ∈ N(E + E∗ − 2) if and only if E12ξ2 = 0 and E∗
12ξ1 = 2ξ2. Then

E12E
∗
12ξ1 = 2E12ξ2 = 0,

which implies E∗
12ξ1 = 0, and thus also ξ2 = 0. Conversely, clearly a pair (ξ1, ξ2) ∈ N(E∗

12)⊕{0}
lies in the nullspace of E + E∗ − 2. Then

N(E + E∗ − 2) = N(E∗
12)⊕ {0}.

Similarly
N(E + E∗) = {0} ⊕N(E12).

Thus E ∈ Qg if and only if N(E12) = N(E∗
12) = {0}, i.e. E12 has trivial nullspace and dense

range.
The equivalence with the last condition was stated above.

In particular, E ∈ Qg if and only if E∗ ∈ Qg

Note that if E ∈ Qg, the unitary part in the polar decomposition of E12 : N(E) → R(E) is
an onto isometry between N(E) and R(E).

Theorem 5.2. Qg is arcwise connected.

Proof. The last sentence above implies that if E ∈ Qg, both N(E) and R(E) are infinite dimen-
sional, thus any pair E,F ∈ Qg belong to the same connected component in Q. Thus we may
use again Lemma 2.1, and reduce to the case when R(E) = R(F ). Also H = H0 can be replaced
by the space L × L. In matrix form

E =

(

1 E12

0 0

)

and F =

(

1 F12

0 0

)

.

Let E12 = UE |E12| and F12 = UF |F12|, where UE and UF are unitary operators in L. Since the
unitary group of L is connected, there are continuous paths UE(t) and UF (t) of unitaries in L
connecting UE(0) = UE with UE(1) = 1 and UF (0) = UF with UF (1) = 1. The continuous path

(

1 UE(t)|E12|
0 0

)

connects E with
(

1 |E12|
0 0

)

inside Qg. Similarly for F . Thus it remains to see that
(

1 |E12|
0 0

)

and

(

1 |F12|
0 0

)

can be connected inside Qg. Or equivalently, that two positive operators |E12|, |F12| with trivial
nullspace (and therefore dense range) can be connected with a continuous path of positive
operators with trivial nullspace. It is easy to see that the set of positive operators with trivial
nullspace is convex, and the proof follows.
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6 Fredholm idempotents

In this section we study the set Qf of Fredholm idempotents,

Qf = {E ∈ Q : (PR(E), PN(E)) is a Fredholm pair}.

In other words, E ∈ Qf if [5], [1] if and only if

PN(E)PR(E)|R(E) : R(E) → N(E)

is a Fredholm operator. The index of this operator (usually called the index of the pair), which
we shall call here i(E), the index of E, is

i(E) = i(PR(E), PN(E)) = dim(R(E) ∩N(E)⊥)− dim(N(E) ∩R(E)⊥).

By the computations in the previous section, this index is also

i(E) = dim(N(E + E∗ − 2)) − dim(N(E + E∗)).

These pairs can also be described as those such that PN(E) belongs to the restricted Grass-
mannian Gres(PR(E)) (as in Section 3).

Remark 6.1. In [5] it was proven that (P,Q) is a Fredholm pair if and only if ±1 are isolated
eigenvalues of finite multiplicity. or do not belong in the spectrum of P −Q. Let us abreviate
this condition by saying that ±1 are eigenvalues with zero or finite multiplicity.

The following characterization follows:

Proposition 6.2. Let E ∈ Q. The following are aquivalent:

1. E ∈ Qf .

2. 0, 2 are isolated eigenvalues of E + E∗, with zero or finite multiplicity.

3. E12 : R(E)⊥ → R(E) is a Fredholm operator.

In this case, i(E) = index(E12).

Proof. The equivalence of the first two conditions follows form the above remark and the
computations in the previous section. Recall also that (in terms of the decomposition H =
R(E)⊕R(E)⊥) :

N(E + E∗ − 2) = N(E∗
12)⊕ {0} and N(E + E∗) = {0} ⊕N(E12).

Thus E ∈ Qf if and only if N(E12) and N(E12)
∗ are finite dimensional and 0, 2 are isolated

eigenvalues of E + E∗ with zero or finite multiplicty. Let us examine this latter condition. It
is equivalent to ±1 being isolated in the spectrum of PR(E) − PN(E), or equivalently, that 1 is
isolated in the spectrum of (PR(E) − PN(E))

2. In matrix form

(PR(E) − PN(E))
2 = (E + E∗ − 1)2 =

(

1 E12

E∗
12 1

)2

=

(

1 +E12E
∗
12 0

0 1 + E∗
12E12

)

.
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Then 1 is isolated in the spectrum of (PR(E)−PN(E))
2 if and only if 0 is isolated in the spectrum

of E12E
∗
12 (the other follows). This is equivalent to the fact that E12 has closed range. It follows

that E ∈ Qf if and only if E12 : R(E)⊥ → R(E) is a Fredholm operator. Apparently

index(E12) = dim(N(E∗
12))− dim(N(E12)) = dim(N(E + E∗ − 2)) − dim(N(E + E∗)) = i(E).

In particular, E ∈ Qf if and only if E∗ ∈ Qf . Also note that in this case, i(E) = i(E∗).

Theorem 6.3. Let E,F ∈ Qf . Then they lie in the same connected component of Qf if and
only if

i(E) = i(F ).

Proof. First note the fact that E ∈ Qf implies that both R(E) andN(E) are infinite dimensional
(E12 is a Fredholm operator between these spaces). It follows that E and F lie in the same
connected component in Q. Lemma 2.1 applies again here, and we may suppose that R(E) =
R(F ). It follows that E12, F12 are Fredholm operators in B(R(E)⊥, R(E)). It is a well known
fact that they lie in the same connected component of the set of Fredholm operators between
R(E)⊥ and R(E) if and only if they have the same index. A continuous path E12(t) between
E12 and F12 provides a continuous path between E and F inside Qf :

E(t) =

(

1 E12(t)
0 0

)

.

Proposition 6.4. Qf is open in Q.

Proof. By the continuity of the range projection map F 7→ PR(F ) in Q, given a fixed E ∈
Qf , there exists a positive radius d = dE such that if F ∈ Q satisfies ‖F − E‖ < d then
‖PR(F ) −PR(E)‖ < 1. Then there exists a unitary operator µ(F ) in H (a continuous map in the
parameter F , with µ(E) = 1) such that µ(F )PR(E)µ

∗(F ) = PR(F ). Thus µ∗(F )Fµ(F ) and E

have the same range. In matrix form in terms of H = R(E)⊕R(E)⊥,

µ∗(F )Fµ(F ) =

(

1 F ′
12

0 0

)

and E =

(

1 E12

0 0

)

.

Note that if one shrinks d = dE , then ‖µ∗(F )Fµ(F )−E‖ = ‖F ′
12−E12‖ tends to zero. Since the

set of Fredholm operators between R(E)⊥ and R(E) is open, it follows that there exists d such
that ‖F −E‖ < d implies F ′

12 is a Fredholm operator in B(R(E)⊥, R(R)). Note that µ(E) maps
R(E) onto R(F ) (and thus also their orthogonal supplements). It follows that ‖E − F‖ < d
implies that

µ(E)F ′
12µ

∗(E) = PR(F )FPR(F )⊥ = F12

is a Fredholm operator between R(F )⊥ and R(F ), i.e. F ∈ Qf .
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7 Three symmetries in Q

Given E ∈ Q, there are several symmetries induced by E. Among these, we shall focus on the
following. The first was considered by Corach, Porta and Recht in [9]:

Consider the polar decomposition

2E − 1 = ρE |2E − 1|.

Then ρE is a selfadjoint unitary operator (a symmetry), which satisfies ρE |2E−1| = |2E−1|−1ρE.
In particular this implies that ρE(2E − 1) = (2E∗ − 1)ρE , or equivalently,

ρEEρE = E∗.

The second symmetry is obtained from the polar decomposition of PR(E)−PN(E). Since this
operator is invertible and selfadjoint, the unitary part sE in the (commuting) factorization

PR(E) − PN(E) = sE |PR(E) − PN(E)| = |PR(E) − PN(E)|sE

is a selfadjoint unitary operator.

Proposition 7.1. With the above notations,

sEEsE = E∗.

Proof. Recall that PR(E) − PN(E) = (E + E∗ − 1)−1. In matrix form, as seen above

(E + E+ − 1)2 =

(

1 + E12E
∗
12 0

0 1 + E∗
12E12

)

,

and thus

sE = (E + E∗ − 1)|E + E∗ − 1|−1 =

(

(1 + E12E
∗
12)

−1/2 E12(1 + E∗
12E12)

−1/2

E∗
12(1 + E12E

∗
12)

−1/2 −(1 + E∗
12E12)

−1/2

)

.

After straightforward computations

sEEsE =

(

1 0
E∗

12 0

)

= E∗.

Remark 7.2. Both symmetries ρE and sE conjugate E with E∗. They can be computed in the
three space decomposition. Namely, recall that S ≥ 0, and then

(P1 − P0)
2 = 1⊕ 1⊕

(

S2 0
0 S2

)

so that |P1 − P0| = 1⊕ 1⊕

(

S 0
0 S

)

.

Thus

sE = (P1 − P0)|P1 − P0|
−1 = 1⊕−1⊕

(

S −C
−C −S

)

.
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For the computation of ρE, put Γ = S−1C (the cotangent of X). Note that

2E − 1 = 1⊕−1⊕

(

1 −Γ
0 −1

)

and |2E − 1|2 = 1⊕ 1⊕

(

1 −Γ
−Γ 1 + Γ2

)

.

Straightforward computations show that the square root of this operator is

|2E − 1| = 1⊕ 1⊕

(

2(4 + Γ2)−1/2 −Γ(4 + Γ2)−1/2

−Γ(4 + Γ2)−1/2 (Γ2 + 2)(4 + Γ2)−1/2

)

,

and thus

ρE = |2E − 1|(2E − 1) = 1⊕−1⊕

(

2(4 + Γ2)−1/2 −Γ(4 + Γ2)−1/2

−Γ(4 + Γ2)−1/2 −2(4 + Γ2)−1/2

)

.

The fact that both sE and ρE intertwine E and E∗ imply that the products

ρEsE and sEρE

commute with E and E∗.

The third symmetry was introduced in Section 4. It is the symmetry V = VE , obtained by
Davis [10], which is defined only for E ∈ Qg, and satisfies

VEEVE = 1− E.

Note that this symmetry could not be defined in the other classes of Q, which are not invariant
for the map E 7→ 1− E. In terms of C and S in Halmos’ model,

V =

(

C S
S −C

)

.

The symmetry V has the following geometric characterization:

Theorem 7.3. Let E ∈ Qg. Then the projection 1
2(1 + V ) onto the 1 eigenspace of V , is the

middlepoint of the unique geodesic joinming PR(E) and PN(E)

Proof. As before, put P1 = PR(E) and P0 = PN(E). Let δ(t) = eitZP1e
−itZ be the unique geodesic

joining P1 and P0. Recall from Section 4 that V = eiZ(2P1 − 1). Since Z anti-commutes with
V , one has that

V = e
i

2
Z(2P1 − 1)e−

i

2
Z ,

and thus
1

2
(1 + V ) = e

i

2
ZP1e

− i

2
Z = δ(

1

2
).

Remark 7.4. Suppose that E ∈ Qk. In Proposition 4.10 it was shown that E = GPR(E)G
−1

for some G ∈ Gl∞(H). In the polar decomposition of 2E − 1 = ρE|2e− 1| above, Corach, Porta
and Recht [9] noted that

2E − 1 = ρE|2E − 1| = |2E − 1|−1ρE.
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Thus 2E − 1 = |2E − 1|−1/2ρE|2E − 1|1/2, and therefore

E = |2E − 1|−1/2 1

2
{ρE + 1}|2E − 1|1/2,

where 1
2{ρE + 1} is the orthogonal projection onto the 1-eigenspace of the symmetry ρE . Note

that |2E − 1| ∈ Gl∞(H). Indeed, in the three space decompositon of |2E − 1|, Γ = S−1C is a
compact operator in L. Then also |2E−1|1/2 ∈ Gl∞(H). It follows that PR(E) and

1
2{ρE+1} are

orthogonal projections for which there exists G0 ∈ Gl∞(H) such that G0PR(E)G
−1
0 = 1

2{ρE+1}.
Then, the unitary U0 in the polar decompositioon of G0 verifies

U0PR(E)U
∗
0 =

1

2
{ρE + 1},

and by Lemma 4.9, U0 ∈ U∞(H).

8 Cyclic idempotents

In this section we study the set Qc of cyclic idempotents

Qc = {E ∈ Q : PR(E) − PN(E) is a cyclic operator in H}.

In other words, the commutative C∗-algebra C∗(PR(E)−PN(E)) has a cyclic vector. Apparently,
this implies that the C∗-algebra C∗(PR(E), PN(E)) = C∗(E) generated by the two projections
(or equivalently by E) has a cyclic vector in H. It is clearly a weaker condition.

The equality PR(E) − PN(E) = (E +E∗ − 1)−1 clearly implies the following:

Proposition 8.1. E ∈ Qc if and only if E+E∗ (or equivalently E+E∗−1) is a cyclic operator
in H.

Also it is apparent that for any unitary operator U , E ∈ Qc implies that UEU∗ ∈ Qc. In
particular, E∗ ∈ Qc.

Remark 8.2. In the three space decomposition H = H10 ⊕H01 ⊕H0, recall that

H10 = N(E + E∗ − 2) and H01 = N(E + E∗).

If E ∈ Qc, this implies that

dimH10 ≤ 1 and dimH01 ≤ 1.

Indeed, the fact that E +E∗ is cyclic implies that any eigenvalue must have multiplicity less or
equal than 1.

In terms of the Halmos’ model:

Theorem 8.3. E ∈ Qc if and only if

dimH10 ≤ 1 , dimH01 ≤ 1

19



and the operator Z acting in the generic part H0,

Z =

(

0 −iX
iX 0

)

is cyclic in H0.
This operator Z is the exponent of the unique geodesic joining the generic parts of PR(E) and

PN(E).

Proof. As usual, denote P1 = PR(E) and P0 = PN(E). Suppose first that E ∈ Qc. As seen
above this implies the bounds for the dimensions of H10 and H01. Let A0 be the generic part of
P1 − P0. Identifying H0 and L × L, we have

A0 =

(

1 0
0 0

)

−

(

C2 CS
CS S2

)

=

(

S2 −CS
−CS −S2

)

.

The symmetry defined by Davis, induced by this decomposition of A0 is

V =

(

C S
S −C

)

.

Clearly, the assumption that A = P1−P0 is cyclic in H implies that A0 is cyclic in H0. Consider

B0 = V A0.

Clearly B0 also anti-commutes with V . In [4] it was shown that if A0 is cyclic, then one can
find a cyclic vector ξ0 such that V ξ0 = ξ0. Then

Bn
0 ξ0 = (V A0)

nξ0 = (−1)nA0V ξ0 = (−1)nAn
0 ξ0.

It follows that B0 is also cyclic (with the same cyclic vector ξ0). Note that in matrix form

B0 = V A0 =

(

C S
S −C

)(

S2 −CS
−CS −S2

)

=

(

0 −S
S 0

)

.

It follows that iB0 is selfadjoint and cyclic. We claim that iB0 = sin(Z) and that Z is also cyclic
(with the same cyclic vector ξ0). Indeed, the first claim follows from a straightforward matrix
computation. In our case, S is invertible in L. Clearly Z is an analytic function in terms of iB0,
Z = f(iB0), with f(0) = 0. In particular, any vector in H0 which is orthogonal to Znξ0, for all
n ≥ 1, is also orthogonal to (iB0)

nξ0 for all n ≥ 1, and thus trivial. Then Z is cyclic with cyclic
vector ξ0.

The fact that eiZP1e
−iZ = P0 was shown in Section 4.

Conversely, assuming dimH10 ≤ 1 and dimH01 ≤ 1, it remains to prove that A0 is cyclic in
H0. The same argument above shows that if Z cyclic with cyclic vector ξ0, then sin(Z) = iB0

is cyclic, and therefore A0 = V B0, by the same computation above.

With respect to the off-diagonal entry E12, we have sufficient conditions:

Proposition 8.4. Let E ∈ Q such that N(E12) = {0}, N(E12E
∗
12 − 1) = {0}, and E12E

∗
12 is

cyclic in R(E), with cyclic vector ξ1 ∈ R(E). Then E ∈ Qc, with ξ0 = ξ1 + E∗
12ξ1 cyclic for

E +E∗ − 1.
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Proof. First let us compute the powers of E + E∗ − 1. After straightforward computations, if
n = 2k is even,

(E +E∗ − 1)n =

(

(1 + E12E
∗
12)

k 0
0 (1 + E∗

12E12)
k

)

.

If n = 2k + 1 is odd

(E + E∗ − 1)n =

(

(1 + E12E
∗
12)

k (1 + E12E
∗
12)

kE12

(1 + E∗
12E12)

kE∗
12 (1 + E∗

12E12)
k

)

.

Let η = η1 + η2 ∈ H, η1 ∈ R(E), η2 ∈ R(E)⊥, such that η ⊥ (E + E∗ − 1)(ξ1 + E∗
12ξ1) for all

n ≥ 0. Then if n = 2k

〈η1, (1 + E12E
∗
12)

kξ1〉+ 〈η2, (1 + E∗
12E12)

kE∗
12ξ1〉 = 0 (3)

for all k ≥ 0. If n = 2j + 1,

〈η1, (1 +E12E
∗
12)

jξ1 + (1 + E12E
∗
12)

jE12E
∗
12ξ1〉+ 〈η2, 2(1 + E∗

12E12)
jE∗

12ξ1〉 = 0

for all j ≥ 0. This term equals

〈η1, (1 +E12E
∗
12)

j+1ξ1〉+ 2〈η2, (1 + E∗
12E12)

jE∗
12ξ1〉 = 0. (4)

Putting j = k ≥ 0, multiplying equation (3) by 2 and substracting from it equation (4), one
obtains

〈η1, (1− E12E
∗
12)(1 + E12E

∗
12)

kξ1〉 = 0

Apparently, the fact that the set of vectors {(E12E
∗
12)

kξ1 : k ≥ 0} spans a dense subspace of
R(E), implies that also the set {(1 + E12E

∗
12)

kξ1 : k ≥ 0} spans a dense subspace of R(E). By
hypothesis, 1− E12E

∗
12 has dense range in R(E), it follows that the set

{(1 − E12E
∗
12)(1 +E12E

∗
12)

kξ1 : k ≥ 0}

spans a dense subset of R(E). It follows that η1 = 0. Similarly, putting j+1 = k for j ≥ 0, and
substracting equation (3) from equation (4), one obtains

0 = 〈η2, (1 − E∗
12E12)(1 + E∗

12E12)
jE∗

12ξ1〉 = 〈η2, E
∗
12(1− E12E

∗
12)(1 + E12E

∗
12)

jξ1〉

for all j ≥ 0. The hypothesis N(E12) = {0} implies that E∗
12 : R(E) → R(E)⊥ has dense range.

Thus similarly as above, η2 = 0, and therefore ξ1 + E∗
12ξ1 is a cyclic vector for E + E∗ − 1 in

H.

Remark 8.5. Analogously, one can prove that if N(E∗
12) = N(1−E∗

12E12) = {0} and E∗
12E12 is

cyclic in R(E)⊥ with cyclic vector ξ2, then E+E∗−1 is cyclic in H, with cyclic vector ξ2+E12ξ2.

Remark 8.6.

1. In the above Proposition, the condition N(E12) = {0} could be replaced by the condition
H01 = {0}. Indeed, recall from Section 4 that

H10 = N(E + E∗) = {0} ⊕N(E12).

Also note that if E is cyclic, one has dimH01 ≤ 1, so that E12 is not far from having trivial
nullspace. However it appears not to be a necessary condition.
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2. Something similar happens with the other condition, N(E12E
∗
12 − 1) = {0}. If one asks

that E12E
∗
12 be cyclic in R(E), then all eventual eigenvalues must have multiplicity at

most 1, i.e. dimN(E12E
∗
12 − 1) ≤ 1.

With reference to this last condition, let us point out that in Halmos’ model for the generic
part of E, this last condition is automatically fulfilled:

Lemma 8.7. Let E0 be the generic part of E acting in H0 = L × L:

E0 =

(

1 −S−1C
0 0

)

.

Then N((S−1C)2 − 1) = {0}.

Proof. Suppose that there exists a vector ξ ∈ L such that (S−1C)2ξ = ξ. Since S−1C is a
positive operator in L (C and S commute), this implies that S−1Cξ = ξ. Recall that there exist
0 ≤ X ≤ π/2 such that C = cos(X) and S = sin(X). The fact that S is invertible implies further
that 0 < r ≤ X ≤ π/2. Therefore the continuous function cotg : [r, π/2] → [0, cotg(r)], cotg(t) =
cos(t)
sin(t) has a continuous inverse cotg−1. Note that cotg(X) = S−1C and thus cotg−1(S−1C) = X.

The function cotg−1 is a uniform limit of polynomials in the interval [0, cotg(r)],

cotg−1(t) = lim
n→∞

pn(t).

Since S−1Cξ = ξ, it follows that pn(S
−1C)ξ = pn(1)ξ. Taking limits,

Xξ = cotg−1(X)ξ = lim
n→∞

pn(X)ξ = lim
n→∞

pn(1)Xξ = cotg−1(1)ξ =
π

4
ξ.

Therefore Sξ = Cξ = 1√
2
ξ. Consider the vector ξ̄ = (ξ, 0) ∈ L × L. Then

PR(E0)ξ̄ =

(

1 0
0 0

)(

ξ
0

)

=

(

ξ
0

)

= ξ̄

and

PN(E0)ξ̄ =

(

C2 CS
CS S2

)(

ξ
0

)

=

(

ξ
0

)

= ξ̄,

i.e. ξ = 0, a contradiction.

The folowing result holds:

Corollary 8.8. Suppose that E ∈ Qg (the set of idempotents in generic position). With the
above notations, if X (or equivalently, CS−1) is cyclic in L, then E ∈ Qc.

Proof. By Lemma 8.7, in this case the sufficient conditions in Proposition 8.4 applied to the
Halmos model reduce to CS−1 being cyclic in L. By the computation in Lemma 8.7, CS−1 =
cotg(X) is cyclic in L if and only if X is cyclic in L

Remark 8.9. This result means that the conditions in Proposition 8.4 are not necessary for E
to belong to Qc. Indeed, the class Qc is unitarily invariant. Whereas for an arbitrary idempotent
E in generic position (which is unitarilly equivalent to a Halmos model), the off diagonal entry
E12 (with trivial nullspace and dense range) need not verify N(E12E

∗
12 − 1) = {0}. In other

words, this last condition is not unitarilly invariant.
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