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1. Introduction

Let H be a Hilbert space, denote by B(H) the algebra of bounded linear operators in H, and by P(H)
the set of (orthogonal) projections in H. We study here the class D of operators which are differences of
projections,

D={P-Q:P,QeP(H)},
and for A € D, the set

Da={(P.Q) € P(H) x P(H): P— Q = A}.
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Results on differences P — () appeared since the 1940’s, as part of the two subspaces problem: to find a
complete set of unitary invariants for a pair of closed subspaces M, N (or equivalently, for a pair of projections
P,Q). This problem was solved by J. Dixmier [14], who obtained a characterization of D. An operator
A € B(H) belongs to D if and only if A* = A, ||A|| < 1 and there exists a symmetry V in H' = N(4%2-1)+
such that AV = —V A in H' (a symmetry is a selfadjoint unitary operator). This form of Dixmier’s result
is due to Ch. Davis [12], who found a nice solution of the two subspaces problem by a geometric study of
the closeness and separation operators of a pair P,Q: C(P,Q) = PQP + (1 — P)(1 — Q)(1 — P) is called
the closeness operator of P,Q, and S(P,Q) = P(1 — Q)P + (1 — P)Q(1 — P) is the separation operator
of P,Q. Observe that, if A = P — Q, then C = 1 — A% and S = A2%. In [8] J. Avron, R. Seiler and B.
Simon defined and studied Fredholm pairs of projections, and an index for them: (P, Q) is a Fredholm pair
if P|gq) : R(Q) — R(P) is a Fredholm operator, whose index is called the index of the pair. Their methods
rely on an extensive use of the differences A = P — @ and B = P + @ — 1. For a nice presentation of these
results, see W. Amrein and K. Sinha [1].

A more recent study of D can be found in [2], where several known facts on the differential geometry of
P(H) were used to describe, for instance, the interior and boundary of D, its connected components, and
also some special parts of D (elements in D which are Fredholm, compact, or nuclear).

n [27], W. Shi, G. Ji and H. Du studied several properties of Dy, for any A € D. In particular, they
proved that D4, C B(Ho) is connected, where Ho = {N(A? — 1) & N(A)}* and Ag = Az, .

The main goal of this paper is to present D4, as a homogeneous space and a differentiable manifold. As
such, following ideas of Durdn, Mata-Lorenzo and Recht [15], the space D4, has a natural invariant Finsler
metric. Also, using a well known characterization by Halmos [19], of pairs of projections in generic position,
we show that D4, has a reductive structure, a fact which enables one to introduce a linear connection in
this space, and to compute its geodesics (given by one-parameter unitary groups acting on a given pair
(P, Qo)). We show that with the Finsler metric and the reductive structure, D4, satisfies a Hopf-Rinow
theorem: pairs in D4, are joined by a geodesic of minimal length. Moreover, on a dense open subset of D 4,,
such geodesic is unique.

In Section 2, we present Davis’ characterization of D by means of the Halmos decomposition of H (in
the presence of a pair P,Q € P(H)). Using Davis’ and Halmos’ tools, we show that the Friedrich’s angle
is constant in D4. Recall (see Deutsch [13]) that ap(M,N) € [0,7/2] is the Friedrich’s angle between the
closed subspaces M, N if

cos(ap(M, N)) = sup{| (1, )] : p € M S N,v € N & M, ||l = vl = 1} = [ Pas Py — Pasanl

Moreover, it is shown that cos(ap(M,N)) = ||PoQo|| (= constant) for any P = Py;, @ = Py such that
P —Q = A, where Py, Qg denote the reductions of P, Q to the common invariant subspace Ho = {N(A) ®
N(A%—1)}*. Hereafter, Py, Qo, Ao will be called the generic part of P, Q, A, respectively. Also in this section
we show that, with the usual order of positive definite operators, the set {Py+ Qg : (Po, Qo) € D4, } cannot
be ordered: Py + Qo < Pj+ Qf if and only if Py = Pj and Qo = Q. In Section 3 we introduce the action
of the unitary group Uy of

A={A}Y ={T € B(H): TA = AT}

on Dy. A and U4 are also reduced by Hy. It is proven that the generic part of U 4 acts transitively on D 4,,
and from this follows that Dy, is connected (as proved by Shi, Ji and Du in [27]). Section 4 contains a
description of Aj in terms of Halmos’ decomposition, which will be used later. In Section 5 we present some
examples in D. In Section 6 we show that D4, is a differentiable homogeneous manifold, with a natural
reductive structure. For instance, the geodesic curves can be computed, and we show that the exponential
map of the linear connection is surjective. We endow the tangent spaces of D4, with the quotient norm,
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as defined by Durdn, Mata-Lorenzo and Recht in [15], and show that with this metric, the geodesics of the
reductive connection are minimal up to the border of Dy4,,.

2. Davis’ characterization

If T € B(H), denote by R(T) and N(T') the range and nullspace of T', respectively. If A € D, the space
‘H can be decomposed orthogonally as

H=N(A) & N(A*—-1)® Ho, (1)

where Ho = (N(A) & N (A% — 1))L. Note that N(A? —1) = N(A — 1) ® N(A + 1). For any presentation
A =P —(Q, it is straightforward to verify that

NA)=R(P)NR(Q)®N(P)NN(Q), N(A-1)=R(P)NN(Q) and N(A+1) = N(P)N R(Q).

So that the decomposition (1) is essentially the decomposition considered by Dixmier [14] and Halmos [19]
to study the equivalence of pair of projections. In particular, the subspace Hg is usually called the generic
part of P and @, or more properly, the generic part of A = P — Q. Therefore, the decomposition (1) reduces
simultaneously any pair P, Q) in D 4.

Using the decomposition (1), the set D4 is factorized as follows:

1. In the subspace N(A? —1) = N(A—1) & N(A+1), Ais given by A = 1ya_1) ® —1n(as1). That is,
any pair (P, Q) € D4 coincides with (Py(a—1), Pn(a+1)) in this subspace.

2. In the subspace N(A), the pairs (P, Q) € D4 reduce to pairs of the form (P’, P’), with P’ € P(N(A)).
Thus, if N(A) is non trivial, the structure of Da|y(a) is that of P(N(A)).

3. The structure of D4 in Hg was characterized by Davis [12]. In Theorem 2.2 below we describe the results
obtained by Davis [12] on this set.

A symmetry V € B(H) is a selfadjoint unitary operator: V* = V=1 = V. Symmetries are special cases
of difference of projections: V' = P,; — P_;, where Py, are the orthogonal projections onto the eigenspaces
{¢ € H:VE==££}. Also note that V =2P;; —1and Pyq = 2(1£ V).

Let us summarize the information above:

Remark 2.1. In the decomposition H = N(A) & N (A% — 1) & Ho, the set D, is decomposed as
Da =Pna) ®{Ax+1} @ Da,,

where Aty = Pn(a—1) — Pn(at1) is a symmetry. It follows that D4 consists of a single element if and only
if A is a symmetry.

As announced, let us describe the structure of Dy,:

Theorem 2.2 (Essentially [12]). Let A € D, and let Ay be its generic part. There exist one to one corre-
spondences between

e Pairs (Py, Qo) such that Py — Qo = Ayp.

o Symmetries V in Hg such that VAg = —AyV.

e Closed subspaces S of Ho such that Ag(S) C St and Ay(St) C S.
o Projections E € P(Ho) such that EAoE = (1 — E)Ao(1 — E) =0.
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Proof. Given a pair (Py, Q) € Da,, one obtains a symmetry which anti-commutes with Ay as follows.
Consider the selfadjoint operator S = Py + Q¢ — 1. Note that S = Py — (1 — Qo) is also a difference of
projections. Its nullspace is trivial:

N(S) = R(Py) N R(1 — Qo) ® N(Fy) N N(1 - Qo) = R(Py) N N(Qo) ® N(FPo) N R(Qo) = {0}.

Therefore, the polar decomposition of S, S = V|S| = |S|V yields a symmetry V (note that V is the sign
function of S). Clearly, SPy = PyQo = QoS and SQo = QoPy = PyS. In particular, this implies that
S? commutes with Py and Qg. Then |S| = (S?)'/2 also commutes with both projections. It follows that
VPO = Q()V and VQO = P()V. Then

VAy=VP —VQo=QoV — PV =—-A4yV.

Given a symmetry V which anti-commutes with Ag, put (see [12], p. 181)
1 1
Py ={l+40+(1- AHV2VY and Qv = S Ao+ (1- AV

Straightforward computations show that Py, Qv € P(Hy), Pv —Qv = Ap, and Py +Qy —1 = (1 —A%)UQV.
Then, since V and A2 commute,

(Pv +Qv — 1) =1— A2, ie., |Py +Qv — 1] = (1 — A3)"/?,

and Py +Qy —1 = |Py+Qy —1|V. That is, the correspondence between pairs and symmetries is reciprocal.

Given a symmetry V which anti-commutes with Ao, let S = {& € Ho : V& = £}, so that ST = {¢ € Hp :
VE= ¢} IFEES, VAL = —AgVE = —Apé, ie., AE € S*. Similarly, A(S1) C S. The converse holds: if
Ap(S) € St and A(St) C S, then the symmetry V = Ps — PSt = 2Ps — 1 anti-commutes with Ag. In
fact, if £ € S,

(2Ps — 1)Ao§ = 2PsAof — Ao = —Ao€ = —Ao(2Ps — 1)§;
if n € S+,
(2P3 — 1)A017 = 2P3A01’} — AQT} = 2A0’I7 — A077 = A077 = —A()(2P3 — 1)77.

Given a closed subspace & C Hg such that Ag(S) C St and Ap(S*) C S, the orthogonal projection
E = Ps satisfies that FAoE = (1 — E)A¢(1 — FE) = 0, and conversely. O

Remark 2.3. Since Ay is selfadjoint with trivial nullspace, the isometric part Jy, in the polar decomposi-
tion Ag = Jo|A3| = |Ao|Jo, is a symmetry. Note that if a symmetry V anti-commutes with A, then it
anti-commutes with Jy. Indeed, V commutes with A2 and with |A4g|, which has also trivial nullspace:

|Ao|JoV = =V|Ag|Jo = —|Ao|V Jo,
which implies that JoV = =V Jj.

Remark 2.4. Note that A € D is a selfadjoint contraction. Moreover, the existence of a symmetry intertwining
Ap with — A, means that the spectrum of the whole A is symmetric with respect to the origin, except for
an eventual asymmetry at A = 1. For instance, if 0 < A < 1 is an eigenvalue of A, then +\ € o(4y), with
the same multiplicity. The symmetry may break at A = 1.
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Remark 2.5. Consider now the following question: among the pairs (P, Q) € Dy, does the exist an optimal
element which minimizes P + Q? We use the decomposition H = N (A) ® N(A? — 1) & H, which reduces all
pairs in D 4. In the first subspace N(A), all pairs are of the form (E, E), for E a projection onto a subspace
of N(A). Clearly, there is a minimal pair here, taking F = 0. On N(A? — 1), there is one pair, and for
this pair P + Q equals the identity of N(A4% — 1). Let us prove that pairs (Py, Qo) in the generic part H
are not comparable (unless they are equal). This implies that in the nontrivial case, where the generic part
Ho # 0, there are no possible minimizers for P + Q. For (Py, Qo) € Da,, let Vj be the corresponding Davis
symmetry: Py, = Py, Qv, = Qo. Then

Py+ Qo =1+ Vo(1— A2)'/2.

Thus, comparison of these sums is equivalent to comparison of the operators Vy(1 — A2)/2 = (1 — A2)1/2Vj,.
If V1 is the symmetry corresponding to another pair (Py,Q1), then, since

(Vo(1— 45)1/%¢,6) = (Vo(1 — A5)'/%¢, (1 — 45)'/"¢),
it follows that P, + Q1 < Py + Qo if and only if
(Vo(1— A3), (1 = ADY1E) < (Vi(1 - A, (1 - AF)Y ).
Moreover, since 1 — A3 has trivial nullspace, (1 — A%)l/ 4 has dense range. Thus, the inequality above is
equivalent to V7 < V4. This inequality is equivalent, in turn, to the inclusion Sfr - Sgr , Where S;r ={¢e
Ho : Vi€ = &} Therefore our assumption P; + Q1 < Py + Qo implies the existence of a nontrivial vector
& € SO+ such that & L Sfr. This leads us to a contradiction. In fact, note that AgVy = —Vp A implies that
Ao(S;) C (8F)* and Ag((S;)4) € S Then
Aoéo € (S)t and A&y € Ag((S)H) € S,
i.e., Ap& = 0, a contradiction, since Ay has trivial nullspace.

2.1. Halmos decomposition

Given two projections P, @, Halmos proved in [19] that there exists an isometric isomorphism between
the generic part Ho (of P and Q) and a product space £ x £ which carries Py and Qg to the operator

10 and c? CS
00 cs s )’

respectively. Here C' = cos(T") and S = sin(T"), where 0 < T' < 7/2 is a positive operator in £ with trivial

matrices

nullspace. In particular, C'S = SC and S has trivial nullspace. Note that also C' has trivial nullspace (i.e.,
/2 is not an eigenvalue of X). Indeed, if C¢§ = 0, then

(0 5)(5)= () = (& ) ()-()

ie., (g) lies in R(Py) N N(Qop), which is trivial.
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2.2. Friedrichs’ angle

Given two closed subspaces M, N C H, the Friedrichs angle [18] between M and N is the angle whose
cosine is

(M, N) == sup{[{p, V)| : p € MEN, v e N oM, |ul| = |v[| =1}

It holds that ¢(M,N) = ||PmPr — Prnn)|| (see [13]).
We prove next that if (P, Q) € D4, then ¢(R(P), R(Q)) does not depend on the pair, i.e., it is an invariant
of A.

Proposition 2.6. Friedrichs’ angle ¢(R(P), R(Q)) = ¢(N(P),N(Q)) is constant for all (P,Q) in Da.

Proof. Pick (P',Q"),(P,Q) € Da. Let us reduce P'Q" — Pr(pnr(q) and PQ — Pr(p)nr() in the three
space decomposition (1). Note that R(P) N R(Q) and R(P') N R(Q’) are non trivial only in N(A). In N(A)
and N(A% —1) = R(P) N N(Q) ® N(P) N R(Q), PQ — Pr(p)nr(q) is trivial, and similarly for (P, Q’).
In the generic part Ho, by Theorem 3.1, there exists a unitary operator U such that UP,U* = P} and
UQoU* = Q. Then U(R(Py)) = R(P}) and U(R(Qo)) = R(Q}), so that

U(R(Po) N R(Qo)) = R(Py) N R(Qy) » i-e., UPr(py)nr(@o)U™ = Pr(py)nr(@y)-
Then, in the three space decomposition (1)
P'Q" — Priprynr) = 0808 U (PoQo — Pr(ry)nr(Qs)) U,
and, thus,
|P'Q" = Prepnnr@)ll = [PoQo = Pr(pynr@o)ll = I1PQ — Prp)nr@)l;
Le., ¢(R(P"), R(Q")) = ¢(R(P), R(Q)). O

Remark 2.7. Note that ¢(R(P), R(Q)) = ||PoQo||.- Using Halmos representation

c? 0
1PsQoll = [PoQoPo|? = || < 0 0) I =l

Then, the angle equals cos™! (|| cos(T)||). If T is non invertible, 0 € o(T") and therefore 1 € (C), and thus
the angle is 7/2. If T is invertible (which is equivalent to A% — 1 being of closed range), then || cos(I')|| =
cos(||[T~%[|71), and the angle is [|[T~1|| =, or, equivalently, the lowest value in the spectrum of I'. In any case,
this quantity is an invariant of A. We shall see below (Remark 3.7), that ||Py + Qol| is also an invariant
of Ao.

3. A unitary action on D 4

Let A:={A} ={T € B(H) : TA = AT}. Since A is selfadjoint, A is a von Neumann subalgebra of
B(H). Let U 4 be the unitary group of A. Observe that U4 is connected. The group U4 acts on Da:

U-(P,Q)=UPU,UQU"), U€Uy, (P,Q) € Dy,

because UPU* —UQU* = UAU* = A.
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The algebra A and the action of U4 can be factored using the three space decomposition (1) H =
N(A) ® N(A% — 1) ® Ho. The algebra A splits as

A=B(N(A) & A, & A.

Let us describe the summands. The first summand is clearly B(N(A)): any operator acting on N(A) (and
trivial in N(A)+) commutes with A (= 0 in N(A)). A pair (P,Q) € Da reduces to (P’, P') in N(A), for
some projection P’ € B(N(A)). The action of the unitary group of N(A) on these pairs is essentially the
action of the unitary group of a space on the projections of the space. The orbits are parametrized by the
dimensions of the range and the nullspace.

The second summand consists of the algebra of operators which commute with A[x(42_1). In the decom-
position N(A? —1) = N(A—1) ® N(A+1), A|n(a2_1) is the matrix

1 0
Alnaz—1) = (0 _1>

and the operators in N (A% — 1) which commute with A are of the form

r= (T 0.
0 T

The unitary operators of this form leave A|y(42_1) fixed (a fact consistent with the observation that all
pairs (P, Q) € D4 reduce to a unique element in N (A% — 1)).

The third summand is Ag := {Al|y, : A € A}. Therefore, it is natural to focus on the action of U 4,, the
unitary group of the part Ajg.

Theorem 3.1. The action of U, on Da, is transitive.

Proof. Let (Py, Qo), (P}, Q) € Da,. Denote by V and V' the symmetries (which anti-commute with Ag)
which correspond to these pairs. Consider the decomposition

Ho=N(Py+ Q) — 1)@ N(Py+ Q) — 1)*.

Note that N(Py 4+ Qf — 1) reduces simultaneously both pairs (P, Qo), (Pj, Qp). First note that N(Py +
Qp— 1) = N(P{+ Qo — 1), because Py — Qo = P — Q. Also note that

N(Py+Qp—1)=N(P— (1-Qp)) = R(Po) N R(1 — Q) & N(Po) NN(1 - Q)
= R(Py) N N(Qp) & N(Po) N R(Qg),
which reduces Py and @y, and similarly for P} and Q.
In the second subspace N (Py+ Qp — 1)+, the operator Py+ Q) — 1 is selfadjoint and has trivial nullspace;
therefore, in the polar decomposition
Po+Qy—1=3X|P+Q,—1] =P+ Q- 1%,

the operator ¥ is a symmetry which, by the same argument as in the proof of Theorem 2.2, satisfies

EPo|nporp-1tE = Qolnporqy-1t  and  BQg|n(r+@y-1)+E = Poln(pyrqp—1)+-
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Then,

SAoln(py+qp-1t 2 = —Aoln(po+gp-1) -

The fact that Py + Q) — 1 = P} + Qo — 1, implies that this operator ¥ intertwines also the reductions of P}
and Qg to N(Py + Qp — 1)*.

The symmetry V', which is obtained (by means of the Borel functional calculus) as the sign function
of Py + Qo — 1, also is reduced by N(FPy + @y — 1). Clearly, V|y(p,4+q,—1)+ also anti-commutes with
Ao|N(py+qy—1)+- Then, the unitary operator Uy in N(Py + Qg — 1)* defined as

Ur =XV |npy+qp—1)ts
commutes with Ag|n(p,+;—1)+- Moreover, it satisfies
UrBoln(porqy-1)- Ul = E(VRV) Inpyrqp-1)+ E = ZQo|n(por @y 1)+ 2 = Byl n(porqy—1)*
and, similarly,
U1Qoln(Po+qy—-1)- Ut = Qoln(porqy—1)t-

Let us find a unitary in the other subspace, N (FPy+Qg—1). Trivially, Po|n(py+qy—1) = 1= Q0| n(Py+qQ)—1)5
and also Py|n(py+qy—1) = 1 — Qoln(po+qy—1)- Note that

AoPo|n(py+qy-1) = (1 = Qo) Poln(potqy—1) = Po(1 — Qo)In(ro+y—1) = PoAoln(py+qy—1)»
and, similarly,
AoQolN(Py+qy—1) = QoAolN(Pot+qy—1)-

Then, again by the same argument as above (and as in the proof of Theorem 2.2), the isometric part Us
in the polar decomposition of Ag|n Pot+Qh—1) (which has trivial nullspace in the whole H and, thus also in
N(Py+Qf — 1)), is a symmetry (Us = Uy) which satisfies

UsPo|n(po+qy-1)U2 = Poln(po+qy—1) and UaQoln(py+qy—1)U2 = QoI N(Py+ay—1)
In particular, this implies that Us commutes with Ag| N(Py+qQ,—1)- Consider, then,
U=U,®U; actingin N(Py+Q)—1)® NPy + Q) —1)* =H,.
Clearly, U is a unitary operator which commutes with Ag, and satisfies U - (Py, Qo) = (P}, Q). O

The following result appeared in [27]. It was proved there using a different technique: Shi, Ji and Du
obtained a parametrization of D4, in terms of unitaries in a von Neumann algebra. The result is proved
here as an easy consequence of the above theorem:

Corollary 3.2. Dy, is connected. The connected components of D are parametrized by the connected com-
ponents of the space of projections P(N(A)) of the space N(A).

Proof. U4, is the unitary group of a von Neumann algebra, therefore connected, and the action on Dy, is
continuous. The assertion on the components of D 4 follows form the description of D4 done in Section 1. O
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Remark 3.3. The unitary U obtained above is, in fact, an explicit formula in terms of Py, Qq, P and Qf.
However, if one fixes for instance the pair (Pp, Qo), U is not a continuous formula in terms of (P§, Qp)
(a continuous formula would provide a continuous global cross-section for the action). Indeed, the formula
of U depends on the decomposition Ho = N(Py+ Qf — 1) & N(Py + Qf — 1)*. Or, equivalently, on the map

Qo = Pn(py+@y—1) = Pn(ro-(1-qp)-
One can find trivial examples (in dimension 2, for instance) where this map is not continuous.

However, in some cases the action does have continuous local cross sections. Let us show one such case.
Given a fixed (Py, Qo) € Da,, consider the continuous (surjective) map

T(Po,Q0)  Uay = Day » T(py,00)(U) =U - (Po, Qo) = (URU",UQeU™).
Lemma 3.4. 1 — A% has closed range if and only if for any (Py,Qo) € Da,, Po + Qo — 1 is invertible.
Proof. Suppose that 1 — A? has closed range. Note the formula (see [21] p. 33, or compute directly):
(P-Q?+(P+Q-1)=1,

or, equivalently, 1 — A% = (P + Q — 1)2. Tt follows that (P + Q — 1)? has closed range. In the generic part
Ho, (P+Q —1)?|3, = (Py + Qo — 1)? has trivial nullspace. Thus, (P + Qo — 1)? is invertible, and, thus,
also Py + Qo — 1 is invertible.

Conversely, if Py + Qo — 1 is invertible, then (Py + Qo — 1)? is also invertible, and then its extension
(P+Q—1)2 =1~ A2 (which is zero in N(P + @ — 1)) has closed range. O

Remark 3.5. Using Halmos decomposition, a simple computation shows that R(A? — 1) is closed, which
means that A2 — 1 is invertible if and only if S (or I') is invertible in L.

For such A as above, the map 7(p, ¢,) has continuous local cross-sections.

Proposition 3.6. Let A € D such that A2 — 1 has closed range. Then the map T(Py,Qo) has continuous local
cross-sections.

Proof. Consider the set
{(P',Q") € Da, : Py + Q' — 1 is invertible in Ho}.

Since the set of invertible operators is open, this set is clearly an open subset of D4, (considered with the
relative topology of B(Ho) x B(Hy)). It is a neighbourhood of (Py, Qo): if (P', Q") = (Po,Qo), Po+ Qo — 1
is invertible, by the above Lemma. Then the map

s: {(P,Q") €Da, : Po+Q — 1is invertible in Ho} — Ua,, s(P',Q") = sgn(Py+ Q" — 1)V

is continuous. Here sgn(Py + Q' — 1) denotes the sign of the selfadjoint (invertible) operator Py + Q' — 1,
sgn(Po+Q —1) = (R +Q = 1) (B +Q —1)?) "
set of invertible operators. As seen above, it is an element of U 4, (called ¥V in the proof of Theorem 3.1).

. Note that the function sgn is continuous on the

Also, it is clear that it is a cross section in a neighbourhood of (Py, Qo). One obtains cross sections around
other points by translating this map using the transitive action. O
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Remark 3.7. In Remark 2.5, we observed that if (Py, Qo), (P, Q) are the generic parts of two pairs
(P,Q),(P',Q") € Da, the operators Py + Qo and P} 4+ Q[ are not comparable (an inequality implies
equality). The transitivity of the action of U4, on Dy, implies that the norms of these operators coincide.
Indeed, since there exists a unitary operator U in Ay such that UP,U* = Pj and UQo U* = Qy, it follows
that U(Py + Qo)U* = PJ + Qy, and therefore || Py + Qol| = ||1P§ + Qbll-

4. A presentation of .Ag in terms of Halmos decomposition

Proposition 4.1. The algebra Ag, represented in B(L x L), consists of matrices of the form

{(X Y) : X, Y, Z € B(L) commute with T, and C(X — Z) + 25Y = 0}.

Y Z
S22  —-CS
-Ccs -8 |
X v . . . . . . o 1.
Let be an operator which commutes with Ag. Then, in particular, it commutes with A§ which

Y, Z
S?2 0
0o S%)°

is given by

Then X,Y7,Ys, Z commute with S2. Therefore, they commute also with its square root |S| = S, and with
C. Thus, X, Y7, Ys, Z commute with e!l' = C'+49, and with its analytic logarithm iI" (since ||T'|| < 7/2 < 7).
Straightforward computations show that an operator lies in the commutant of Ay if and only if

Proof. In £ x L, Ay is

e (SY; = CSY>, which means that Y7 = Y5, because C, S have trivial nullspaces, and
o S?Y —(0SZ = —CSX — S?Y, which, again using that S has trivial nullspace, means that C(X — Z) +
25Y =0. O

Remark 4.2. Note that since S = sin(I") has trivial nullspace, then the (eventually unbounded, densely
defined) operator 7 = tan(T") is defined, and the condition C(X — Z) + 2SY = 0 can be replaced by

Z =X+27Y.
In particular, it implies that 7Y = Y7 is bounded.

Remark 4.3. It is also easy to characterize the unitaries in 4y which leave (P, Qo) fixed. They are the
(unitary) matrices which commute with Py and (. The first relation implies that they must be diagonal
matrices. Commutation with the second projection implies, after simple computations (using that C' has
trivial nullspace), that they are of the form

w0

{Weldy, : WPW* = Py and WQoW™} = {< o w

) W eUL),W'T =TW'}.
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Using this representation of the generic part, we can further analize the condition that A% — 1 has closed
range. Recall from Lemma 3.4, that this is equivalent to the invertibility of Py + Q¢ — 1, for any pair
(Po, Qo) € Da,-

Proposition 4.4. The following are equivalent

1. A%2 —1 has closed range.

2. PQP — P has closed range.

3. PyQoPy — Py is invertible in R(F).
4. T is invertible in L.

Proof. Clearly, it suffices to examine the reductions to the generic part Hy. Using Halmos representation,

one gets
-S2 0
A3 —-1=
and PyQoPy — Py = —5? = —sin(T"). The equivalence of these conditions becomes apparent. O
5. Examples

We present examples of operators A, which will be the object of further study. The first one has continuous
spectrum.

Example 5.1. Let # = L*(—1,1) and A = M, (multiplication by the variable): Af(t) = tf(t). Note that
A anti-commutes with the symmetry V, V f(¢t) = f(—t). Therefore A = Py — Qy, following the notation
of Davis’ characterization in Section 1, and both projections can be computed explicitly. Since A has no
eigenvalues, it follows that Ho = H (i.e., Py, Qv or any pair of projections with difference A are in generic
position). Also note that the algebra A is L>°(—1, 1), represented as multiplication operators in . Therefore,
if one chooses to parametrize elements in D4 by means of isometries, D4 consists of all symmetries V,, of
the form

VSO = MSOVM557

for ¢ € L>°(—1,1), with |¢(¢)] = 1 a.e., modulo the commutant of V, i.e., the unimodular functions of
L>°(—1,1) which are essentially even. Explicitly,

Vo f(t) = @(t)p(=t) f (1),
modulo the functions ¢ such that ¢(t) = @(—t) for almost every t € (—1,1).
The second example has pure point spectrum.

Example 5.2. Let I, J C R" be Lebesgue measurable sets with positive finite measure. Consider # = L?(R")
and the projections

Pr=M,, and Q; = }ﬂilpjf

where xp is the characteristic function of D C R™ and F : H — H is the Fourier-Plancherel transform.
These pairs have been studied in connection with mathematical formulation of the uncertainty principle (see
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[23], the survey [17] or the book [20]; see also [4]). Specifically, the products P;Q ;, PrQ ;P are of interest.
Among the basic facts concerning these operators, it is known that they are Hilbert-Schmidt operators, and
that

R(Pr)NR(Qs) = R(Pr)NN(Qs) = N(Pr)N R(Qs) = {0},

and N(P;) N N(Q,) is infinite dimensional (see for instance [23]). In particular, P;Q P has a complete
orthonormal system of eigenvectors (i.e., PrQ;Pr is diagonalizable). In [5] it was proved that for a pair
of projections P, Q, PQP is diagonalizable if and only if P — @ is diagonalizable. In this case, there is an
explicit relation between the eigenvectors and eigenvalues of PQP and P — Q. If s,, are the eigenvalues of
PQP (0 < s, < 1), then )\, = +(1—s,)'/? are the eigenvalues of P— Q. The eigenvalue s = 1 corresponds
with A = 0.

Thus, our second example A = Py — Q) is diagonalizable. Moreover,

Ho = N(A)* = (N(Pr) N N(@QJ))" -

In the particular case I = (0,1) and J = (—Q/2,Q/2) the eigenvectors are known (called prolate
spheroidal functions [28], [20]), and the eigenvalues have simple multiplicity. Therefore, in this case Ag
consists of all diagonal matrices in this orthonormal basis. In particular, Ay is commutative, as in the
previous example.

Let us characterize in this example the symmetries which anti-commute with Ay. Note that this implies
that V commutes with A3. Therefore V has block diagonal form, with blocks of size 2 x 2, generated, for
each fixed n > 1, by the eigenvectors e, f, of A, and —\,, respectively. Note that Ve, is an eigenvector
for —A,:

AgVe, = =V Age,, = -\, Ve,.

Thus, since in this case all eigenvalues have multiplicity one, Ve, = wy, f,, for some w, € C with |w,| = 1.
Similarly, V f,, is an unimodular multiple of e,. The fact that V2 = 1 implies that V f,, = w,e,. Therefore,
any symmetry V anti-commuting with Ay (in Hp) is of the form

0 wy
V=V,=621V,, € B0 Hn, where V, = ( w )
' ' wn 0
and H, is the subspace spanned by e, and f,. That is, the elements of D4, can be parametrized by
sequences w = {w, } of complex numbers of modulus 1.

Remark 5.3. If we consider the 2 x 2 matrix representation of the previous section, elementary computations
show that if Ay is commutative, then all entries in the matrices commute.

Example 5.4. Consider H = L(T), put Ht = H*(T), P, = Py+. Let a = {ay,...,an}, b= {b1,...,bn}
two (finite) sequences of points in the open disk . We suppose that a; # a; if i # j and a; # b; for all 4, j.
Let Ba, Bp be the corresponding Blaschke products. Put Py, = Pp_4+, and similarly B, = Pp_y+. Note
that since the multiplication operator Mp, is a unitary operator in H, Pa = Mp, Py Mp and similarly
P, = Mp, Py Mp, . Also note that, if a#b = {a1,...,an,b1,...,bn}, then

Ha N Hp = Hasb ;
Ha NHi = Ha NHp = {0}.
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This is an exercise which follows from the fact that a and b have the same cardinality (see also [3] for a
proof). Moreover,

HENHE = HaUHp)t = (HDH)E =H"

because B, and By, are coprime inner functions (a; # b;). Therefore, the generic part 7o equals the model
space

Ho = HT o Hasb,

spanned by {kay,.--,Kkay,Kkbys---, Kby}, Where k. denotes the reproducing kernel of Ht at ¢ € D. Since
we have chosen different points a;, b; in the disk, these functions are linearly independent, and H, has
dimension 2N. Thus A, is a finite dimensional algebra. The operator Ay = Py — Ppln, is a 2N x 2N
matrix. Let us compute Ag in the elements of the basis kq,, kp,. First, note that kq, € ’Hj: if h € HT,
(Bah, kqa;) = Ba(a;)h(a;) = 0. Then

Paka; =0, Poky, = 0.

Note that

Py Baky, = Y (Baks,,2")2' = (ky,, Baz')2' = Ba(b;)(b;2)' = Ba(b))
1>0 1>0 1>0

Then, Pyky, = Mp, Py Mp_ky, = Ba(b;)Baky,. Similarly for Pyk,,. Then,

AOka,; = 7Bb(ai)Bbkai

and

Aok, = Ba(b;) Baks, .

Thus, in principle, it is possible to compute the 2N x 2N matrix of Ay in the (non-orthogonal) basis of
the reproducing kernels &, , ky,. It would be interesting to know if under the present assumptions, A¢ has
eigenvalues of simple multiplicity.

Example 5.5. Let £ € B(H) be a non-selfadjoint idempotent operator (E? = E). Consider the orthogonal
projections Pr(gy and Pr(g+) = Py (gt . In matrix form, in terms of the decomposition H = R(E) SR(E)*,

1 B
E =
(0 0>7

where B : R(E)t — R(E). Consider the selfadjoint operator S = E + E* — 1. § is selfadjoint with trivial
nullspace, which satisfies SE = E*S and SE* = ES. Then, similarly as before, the unitary part of S in the
polar decomposition intertwines F and E*. Then, it also intertwines the range projections. Moreover, by

F is written

straightforward matrix computations (which were done explicitly in [6]), this unitary part coincides with
Davis’ symmetry V' for the pair of projections Pr(g), Pr(g+)- Also note the well known formulas

Prpy=ES™" and Prp-) = E*S™,
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so that
A=(E—-FE"S™ (2)
Note that R(E) N N(E) = {0} and R(E*) N N(E*) = {0}. Straightforward computation show that
R(EYNR(E*) = N(B*) and N(E*)NN(E)= N(B).

Thus, in order that Pr(g) and Pr(g-) be in generic position, B should have dense range and trivial nullspace.
Let us assume this. In particular it implies that dim R(E) = dim R(E)*. Clearly, if we want to study the
structure of D4, we can replace E with UEU*, where U : H — J is a unitary transformation. Thus,
A = Pr(g) — Pr(g~) is replaced by UAU*. Pairs in D4 are mapped onto pairs in Dyay- by means of
(P,Q) — (UPU*,UQU*). Therefore (by the equality of dimensions between R(E) and R(E)‘) we can
choose a model J = £ x L. Next consider the polar decomposition of B, B = Wy|B|. Clearly Wy : L — L
Wg 0

0o 1) Then,

is a unitary operator. Consider the unitary operator W in £ x L given by W =

1 WgB 1 |B]
EW* = R :
ver- (3 "97) (0 9)

Summarizing, we can suppose that H = £ x £ and B is positive with trivial nullspace. Therefore, with the
current assumptions, using (2), one has

do— A < B*1+B%~' -B(1+B*! ) .

-B(1+B?*»)~! —-B*1+B%)!

B*(1+ B*)~!
In order to describe A9 = {Ap}’, note that A3 = ( (1+5%) 0

0 B2(1 + B?)-L > Therefore, if X =

X X
( 1t 12 belongs to Ay, in particular it commutes with A3. This clearly implies that the entries Xij

Xo1 Xoo
commute with B (recall that B > 0). Next, note that the condition that X commutes with Ay means that
BXi3 = X01B = BXoy,

which implies X172 = X1, because N(B) = 0, and that

BXay — X11B = B(X2s — X11) = 2B* X1,

which implies that Xoo = 2BX15 + X;1. Therefore

Y A
Ao = {<Z Y+QBZ> Y, Z commute with B}.

Let us describe the isotropy subalgebra, i.e., the operators which commute with Pr(g) and Pg(g-). Operators

1
which commute with Prg) = <O 8), are diagonal matrices. If they belong additionally to Ag, they are

of the form
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Y 0
{( 0 Y) Y commutes with B}.
Easy examples (of positive operators B), show that the isotropy subalgebra, and therefore 4y, may not be
commutative.

6. A regular structure for D 4

We shall prove that D4 is an homogeneous C> space of the unitary group U4. If A% —1 has closed range,
then Dy is additionally a complemented submanifold of P(H) x P(H). As seen above, D4 decomposes as
three spaces in the decomposition (1).

e In N(A), the group acting is the whole unitary group of N(A), and the space D4 reduces to pairs of the
form (E, E), where € P(H) and R(E) C N(A), i.e., Da|n(a) identifies with the space of projections
in the Hilbert space N(A), under the action of the unitary group of N(A). This space is well studied:
it is a C°° complemented submanifold of B(N(A)) (see [11]).

e In N(A2 —1), Da|n(a2—1) is a single point, namely, (Pn(a—1), Pn(a41))-

e Therefore, the task is reduced to show that D4, has local regular structure.

In order to prove that D4, has differentiable structure, and also in order to define later a linear connection
in this manifold, the following map will be useful:

Definition 6.1. Fix (P, Qo) € Da,, and fix also a Halmos decomposition for this pair. Consider the map
E(PO,QO) : .Ao — .Ao,

1
EU’on)((i/( };)) = <Q(XO+ Z) %(XO+ Z)>. (3)

It is easy to see that this map is a conditional expectation, with range equal to the subalgebra of elements
in A which commute with Py and Qo (see Remark 4.3).

Remark 6.2. Let us prove that the conditional expectation Ep, o,) depends only on the pair (Py, Qo) (and

not on the Halmos decomposition). Indeed, first note that Qo — PoyQoPy — Py-QoPs- = (C(’)S %S> Let
us denote this operator by K. Since C' and S have trivial nullspace, then N(K) = 0. Also, it is clear that

K* = K. Then, in the polar decomposition of K,

cs 0
K—WK—W<0 CS),

0
10
W is obtained by means of the functional calculus of K: W = sgn(K), where sgn denotes the (Borel,

using again that C' and S have trivial nullspaces, it follows that it must be W = . The operator

eventually non continuous) sign function (sgn(t) = 1if ¢t > 0, —1 if ¢ < 0). Note that PyW = <O 1) and

0 0
XY
WPO:<? 8>.Then,ifM:<Y Z),weget
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1 1
E(p,.qo) (M) = 5 Po(M + WMW)Py + o Py (M + WMW)F;-.

Definition 6.3. As above, fix (P, Qo) € D4, and a Halmos decomposition for this pair. Denote

-Yr Y

H(PO‘QO) = N(E(PD,QO)) N (AO)ah = {( Y YT) (Y = —Y, YT = FY, Y7 is bounded in E} (4)

Note that if Y7 is bounded, then Z — X = 2Y'7.

Remark 6.4. Let us point out the fact, which will be relevant later, that for any (matrix) element in Hp, o),
all entries of the matrix commute. Indeed, ¥ commutes with 7 = tan(T).

In order to study the local structure of D4, we first suppose that R(A? —1) is closed. In this case we shall
prove that D4, is a submanifold of B(Ho) x B(Ho) (as well as a homogeneous space of U 4, ). To prove this
fact we shall need the following lemma, which is an application of the inverse function theorem in Banach

spaces. One can find a detailed and elementary proof of this fact in [26].

Lemma 6.5. Let G be a Banach-Lie group acting smoothly on a Banach space X . For a fixred xog € X, denote
by myy : G — X the smooth map 7y, (9) = g - xo. Suppose that:

1. 7y, is an open mapping, regarded as a map from G onto the orbit {g-xo : g € G} of xg (with the relative
topology of X ).
2. The differential d(m3,)1 : (TG)1 — X splits: its nullspace and range are closed complemented subspaces
in the Banach-Lie algebra G of G and X, respectively.
Then, the orbit {g-xo : g € G} is a smooth submanifold of X, and the map
o : G — {9 2o :9 € G}

is a smooth submersion.

Proposition 6.6. Suppose that A2 — 1 has closed range. Then, Da, is a complemented C> submanifold of
B(H) x B(H), and for any fized (Py, Qo) € Da,, the map

T(Py,Qo) :Z’IAO - DA(J ) 7T(Po.,Qo)(U) = (UPOU*y UQOU*)
is a C*° submersion.
Proof. We shall apply Lemma 6.5 above. Note that the condition that 7(p, q,) is open is fulfilled: if A% —1

has closed range, then 7(p, o,) has continuous local cross-sections. A cross section on a neighbourhood of
(Py, Qo) was defined in Section 2 by

s: {(P,Q)€Da,: Po+Q —1€GI(Ho)} = Un, , s(P,Q)=(Po+Q —1)|Py+Q —1|7'V.

This map can be extended to a map § defined on an open subset in B(Ho) x B(Hg), with values in GI(Hg).
Namely

§:{(T,S) € B(Ho) x B(Ho): Po+ S —1€ Gl(Ho)} , 8(T,5) = (Po+S—1)|Py+5—1]7'V.
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Clearly, {(T,S) € B(Ho) x B(Ho) : Py + S — 1 € Gi(Ho)} is an open subset of B(Ho) x B(Ho) containing
(Po, Qo), and § is C*°.
The differential d(7(p,,qy))1 : (Ao)an — B(Ho) x B(Ho) is given by

d(W(Pon))l(Z) = (ZPO —PyZ,ZQo — QOZ)'

Here, (Ag)an denotes the set of anti-Hermitian elements of Ay (which is the Banach-Lie algebra of U4, ).
Clearly, this map has a natural extension

IT: B(Ho) — B(Ho) x B(Ho) , II(X) = (X Py — P X, XQo — QoX).

Denote S = d(8)(p,.q,). The fact that s is a cross section for m(p, ¢, implies that m(p, o) © 8 © T(py.00) =
T(Py,Qo)- Equivalently,

T(Py,Qo) © 8 © T(Py,Q0) = T(Po,Qo)-

This is a composition of C'> maps defined on open subsets of Banach spaces. If we differentiate this identity
at 1, we get

MMoSolIl =1I (5)

If we restrict this identity to (Ap)an, the image II((Ag)an) equals the image of d(m(p, g,))1- Then, identity
(5) above implies that ITo S is an idempotent whose range equals the range of II. It follows that the range
of d(7(p,,00))1 is complemented in B(Ho) x B(Ho)-

The nullspace of d(7(p,,0,))1 s

{Z S (-AO)ah : ZPO = P()Z and ZQO = QQZ}

This is the Banach-Lie algebra of 7r(_PlO Qo)(PO’ Qo) (usually called the isotropy subgroup of the action at

(Po,Qo))- It was described in Remark 4.3 using Halmos representation. It is clear, then, that the Banach
Lie algebra of the isotropy group consists of matrices

X 0
0 X
with X* = —X and XT' =TX.

Let us prove that this space is complemented in the Banach-Lie algebra (Ag)an, which (in this represen-

%)

where X, Y, Z commute with I', and satisfy the equation

tation) consists of matrices of the form

C(X—-Z)+28Y =0.

As remarked above, E(p, q,) is a conditional expectation between the von Neumann algebras Ay and
the isotropy subalgebra N(d(m(p,,0,))1) at (Fo, Qo). Therefore, the anti-Hermitian part of the nullspace
N(E(p,,q4)) N (Ao)an is a supplement for the isotropy subalgebra. O
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In the general case, i.e., if R(A%? — 1) is not necessarily closed, we shall use the transitive action of U4,
to induce a differentiable structure in D4,. Using Halmos representation, we know the explicit form of the
isotropy subgroups of the action. In order to prove that D4, has a C°°° structure, and that the maps 7(p, q,)
are submersions, we shall use a general result on quotients of unitary groups (see, for instance, [9]). In this
result, it is required that H is a Banach-Lie subgroup of G in the following specific sense:

Definition 6.7. ([9] Definition 4.1) Let G be a Banach-Lie group and H a subgroup of G. We say that H is
a Banach-Lie subgroup of G if the following conditions are satisfied.

1. The subgroup H is endowed with a structure of Banach-Lie group whose underlying topology is the
same as the relative topology of H in G.

2. The inclusion map H < G is smooth and the induced map between the Banach-Lie algebras L(H) —
L(G) is an injective operator with closed range.

3. There exists a closed linear subspace M of L(G) such that L(H) & M = L(G).

Proposition 6.8. ([9] Theorem 4.19) Let G be a Banach-Lie group, H a Banach-Lie subgroup of G and
7w : G — G/H the natural projection. Endow G/H with the quotient topology and consider the natural
transitive action

GxG/H — G/H,(g9,kH) — gkH.
Then G/H has a structure of C* manifold and the following conditions are satisfied:

1. The mapping 7 is C* and has C* local cross sections near every point of G/H.
2. For every g € G the mapping

G/H - G/H , kH v~ gkH
is C'°.

The isotropy subgroup Zip, g, = {W € Ua, : (WPW*, WQoW™) = (Po,Qo)} C U, clearly satisfies
the conditions of Definition 6.7 (the space M := Hp, ¢,) given in (4), satisfies condition 3.).

Corollary 6.9. If A € D, the space Da, inherits a C*° manifold structure from the quotient Ua, /T p,.q,),
which makes T(p,.q,) @ C submersion.

Remark 6.10. The topology that the quotient Ua,/Z(p, q,) induces in D4, might be different from the
ambient topology induced by B(Ho) x B(Ho). In other words, the identification is not necessarily a homeo-
morphism between these topologies.

7. A reductive structure for D4,

Recall the supplement Hp, q,) of L(Z(p,,q,)) = N(E(p,,qQ0)) N (Ao)ar in (Ao)an, defined in 6.3,

Hpy,qo) = {<_}}:T ;;) :Y* = =Y, Y7 bounded}.

This distribution of subspaces Da, > (Fo,Qo) + H(p, g, is what in differential geometry is called a
reductive structure for D4,, meaning that it satisfies the following conditions:
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e The subspace Hp, q,) is invariant under the inner action of Zp, q,): if W € Z(p, q,) and Z € H(p, q,)
then W - Z € H(P(qu)'

« The distribution of supplements D, > (P, Q") = H(p gy is C°. This means that if PH . o denotes
the idempotent (real) linear map acting in (Ag)qn corresponding to the projection to the first component
in the decomposition (Ag)an = Hpr, oy ® L(Z(pr,qr)), then the map

Da, 2 (P, Q") = Pu,, ,, € B((Ao)an)
is C*°.

In our case, the fact that the supplement is the (anti-Hermitian part) of the nullspace of an L(Zp, q,))-valued
conditional expectation, implies the first property. Also note that PH(P’.Q’) = (Id — E(pO,QO)) |B((Ao)an)-

Each pair (P’, Q") gives rise to a conditional expectation, which due to Remark 6.2, depends only on the
pair. We must show that if the pairs (P’, Q") vary smoothly, then so do the maps E(p/ ). The map B +— V,
via the polar decomposition B = V/|B|, in general is not continuous, much less smooth. However, in the
unitary orbit of (Py, Qo), it is smooth. Indeed, note that, locally (for (P’,Q’) close to (Py, Qp)), the unitary
U in Ap such that (UP,U*,UQeU*) = (P’,Q’) can be chosen as a smooth map in the arguments P’, Q’,
by means of smooth local cross section for the submersion 7(p, ¢,). Then, if we denote (as in Remark 6.2),

B = Qo — PyQoPy + Pi-QoPy-, and, accordingly, B’ = Q' — P'Q'P' — P'+Q'P'+, and V and V' are the
isometric parts in the corresponding polar decompositions of B and B’, then

uvu* =V’
Therefore, E(P’,Q’) = UE(pO’QO)(U* . U)U*

Remark 7.1. Elements Z € Hp, ¢,) have symmetric spectrum, with symmetric multiplicity. Indeed, consider

J:(Ol ;).

Then J* = —J, J? = —1 (a fortiori, .J is a unitary in Hg), and for any Z € H(py,00)5

-Yr Y -Yr Y
J(Y YT>__<Y Y7>J’
ie.,, JZJ" =—-ZJJ* =—Z.

Therefore, if one considers the symmetry V' = iJ, it turns out that elements in Hp, q,) are of the form
Z =r(E—F), for r =||Z|| and E, F orthogonal projections.

Remark 7.2. A reductive structure on a homogeneous space induces a linear connection (see [22], or [24] for
an infinite dimensional setting). For instance, the geodesics can be explicitly computed (in terms of YC1).

Y YT

-Y7r 0 0 Y
Z =Zy+ 2y, whereZ():( 0 YT) and Z1:<Y O)’

Indeed, note that, if Z = (YT Y ), then
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and Zy, Z; anti-commute. Thus,

Y272 4+Y? 0 1 0
Z2:Z2 Z2: — (Y —1\2
0+ 21 ( 0 Y272+Y2> ¥e™) (o 1)’

and Z*" = (YC~ 1) ((1) (1)> Also

ol _ pony (—(YO*)Q"YT (ye=tymy ) _ (—(Y0—1)2”+1S <Yc—1>2“+1yc)

(Yc—l)QnY (ch—1>2nY7_ - (Yc—1)2n+1yc (Yc—1)2n+lys

e (2 €).

Then,

e'? = cosh(ty C™1) ((1) ?) + sinh(tY C™1) <_C’S g) . (6)

¢ S

Note that, since YC~! is anti-Hermitian, and cosh and sinh are, respectively, even and odd functions,

The operator ¥ = <_S C) is a symmetry: ¥* = X = N1,

then the first term of e*# is selfadjoint and the second is anti-Hermitian. Then,

*tzf -1 1 0 o —1 _S C
e *? = cosh(tYC )(0 1) sinh(tYC )(C g

Therefore, the geodesic §(t) = (e'? Pye ™', et?Qpe~'?) can be explicitly computed.

Alternatively, let D* = D such that YC~! = iD. Then, cosh(tYC~!) = cos(tD) and sinh(tYC~1) =
isin(tD).
Remark 7.3. The geodesics can be described in an intrinsic way, without reference to the Halmos frame of

-5 C
c s

2 —CS S2 0 S 0
Ay = AZ = Aol = .
0 (—05 —S?) » “o (o 52> and |4o| (o S)

-Yr 0 -S 0 YC-t 0
POZPOJOP0=< ' O)(O 0>:< ’ 0).

e'? = cosh(tPyZ Py Jo Py) + sinh(t Py Z Py Jy) Jo, (7)

reference. To this effect, note that the matrix ( > above is precisely —Jo, (Jo = sgn(Aop)). Indeed:

Next, note that

Then

and similarly for e7*%.
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With these expressions above, the bijectivity radius of the exponential map can be computed.

Theorem 7.4. Let (Py, Qo) € Da,. Then the exponential map

€$p(p07Q0) : {Z S H(PU,Q(J) : ||ZH < 7T/2} — exp(pOVQO) ({Z € H(POVQO) : HZH < ’/T/2})

s a bijection, whose image

exp(py,Qu) ({Z € H(py,qo) + |1 ZIl < 7/2}) C Da,
is an open dense subset.

Proof. Let v1,v2 € (I'Da,)(p,,q,) With the same exponential, i.e., if Z1, Z> € H(p, ¢, are the corresponding
horizontal elements, e - (Py, Qo) = e%2 - (Py, Qo). Then, following the notations of the preceding remark

Y, Y.
(Z; = < iT 7| and D; = —iYj7, for j = 1,2), there exists a unitary operator in £ such that

Y, Y
w 0

—Z2 21 _
e (0 W),

i.e., sin(Dy)W = sin(D;) and cos(D2)W = cos(D1). If we suppose that |vj|(p,,q,) = [[D;l| < 7/2, then the
cosines are invertible, and, then, these identities imply that D; = Ds.

Let us prove that exp(p, g, ({Z € H(p,,qo) : | Z]] < 7/2}) is an open dense subset of D4,. In order to
prove this fact, we shall use the alternative characterization for D4, given in Theorem 2.2. Namely, repre-
senting the elements of D 4, as symmetries V' which anti-commute with Ay. Recall that the correspondence is
given by (P, Q) <> V, where V is the symmetry (the isometric part) in the polar decomposition of P+Q —1.
Let us compute Vp, the symmetry corresponding to the pair (P, Qo), using Halmos decomposition based
on the pair (Py, Qo). Note that

c? CS c? 0
P°+Q°_1:<cs cz>7 (P0+Q0—1)2:<0 Cz>,

so that
c 0 c S
|P0+Q0—1—<0 C) and VO_(S —C)

-Y Y
Pick Z € H(p,,q,), Z = ( YT v > Recall that Y and Y7 commute with C' and S, so we get
T

s (YT Y c S\ _ 0 -YrS-YC
°~\ v vr s —c) \vCc+vrS 0
and

0 YrS+YC
VOZ_(YCYTS 0 )
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That is, ZVy = —VyZ. Conversely, a similar computation shows that anti-Hermitian elements Z which
anti-commute with Vg belong to Hp, g,). Pick a symmetry V' which anti-commutes with Ag, such that
IV — V|| < 2. In general, any pair of symmetries lie at distance less or equal than 2. Therefore, the set
of such V' form an open dense subset of D4,. We claim that these elements V' belong to the image of the
exponential exp p, g, restricted to {Z € H(p, q,) : [|Z]| < 7/2}. In [25], H. Porta and L. Recht proved that
a symmetry V such that ||V — Vp|| < 2 is of the form V = e?Vye™ 4, where Z is an anti-Hermitian operator
which anti-commutes with Vg, i.e., Z € Hp, g,, with ||Z|| < /2. Also note that, since Z anti-commutes
with V, Voe=% = eV}, thus,

V =¢*2V, and €*4 =VV,.

Since ||2Z|| < m, Z can be obtained as Z = 3log(VV;) (log the unique logarithm for unitary operators U
such that [|[U — 1|| < 2; notice that ||[VVy — 1| = ||V — Vo|| < 2). Since V and Vj anti-commute with Ao,
V'V, and its logarithm Z belong to Ajy.

The correspondence between symmetries and pairs in Dy, is clearly equivariant: UVoU™* < U - (Py, Qo),
for U € Uy,. Therefore, (P, Q) = exp(p,,0,)(Z), where Z € {Z € H(p, 0, : | Z]| <7/2}. O

A similar argument (representing Da, as Davis’ symmetries) allows one to prove that exp(p,.q,) is
globally onto. The proof is also a refinement of the argument which showed that the action of U4, on D4,
is transitive. In fact, the result below implies the former.

Theorem 7.5. Let (Py, Qo) € Da,. The exponential map
€XP(Py,Qo) * {Z € H(P07QO) : ”ZH < 71—/2} — Da,
18 onto.

Proof. Pick (P,Q) € Da,, and let V = sgn(P 4+ @ — 1) be its Davis’ symmetry. Let Vj be the symmetry
corresponding to (Py, Qo). Denote by

Hip={eH : V=Cand VE=¢F, Ho o ={{eH : Vo= —-and VE= —¢}
He_={{eH : V&=and VE=—¢} and Ho  ={{ e H:Vp{=—§and VE =&}

Recall the symmetry Jy obtained as the sign of Ay, which anti-commutes with V' and Vj. Note that, if
Vo& = &, then Jo& # 0 satisfies Vo Jo& = —JogVo€ = —Jp&, and similarly for £ such that Vp¢ = —&. The
analogous property holds for V. Therefore, Jy maps H4 4 into H_ _ and vice versa, and it is one to one
between these subspaces. The same happens for H4 _ and H_ ;. In [2], it was proven that there exists
a geodesic of the Grassmann manifold of H (= space of symmetries of H) joining V and V; if and only
if

dim(Hy —) = dim(H_ +).

It follows that there exists Z, Z* = —Z, || Z|| < m/2, which is co-diagonal with respect to Vp, such that
e?Voe=? = V. Such Z may not be unique (if the dimensions above are non zero). To finish the proof, we
must show that we can find one of these Z in Ap. In [2] it was shown that all such Z are reduced by the
decomposition

Ho = Hy © Hy & H,
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where Hyy = Hy + ®H_ —, Hyy = H4 - ®H_ 4 and HY is the orthogonal complement to the sum of these
two. Both Jy and Ag are reduced by this decomposition. Clearly, also V and V} are also reduced.

Z is trivial in Hj ([2]). In Hg, we choose Z|yy = im/2Jolpy. The exponential of this anti-Hermitian
operator yields a unitary operator intertwining Vp|sy and Vlzy. In the third subspace, which, in fact, is
the generic part of the pair Vo, V, the exponent Z|yg is obtained uniquely as the logarithm (see [2])

Z|yg = log(SVolsyg),

where S is the Davis symmetry of the reductions Vplyg and Vyg to their generic part:

1
S = sgn(—5{Vo + Vo).

{V + Vo}ug anti-commutes with Aglyg, then so does its unitary part S in the polar decomposition. It
follows that SVy commutes with Ag|yg. Therefore, our choice of Z belongs to Ay and the proof is com-
plete. O

8. A Hopf-Rinow theorem for D4,

In [15], Durédn, Mata-Lorenzo and Recht introduced a Finsler metric for homogeneous spaces U 4 /Up which
are obtained as the quotient of the unitary group of a C*-algebra by the unitary group of a C*-subalgebra
B C A. Denote by

W:MA%UA/Z/[B

the quotient map. A tangent vector v at [1] (the class of 1 in U4/Up) identifies with an element in the
quotient of (real) Banach spaces Aqun/Ban (Aqpn and B,y denote the spaces of anti-Hermitian elements of A
and B, respectively). Thus v = d(w)1(2), for some z € A,p; we shall say that z is a lifting of v. The Finsler
norm |vly) is defined as the infimum

[v] = |v|p) = inf{||2]| : z € Aap is a lifting of v}.
Or equivalently, if 2y is an arbitrary lifting of v,
|v| = inf{||z0 + y|| : ¥y € Ban}-

The metric is carried over the entire tangent bundle by means of the left action of U4 on U, /Upg. Thus,
the metric so defined is invariant under this action. A lifting zy which achieves this infimum is called a
minimal lifting. Minimal liftings may not exist (see for instance [10] for a nice example), and may fail to be
unique (see [7] for a finite dimensional example), but if B C A are von Neumann algebras, they do exist [16].
We shall apply this theory to D4,, where the algebras are indeed von Neumann algebras (being defined as
commutant of selfadjoint operators). The main result in [15] states that if zg € A,p is a minimal lifting of
v, then

a(t) =[]

s
2]
In our context L(Zp,,q,)) is the space of anti-Hermitian elements of the von Neumann algebra of operators

is a curve of minimal length for time [t| <

which commute with Py and @y, inside the von Neumann algebra of operators which commute with Ay =
Py — Qo. The fact that Hp, o, is a supplement for L(Z(p, q,)) in (Ao)an, implies that any tangent vector
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vin T(Da,)(py,00) has a lifting Z € H(p, g,). We claim that this lifting is minimal. To prove this we need
the following result:

Proposition 8.1. (Proposition 5.2 of [15], see also Theorem 2.2 of [7]) Let B C A be C*-algebras, and let
Z € Agn. Suppose that there exists a state v in A with the following properties:

L (2% = - 2|
2. ForanyY € B, v(YZ) =0.

Then Z is a minimal lifting (i.e., |Z|| < ||Z + D||, for all D € Byp,).

Lemma 8.2. Let Z* = —Z, with matrix

such that X and Y commute. Then

1zl <11z + DI|,
!/
for any D* = —D of the form D = (DO D0’>

Proof. We use Proposition 8.1 above. Note that

ZQ_<X2+Y2 XYYX>_<X2+Y2 0 )

YX - XY X?24+Y? 0 X2 4+Yy?
Note, also, that X2 + Y? < 0, and that ||Z2| = || X2 + Y?2||. There exists a state ¢g in B(L) such that
Yo(X?2 +Y?) = —||X? 4+ Y?||. Let 7 the positive unital linear map
Ty T 1
= —{T; Too}.
T(<T21 T22>) 2{ T

Then 1 = 1)y o T is a state in B(H) such that
1.

W(Z%) = ho(X? +Y?) =~ X* + V7.

D/
2. For D* = —D of the form, D = < 0 lg,),

XD YD
7(ZB) = T(<YD' —XD’> =0.

Then ¥(ZB) =0. O
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If v € T(Da,)(Py,00)s We shall denote by Z, € Hp, q,) the unique lifting of v which belongs to Hp, q,)-
Note that the mapping v +— Z, is a linear isomorphism (it is the inverse of d(m(p, q,))1 restricted to

Hp,.Q0))-
The following result follows:

Y Y
Theorem 8.3. Let (Py, Qo) € Da, and v € T(Da,)(py,0,) Such that Z, = ( YT v ) Then
-Yr

3(t) = €7 - (P, Qo) = (e Poe™7v, et v Que™"7v)

is a minimal geodesic for the Finsler metric defined above, up to time

< 7r T 7r
T2l 2020l 2(Y? + (Y7)?

|t| |1/2'

Proof. Recall from Remark 6.4, that for any Z, € H(p, q,), all entries in the matrix commute. Thus,
Lemma 8.2 holds and Z, has minimal norm among all perturbations with elements in the isotropy alge-
bra. O

The fact that the minimal liftings belong to the linear space H(p, ,) implies, additionally, the following
result, which can be regarded as a Hopf-Rinow Theorem for the space D4, (in a context which is far from
being Riemannian). Note that the pairs in D4, which can be reached from any given pair (P, Qo) by a
unique minimal geodesic, is an open dense subset of D,,. Theorem 7.4 and Theorem 8.3 imply

Corollary 8.4. Let (P,Q), (P, Qo) € Da,, and let V and Vi be the corresponding Davis’ symmetries: V =
sgn(P+Q—1), Vo = sgn(Po+Qo—1). If [V —Vo| < 2, then there exists a unique element Z = Zp, g,) (P, Q),
which is a C* map in terms of the arguments (Py, Qo), (P, Q), such that

(P,Q) =¢” - (Po, Qo).

The geodesic 6(t) = €% - (Py, Qo) has minimal length among all piecewise smooth curves in D4, joining
(Po, Qo) with (P, Q).

Proof. From the proof of Theorem 7.4, it is clear that | Z|| < 7/2. Then, by Theorem 8.3, ¢ is minimal up
to time ¢t =1, and §(1) = (P, Q). O

Using now Theorem 7.5, one can show that (dropping the uniqueness condition), any pair of elements in
D4, can be joined by a minimal geodesic.

Corollary 8.5. Let (Py,Qo),(P,Q) € Da,. Then there exists a minimal geodesic of Da,, of length less or
equal than /2, which joins them.

Proof. The existence of a geodesic §, parametrized in the interval [0, 1], joining (Pp, Qo) and (P, Q) is a
direct consequence of Theorem 7.5. Also, it is clear there that the norm of the exponent Z (= the length
of the geodesic) is less or equal than 7/2. Let us prove, by a standard geometric argument, that it must
be minimal. Clearly, by the above result, we must consider the case when the length ¢(J) of ¢ is 7/2.
Suppose there is a curve v € Dy, joining (Py, Qo) of length 7/2 — r, for some r > 0. Pick ¢y such that
(1 —to)m/2 = £(d]ty,1)) < 7/2. Then the length of the curve obtained by adjoining to vy the curve d|y, 1
reversed, gives a curve joining (Pp, Qo) and d(tg), of length strictly less than tgm/2. This is a contradiction,
since by the above Corollary, the curve dlj 4, has minimal length tom/2. O
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-Y Y
Remark 8.6. Note that if Z = YT v is a horizontal element, then also YC~! is bounded. Recall
T

that X,Y, Z commute with C, S, 7, the equality C(Z — X) = 25Y implies that
C*(Z — X)?48%Y? = 4Y? —4C?Y? | ie., C?PA=Y?,

where A = 2((X — Z)? +Y?) is bounded. It follows that Y?C~?2 is bounded, thus its square root [Y|c™! is

-Yr Y

h
y yr ) then

bounded, and then also YC~! is bounded. Moreover, if Z =

12|l = 1Y ?7* + V2|2 = |y O 1.
Therefore, if || Z|| < 7/2, the distance between (Py, Qo) and eZ - (Py, Qo) equals |[YC 1.
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